JPH0429713B2 - - Google Patents

Info

Publication number
JPH0429713B2
JPH0429713B2 JP11633583A JP11633583A JPH0429713B2 JP H0429713 B2 JPH0429713 B2 JP H0429713B2 JP 11633583 A JP11633583 A JP 11633583A JP 11633583 A JP11633583 A JP 11633583A JP H0429713 B2 JPH0429713 B2 JP H0429713B2
Authority
JP
Japan
Prior art keywords
phosphor
fluorescent lamp
color rendering
lamp
activated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11633583A
Other languages
Japanese (ja)
Other versions
JPS609047A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11633583A priority Critical patent/JPS609047A/en
Publication of JPS609047A publication Critical patent/JPS609047A/en
Publication of JPH0429713B2 publication Critical patent/JPH0429713B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/38Devices for influencing the colour or wavelength of the light
    • H01J61/42Devices for influencing the colour or wavelength of the light by transforming the wavelength of the light by luminescence
    • H01J61/44Devices characterised by the luminescent material

Landscapes

  • Luminescent Compositions (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、発光の色温度が4200〜5600Kの値を
有し、かつ演色評価数についてJISZ9301に定め
られた演色区分がEDL形で、光源区分が白色の
各数値を満足する高演色形蛍光ランプに関する。 従来例の構成とその問題点 従来、一般証明用蛍光ランプに用いられている
蛍光体は、アンチモンおよびマンガンで付活され
たハロりん酸カルシウム蛍光体であるが、このラ
ンプは演色性が低いために、美術館やカラー印刷
工場など高い演色性を要求される場所での使用は
制限されている。 このような高い演色性を有する蛍光ランプとし
ては、例えば基準光源の分光分布に近似させるよ
うに数種類の蛍光体を混合し、一方で演色性の上
昇を阻害する可視部短波長領域の水銀輝線を抑制
する方法を併用したいわゆる二層塗布による
EDL形蛍光ランプが知られている(特公昭41−
9869号公報、特公昭48−15895号公報参照)。 しかし、上記従来のものはランプ製造工程が煩
雑となり、生産効率が低下するとともに演色性の
バラズキやランプ効率の低下が避られず、長年の
課題となつていた。 近年、上記の問題点を改善した蛍光ランプが、
特開昭54−102073号公報および特開昭55−115489
号公報において提案され一応の進展をみた。しか
しながら、前者(特開昭54−10207号公報のもの)
は使用している青緑色蛍光体の発光ピーク波長が
短波長すぎるため、ランプの色度を黒体軌跡上に
設定するためには、ハロりん酸カルシウムや硅酸
亜鉛などの少なくとも4種類の蛍光体を混合して
用いねばならず、ランプの光色および演色性のバ
ラツキが大きく、また効率も低いという欠点があ
る。一方、後者(特開昭55−115489号公報のも
の)は狭帯域に発光する青色および赤色蛍光体を
含む3種類の蛍光体を混合しているため光色およ
び演色性などの色の管理が難しいという欠点を有
している。 また特開昭58−40763号公報に開示されている
ように、青緑色蛍光体として2価のユーロピウム
で付活されたアルカリ土類金属ハロりん酸塩蛍光
体を配し、スズで付活した正りん酸ストロンチウ
ム蛍光体と混合した一層塗布によりランプ効率と
演色性を改善した蛍光ランプが知られている。し
かしながら上記アルカリ土類金属ハロりん酸塩蛍
光体の発光の半値巾が88〜102nmと狭いため、や
はり光色および演色性などの色の管理が難かしい
という欠点を有している。 発明の目的 本発明は上記の如き欠点を解消したEDL形蛍
光ランプを提供するものであり、青緑色蛍光体と
して480〜500nmの波長範囲に発光ピークを有し、
かつ105〜120nmと半値巾の広い蛍光体を配する
ことによりランプ効率を改善するとともに高演色
性を有する蛍光ランプを提供するものである。 発明の構成 本発明の蛍光ランプは、一般式 (Sr2-xEuxO2)・mMgO・n(Al2-yByO3)で示さ
れ式中x,y,mおよびnがそれぞれ 0.01≦x≦0.2 0.001≦y≦0.03 0.5≦m<2.0 4≦n< を満足し、480〜520nmの波長範囲に発光ピーク
を有し、かつ、150〜120nmの半値巾を有する2
価のユーロピウムで付活されたアルカリ土類金属
硼アルミン酸塩よりなる第1の蛍光体と、620〜
640nmの波長範囲に発光ピークを有し、かつ、
120〜160nmの半値巾を有する、例えばスズ付活
正りん酸ストロンチウムマグネシウム蛍光体の如
き第2の蛍光体とを混合し、この混合蛍光体をガ
ラス管内壁に被着させてなることを特徴とするも
のであり、一層塗布によつてランプ効率を改善す
るとともに、色の管理を容易にし、高演色性を有
する蛍光ランプを安定して提供できるようにした
ものである。 実施例の説明 蛍光ランプにおいて高演色性を得るためには、
蛍光体の混合使用による分光分布の調整だけでは
不十分であり、可視部短波長領域の水銀輝線であ
る405nmおよび436nmの発光エネルギー抑制が必
要であることが知られている。発明者らは上記水
銀輝線の抑制をはかるため、新規な青緑色蛍光体
の分光反射特性を利用する方法を検討し、種々の
2価のユーロピウムで付活されたアルカリ土類金
属硼アルミン酸塩蛍光体について実験を行なつた
結果、前記のように構成された蛍光ランプによれ
ば、従来のEDL形蛍光ランプに比べて高演色性
を安定して実現するとともに優れたランプ効率を
示すことを見出したものである。 本発明の蛍光ランプに用いられる上記2価のユ
ーロピウム付活アルカリ土類金属硼アルミン酸塩
蛍光体の特徴は、一般式(Sr2-xEuxO2)・
mMgO・n(Al2-yByO3)において式中、x,y,
mおよびnの数値を適当に選択し、MgとAlとの
混合比率を変えることによつて、480〜500nmの
波長範囲に発光ピークを有し、かつ105〜120nm
の半値巾を有する蛍光体が得られることにある。
このように蛍光ピークを移動できることの利点
は、他の蛍光体を用いることなしに、ピーク波長
620〜640nm、半値巾120〜160nmの蛍光体のみと
組み合せるだけで低色温度から高色温度の範囲に
わたつて何れも優れた特性を有する蛍光ランプが
得られることである。さらに言えば、両者の蛍光
体の半値巾が上述したように、それぞれ105〜
120nmおよび120〜160nmと広いため、蛍光体混
合使用による混合比率の微少変化がそのランプ光
色や演色性に及ぼす影響が小さく、色の管理の点
で有利な特徴を有する蛍光ランプが得られる利点
をも有している。前記一般式中のユーロピウムの
含有量xは0.01≦x≦0.20となるように選ばれ
る。xが0.01に達しない場合には得られる蛍光体
の輝度が不十分であり、また0.20を越えると輝度
の大巾な向上は見られない。さらに、式中m,n
およびyはそれぞれ0.5≦m≦2.0,4≦n≦6お
よび0.001≦y≦0.03の関係を満たすように設定
される。マグネシウムの含有量mおよびアルミニ
ウムの含有量nが上記の範囲にない場合は、その
発光ピーク波長が480〜500nmの領域に得られず、
本発明の蛍光ランプに用いられる蛍光体として不
適当となる。また、硼素の含有量yを0.001≦y
≦0.03に設定することによつて蛍光ランプ適用時
における光出力維持率に関して著しい改善効果が
認められた。以上説明した2価のユーロピウム付
活アルカリ土類金属硼アルミン酸塩蛍光体は次の
ようにして調整される。すなわち、焼成後Sr,
Mg,Al,BおよびEu源となり得る各々の酸化
物、燐酸塩、炭酸塩、アンモニウム塩などのの化
合物を所定量秤量した後、これらの原料混合物を
十分に粉砕混合する。しかる後、得られた混合物
をるつぼに収容し、弱還元性雰囲気中1000〜1400
℃の温度下で2〜4時間焼成する。得られた焼成
物を冷却、粉砕、篩別した後、例えば室温下にあ
る純水中を通過させた水素−窒素の混合ガス中に
おいて1000〜1400℃の温度下で第2次焼成を行な
う。得られた焼成物を冷却、粉砕、篩別して本発
明に使用される第1の蛍光体を得る。 次に、第1の蛍光体と共に用いる620〜640nm
の波長範囲にピーク波長を有し、かつ120〜
160nmの半値巾を有する蛍光体について検討した
結果、既存のスズ付活正りん酸ストロンチウム・
マグネシウム蛍光体が好適であることがわかつ
た。 本発明の蛍光ランプに用いた蛍光体の組成式、
色度、ピーク波長、半値巾を第1表に示す。また
これらの蛍光体の蛍光スペクトルを第1図に示
す。同図において、曲線A〜Dはそれぞれ第1表
中の蛍光体A〜Dに対応する。
Industrial Application Field The present invention has a color temperature of emitted light of 4200 to 5600K, and satisfies each numerical value of the color rendering index stipulated in JISZ9301, in which the color rendering classification is EDL type and the light source classification is white. Regarding high color rendering type fluorescent lamps. Conventional structure and problems The phosphor conventionally used in general certification fluorescent lamps is a calcium halophosphate phosphor activated with antimony and manganese, but this lamp has a low color rendering property. However, its use in places where high color rendition is required, such as museums and color printing factories, is restricted. Fluorescent lamps with such high color rendering properties are made by, for example, mixing several types of phosphors to approximate the spectral distribution of a reference light source, while at the same time eliminating mercury emission lines in the short wavelength range of the visible region, which inhibits the increase in color rendering properties. By so-called two-layer coating combined with a method of suppressing
EDL type fluorescent lamps are known
(Refer to Publication No. 9869 and Special Publication No. 15895/1983). However, in the conventional lamp manufacturing process described above, the manufacturing process is complicated, production efficiency is reduced, and variations in color rendering properties and reduction in lamp efficiency are unavoidable, which has been a long-standing problem. In recent years, fluorescent lamps have improved the above problems.
JP-A-54-102073 and JP-A-55-115489
It was proposed in the Publication No. 1 and has made some progress. However, the former (published in JP-A-54-10207)
Because the emission peak wavelength of the blue-green phosphor used in the lamp is too short, in order to set the chromaticity of the lamp on the blackbody locus, at least four types of fluorescent materials such as calcium halophosphate and zinc silicate must be used. The drawbacks are that a mixture of materials must be used, that the light color and color rendering of the lamp vary widely, and that the efficiency is low. On the other hand, the latter (published in JP-A No. 55-115489) is a mixture of three types of phosphors, including blue and red phosphors that emit light in a narrow band, making it difficult to manage colors such as light color and color rendering. It has the disadvantage of being difficult. Furthermore, as disclosed in Japanese Patent Application Laid-Open No. 58-40763, an alkaline earth metal halophosphate phosphor activated with divalent europium is arranged as a blue-green phosphor, and an alkaline earth metal halophosphate phosphor activated with tin is used as a blue-green phosphor. Fluorescent lamps are known in which the lamp efficiency and color rendering properties are improved by a single layer coating mixed with strontium orthophosphate phosphor. However, since the half-value width of the light emission of the alkaline earth metal halophosphate phosphor is as narrow as 88 to 102 nm, it still has the drawback that it is difficult to control colors such as light color and color rendering properties. Purpose of the Invention The present invention provides an EDL type fluorescent lamp that eliminates the above-mentioned drawbacks, and has an emission peak in the wavelength range of 480 to 500 nm as a blue-green phosphor.
Moreover, by disposing a phosphor having a wide half-value width of 105 to 120 nm, lamp efficiency is improved and a fluorescent lamp having high color rendering properties is provided. Structure of the Invention The fluorescent lamp of the present invention is represented by the general formula (Sr 2-x Eu x O 2 )·mMgO·n (Al 2-y B y O 3 ), where x, y, m, and n are each 2 that satisfies 0.01≦x≦0.2 0.001≦y≦0.03 0.5≦m<2.0 4≦n<, has an emission peak in the wavelength range of 480 to 520 nm, and has a half width of 150 to 120 nm
620~
has an emission peak in the wavelength range of 640 nm, and
It is characterized by being mixed with a second phosphor such as a tin-activated strontium magnesium orthophosphate phosphor having a half-value width of 120 to 160 nm, and depositing this mixed phosphor on the inner wall of the glass tube. This makes it possible to improve lamp efficiency by applying one layer of coating, and also to facilitate color management and to stably provide a fluorescent lamp with high color rendering properties. Description of Examples In order to obtain high color rendering properties in fluorescent lamps,
It is known that adjusting the spectral distribution by using a mixture of phosphors is not sufficient, and that it is necessary to suppress the emission energy of 405 nm and 436 nm, which are the mercury emission lines in the short wavelength region of the visible region. In order to suppress the above-mentioned mercury emission line, the inventors investigated a method that utilizes the spectral reflection characteristics of a new blue-green phosphor, and used various divalent europium-activated alkaline earth metal boroaluminates. As a result of experiments on phosphors, it was found that the fluorescent lamp configured as described above stably achieves high color rendering properties and exhibits superior lamp efficiency compared to conventional EDL type fluorescent lamps. This is what I found. The characteristics of the divalent europium-activated alkaline earth metal boroaluminate phosphor used in the fluorescent lamp of the present invention have the general formula (Sr 2-x Eu x O 2 ).
In mMgO・n (Al 2-y B y O 3 ), in the formula, x, y,
By appropriately selecting the values of m and n and changing the mixing ratio of Mg and Al, it is possible to produce a material that has an emission peak in the wavelength range of 480 to 500 nm and 105 to 120 nm.
The objective is to obtain a phosphor having a half-value width of .
The advantage of being able to shift the fluorescence peak in this way is that the peak wavelength can be adjusted without using other fluorophores.
By combining only phosphors with a wavelength of 620 to 640 nm and a width at half maximum of 120 to 160 nm, it is possible to obtain a fluorescent lamp having excellent characteristics in the range of low color temperature to high color temperature. Furthermore, as mentioned above, the half-width of both phosphors is 105 ~
Because of the wide range of 120nm and 120 to 160nm, slight changes in the mixing ratio caused by mixing phosphors have little effect on the light color and color rendering properties of the lamp, which provides a fluorescent lamp with advantageous characteristics in terms of color management. It also has The europium content x in the general formula is selected such that 0.01≦x≦0.20. When x does not reach 0.01, the brightness of the obtained phosphor is insufficient, and when x exceeds 0.20, no significant improvement in brightness is observed. Furthermore, m, n in the formula
and y are set to satisfy the relationships of 0.5≦m≦2.0, 4≦n≦6, and 0.001≦y≦0.03, respectively. If the magnesium content m and the aluminum content n are not within the above range, the emission peak wavelength will not be in the 480 to 500 nm region,
This makes it unsuitable as a phosphor for use in the fluorescent lamp of the present invention. In addition, the boron content y is 0.001≦y
By setting the value to ≦0.03, a significant improvement effect was observed on the light output maintenance rate when fluorescent lamps were used. The divalent europium-activated alkaline earth metal boron aluminate phosphor described above is prepared as follows. That is, after firing Sr,
After weighing a predetermined amount of compounds such as oxides, phosphates, carbonates, and ammonium salts that can serve as sources of Mg, Al, B, and Eu, a mixture of these raw materials is thoroughly ground and mixed. After that, the obtained mixture was placed in a crucible and heated at 1000 to 1400 in a mildly reducing atmosphere.
Bake for 2-4 hours at a temperature of °C. After the obtained fired product is cooled, crushed and sieved, it is subjected to a second firing at a temperature of 1000 to 1400°C in a hydrogen-nitrogen mixed gas passed through pure water at room temperature, for example. The obtained fired product is cooled, pulverized, and sieved to obtain the first phosphor used in the present invention. Next, 620 to 640 nm to be used together with the first phosphor.
has a peak wavelength in the wavelength range of 120~
As a result of examining phosphors with a half-value width of 160 nm, we found that the existing tin-activated strontium orthophosphate
A magnesium phosphor has been found to be suitable. Compositional formula of the phosphor used in the fluorescent lamp of the present invention,
The chromaticity, peak wavelength, and half width are shown in Table 1. Further, the fluorescence spectra of these phosphors are shown in FIG. In the figure, curves A to D correspond to the phosphors A to D in Table 1, respectively.

【表】 以下、本発明を実施例にもとづいて詳細に説明
する。 実施例 1 第1表に示す種類Aと種類Dとの蛍光体を混合
して管径32mmのガラス管内壁に被着し、通常の製
法に従つて40Wの蛍光ランプを試作した。得られ
た蛍光ランプの色温度は4200K,DUV=0であ
り、初期光束は2400〜2450ルーメン、平均演色評
価数Raは97であつた。 実施例 2 第1表に示す種類Bと種類Dとの蛍光体を混合
して実施例1と同様に40Wの蛍光ランプを試作し
た。得られた蛍光ランプの色温度は5000K,
DUV=0であり、初期光束は2460〜2500ルーメ
ン、平均演色評価数Raは99であつた。 実施例 3 第1表に示す種類Cと種類Dとの蛍光体を混合
して実施例1と同様に40Wの蛍光ランプを試作し
た。得られた蛍光ランプの色温度は5600K,
DUV=0であり、初期光束は2480〜2530ルーメ
ン、平均演色評価数Raは98であつた。 公知例 前述した従来の二層塗布によるEDL形蛍光ラ
ンプの例として第1層蛍光体(ガラスバルブ側)
に黄色顔料、酸化チタンおよびマンガンで付活さ
れたフツ化ゲルマン酸マグネシウムを用い、第2
層蛍光体(放電側)としてアンチモンで付活され
たフロロりん酸カルシウム、アンチモンとマンガ
ンで付活されたハロりん酸カルシウムおよびスズ
で不活されたオルソりん酸ストロンチウムマグネ
シウムを用いた色温度5000K,DUV=0の40W
蛍光ランプである。 実施例1〜3および公知例で得られた蛍光ラン
プの各種測定データを第2表に示す。また実施例
2によつて得られた蛍光ランプの分光分布と公知
例による蛍光ランプの分光分布とを第2図に比較
して示す。
[Table] Hereinafter, the present invention will be explained in detail based on Examples. Example 1 A 40 W fluorescent lamp was prototyped by mixing phosphors of type A and type D shown in Table 1 and applying the mixture to the inner wall of a glass tube with a tube diameter of 32 mm according to a conventional manufacturing method. The color temperature of the obtained fluorescent lamp was 4200K, DUV=0, the initial luminous flux was 2400 to 2450 lumens, and the average color rendering index Ra was 97. Example 2 A 40 W fluorescent lamp was prototyped in the same manner as in Example 1 by mixing type B and type D phosphors shown in Table 1. The color temperature of the obtained fluorescent lamp is 5000K,
DUV=0, initial luminous flux was 2460 to 2500 lumens, and average color rendering index Ra was 99. Example 3 A 40 W fluorescent lamp was prototyped in the same manner as in Example 1 by mixing type C and type D phosphors shown in Table 1. The color temperature of the obtained fluorescent lamp is 5600K,
DUV=0, initial luminous flux was 2480 to 2530 lumens, and average color rendering index Ra was 98. Known example As an example of the conventional two-layer coating EDL type fluorescent lamp mentioned above, the first layer phosphor (glass bulb side)
Using yellow pigment, titanium oxide and manganese-activated magnesium fluoride germanate, the secondary
Color temperature 5000K using calcium fluorophosphate activated with antimony, calcium halophosphate activated with antimony and manganese, and strontium magnesium orthophosphate activated with tin as layer phosphor (discharge side), 40W with DUV=0
It is a fluorescent lamp. Table 2 shows various measurement data of the fluorescent lamps obtained in Examples 1 to 3 and known examples. Further, the spectral distribution of the fluorescent lamp obtained in Example 2 and the spectral distribution of a fluorescent lamp according to a known example are shown in comparison in FIG.

【表】 第2表から明らかなように、本発明による蛍光
ランプは全光束(100時間値)が2350〜2430ルー
メンと従来のEDL形蛍光ランプの全光束に比較
して大巾に向上しており、演色性においても十分
に高い値を有している。また、巾広い発光スペク
タルを有する蛍光体の組合せとなつているため、
製造ロツト間あるいはランプ間での色度および演
色性の再現性も良くランプ製造時の生産性の点で
も大きく改善された。 発明の効果 以上説明したように、本発明は、青緑色蛍光体
として2価のユーロピウム付活アルカリ土類金属
硼アルミン酸塩蛍光体のピーク波長を適切に選択
し、また共に用いるスズ付活正りん酸ストロンチ
ウム、マグネシウム蛍光体との混合比率を適切に
することによつて、4200〜5600Kの色温度範囲で
従来の2層塗布や顔料層を設けることなしに演色
評価数についてJISZ9301に定められた演色区分
がEDL形で光源色区分が白色の各数値を満足し、
ランプ効率の改善と併せてランプの光色や演色性
の点でも安定した高品質の蛍光ランプを提供する
ことができるものである。
[Table] As is clear from Table 2, the total luminous flux (100 hour value) of the fluorescent lamp according to the present invention is 2350 to 2430 lumens, which is significantly improved compared to the total luminous flux of the conventional EDL type fluorescent lamp. It also has a sufficiently high color rendering property. In addition, since it is a combination of phosphors with a wide emission spectrum,
The reproducibility of chromaticity and color rendering properties between manufacturing lots or between lamps is also good, and productivity during lamp manufacturing has also been greatly improved. Effects of the Invention As explained above, the present invention appropriately selects the peak wavelength of a divalent europium-activated alkaline earth metal boroaluminate phosphor as a blue-green phosphor, and also uses a tin-activated phosphor to be used together. By adjusting the mixing ratio of strontium phosphate and magnesium phosphor, we can achieve the color rendering index specified by JISZ9301 in the color temperature range of 4200 to 5600K without the traditional two-layer coating or pigment layer. The color rendering classification is EDL type and the light source color classification satisfies the values of white,
This makes it possible to provide a high-quality fluorescent lamp that not only improves lamp efficiency but also has stable light color and color rendering properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の蛍光ランプに用いた各種蛍光
体の発光スペクトルを示す図、第2図は本発明の
実施例2に示した蛍光ランプの分光分布と公知例
のEDL形蛍光ランプの分光分布とを比較して示
す図である。
Figure 1 is a diagram showing the emission spectra of various phosphors used in the fluorescent lamp of the present invention, and Figure 2 is a diagram showing the spectral distribution of the fluorescent lamp shown in Example 2 of the present invention and the spectrum of the known EDL type fluorescent lamp. It is a figure showing comparison with distribution.

Claims (1)

【特許請求の範囲】 1 (1) 一般式、(Sr2-xEuxO2)・mMgO・n
(Al2-yByO3)で示され、式中x,y,mおよ
びnがそれぞれ 0.01≦x≦0.2 0.001≦y≦0.03 0.5≦m<2.0 4≦n<6 を満足し、480〜500nmの波長範囲に発光ピー
クを有し、かつ、105〜120nmの半値巾を有す
る2価のユーロピウムで付活されたアルカリ土
類金属硼アルミン酸塩よりなる第1の蛍光体
と、620〜640nmの波長範囲に発光ピークを有
し、かつ、120〜160nmの半値巾を有する第2
の蛍光体とを混合し、前記混合蛍光体をガラス
管内壁に被着させてなることを特徴とする蛍光
ランプ。 (2) 第2の蛍光体が、スズ付活正りん酸ストロン
チウム・マグネシウム蛍光体である特許請求の
範囲第1項記載の蛍光ランプ。
[Claims] 1 (1) General formula, (Sr 2-x Eu x O 2 )・mMgO・n
480 _ _ a first phosphor made of an alkaline earth metal boroaluminate activated with divalent europium, which has an emission peak in the wavelength range of ~500 nm and a half-width of 105 to 120 nm; A second component having an emission peak in the wavelength range of 640 nm and a half-width of 120 to 160 nm.
1. A fluorescent lamp characterized in that the mixed phosphor is coated on the inner wall of a glass tube. (2) The fluorescent lamp according to claim 1, wherein the second phosphor is a tin-activated strontium magnesium orthophosphate phosphor.
JP11633583A 1983-06-27 1983-06-27 Fluorescent lamp Granted JPS609047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11633583A JPS609047A (en) 1983-06-27 1983-06-27 Fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11633583A JPS609047A (en) 1983-06-27 1983-06-27 Fluorescent lamp

Publications (2)

Publication Number Publication Date
JPS609047A JPS609047A (en) 1985-01-18
JPH0429713B2 true JPH0429713B2 (en) 1992-05-19

Family

ID=14684407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11633583A Granted JPS609047A (en) 1983-06-27 1983-06-27 Fluorescent lamp

Country Status (1)

Country Link
JP (1) JPS609047A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135482A (en) * 1986-11-27 1988-06-07 Toshiba Corp Phosphor
JP3605645B2 (en) * 1996-12-17 2004-12-22 北京市豊台区宏業塗装輔料廠 Long afterglow luminescent material and method for producing the same
JP2992254B2 (en) * 1997-08-11 1999-12-20 北京市豊台区宏業塗装輔料廠 Method for producing high-speed excitation / high-brightness / low-attenuation luminescent material

Also Published As

Publication number Publication date
JPS609047A (en) 1985-01-18

Similar Documents

Publication Publication Date Title
US6459197B1 (en) Fluorescent lamp and luminaire with improved illumination light in a low color temperature region
US4267485A (en) Fluorescent lamp with sharp emission peaks betwen 480 and 490 nm and between 620 and 640 nm
US4527087A (en) Fluorescent lamp
JPS6142851A (en) Fluorescent lamp
EP0074585B1 (en) Blue-green emitting halophosphate phosphor, and fluorescent lamp employing the same
JP2000109826A (en) Fluorescent substance of alkaline earth aluminate and fluorescent lamp
JP3515737B2 (en) Phosphor and fluorescent lamp using the same
JPH0429713B2 (en)
JPS5821380B2 (en) fluorescent lamp
JP2601341B2 (en) High color rendering fluorescent lamp
JPS61292848A (en) Fluorescent lamp
JPH0517954B2 (en)
JPH0260705B2 (en)
JPH0625354B2 (en) Fluorescent lamp
KR830002231B1 (en) Phosphor
JPH0517955B2 (en)
JPH09291280A (en) Fluorescent substance and fluorescent lamp
JP2601348B2 (en) High color rendering fluorescent lamp
JPH073778B2 (en) Fluorescent lamp
JPS6342376B2 (en)
JPS5842942B2 (en) fluorescent lamp
JPS6332110B2 (en)
JPH0719577B2 (en) Fluorescent lamp
JPS5861554A (en) Fluorescent lamp
JPH04324241A (en) Fluorescent lamp