JPH04296763A - Toner for developing electrostatic charge image - Google Patents

Toner for developing electrostatic charge image

Info

Publication number
JPH04296763A
JPH04296763A JP3084587A JP8458791A JPH04296763A JP H04296763 A JPH04296763 A JP H04296763A JP 3084587 A JP3084587 A JP 3084587A JP 8458791 A JP8458791 A JP 8458791A JP H04296763 A JPH04296763 A JP H04296763A
Authority
JP
Japan
Prior art keywords
toner
magnetic toner
weight
electrostatic charge
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3084587A
Other languages
Japanese (ja)
Other versions
JP2533007B2 (en
Inventor
Yuichi Moriya
祐一 守屋
Hideo Momohara
桃原 日出男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Tomoegawa Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Tomoegawa Paper Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3084587A priority Critical patent/JP2533007B2/en
Priority to US07/856,717 priority patent/US5258254A/en
Publication of JPH04296763A publication Critical patent/JPH04296763A/en
Application granted granted Critical
Publication of JP2533007B2 publication Critical patent/JP2533007B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

PURPOSE:To provide a toner for developing an electrostatic charge image capable of ensuring sufficiently high image density and fog-free satisfactory image characteristics in a low potential developing system. CONSTITUTION:An electrically conductive magnetic toner contg. 30-70wt.% magnetic powder and having <=1X10<3>OMEGAcm volume resistivity is mixed with an insulating nonmagnetic toner having >=1X10<9>OMEGAcm volume resistivity obtd. by sticking 0.2-2.0 pts.wt. carbon black to 100 pts.wt. toner particles in 60:40-90:10 weight ratio to obtain a toner for developing an electrostatic charge image.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は静電荷現像用トナーに関
し、特に低現像電位のシステムに使用される静電荷現像
用トナーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to toners for electrostatic charge development, and more particularly to toners for electrostatic charge development used in low development potential systems.

【0002】0002

【従来の技術】一般に電子写真法は感光体上に電気的な
潜像を形成し、ついで該潜像をトナーによって現像し、
必要に応じて紙などの転写材にトナー画像を転写した後
、加熱・加圧などの手段によって定着し被写物を得るも
のである。このような電子写真法に用いられる現像剤と
しては、トナーとキャリアからなる二成分現像剤とトナ
ーとキャリアの機能を同時に備えた一成分現像剤とがあ
る。
2. Description of the Related Art Generally, in electrophotography, an electrical latent image is formed on a photoreceptor, and then the latent image is developed with toner.
After a toner image is transferred to a transfer material such as paper as necessary, it is fixed by means such as heating and pressure to obtain an object. Developers used in such electrophotography include two-component developers consisting of toner and carrier, and one-component developers having the functions of toner and carrier at the same time.

【0003】一成分現像剤には磁性一成分現像剤と非磁
性一成分現像剤があり、このうち磁性一成分現像剤とし
ては磁性粉を10〜70重量%程度含有した磁性トナー
が用いられる。また、磁性トナーは導電性磁性トナーと
絶縁性磁性トナーに分類され、前者は静電誘導あるいは
電荷注入が現像駆動力となり、後者は摩擦帯電による電
荷が現像駆動力となる。
[0003] One-component developers include magnetic one-component developers and non-magnetic one-component developers, and among these, magnetic toner containing about 10 to 70% by weight of magnetic powder is used as the magnetic one-component developer. Further, magnetic toner is classified into conductive magnetic toner and insulating magnetic toner, and for the former, electrostatic induction or charge injection is the development driving force, while for the latter, the development driving force is electric charge due to triboelectric charging.

【0004】導電性磁性トナーを用いた一成分現像方式
では、導電性磁性トナー自体が現像電極となるため、エ
ッジ効果のない均一な画像が得られるという利点がある
ことが知られている。また、トナーの体積固有抵抗率を
およそ1×104 Ω・cm以下に抑えることによって
現像電位が100V以下の低電位現像システムにも利用
できるという利点が生じる。
It is known that the one-component development method using conductive magnetic toner has the advantage that a uniform image without edge effects can be obtained because the conductive magnetic toner itself serves as a developing electrode. Further, by suppressing the specific volume resistivity of the toner to approximately 1×10 4 Ω·cm or less, there is an advantage that it can be used in a low-potential development system with a development potential of 100 V or less.

【0005】しかし、導電性磁性トナーは静電転写時に
転写紙を介してトナーの電荷がリークしやすく、普通紙
への転写が困難であるという欠点がある。また、感光体
上にトナー粒子が1層しか現像されないため、画像濃度
の確保が困難であるという欠点もある。
However, conductive magnetic toner has the disadvantage that the charge of the toner tends to leak through the transfer paper during electrostatic transfer, making it difficult to transfer to plain paper. Further, since only one layer of toner particles is developed on the photoreceptor, there is also the drawback that it is difficult to ensure image density.

【0006】この中で転写性の問題については高抵抗処
理を施した特殊紙を用いたり、ゴムローラによる圧力転
写方式を採用したりすることによってある程度解決され
るが、画像濃度の確保は本質的な問題であり、従来技術
ではいまだ満足される状況にない。
Among these problems, the problem of transferability can be solved to some extent by using special paper treated with high resistance or by adopting a pressure transfer method using rubber rollers, but ensuring image density is essential. This is a problem that has not yet been satisfactorily achieved using conventional techniques.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記の従来の
技術における問題点を解決し、低電位現像システムにお
いて十分な画像濃度を得、かつカブリのない良好な画像
特性を得ることができる静電荷現像用トナーを提供する
ことを目的とするものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems in the conventional technology, and provides a static image forming system that can obtain sufficient image density and good image characteristics without fog in a low-potential development system. The object of the present invention is to provide a toner for charge development.

【0008】[0008]

【課題を解決するための手段】本発明は、前記の課題を
解決するためになされたもので、磁性粉を30〜70重
量%含有し体積固有抵抗率が1×103 Ω・cm以下
である導電性磁性トナーと、あらかじめトナー粒子10
0重量に対してカーボンブラックを0.2〜2.0重量
部付着させてなる体積固有抵抗率が1×109 Ω・c
m以上である絶縁性非磁性トナーとを、重量比で60:
40〜90:10の割合で混合してなることを特徴とす
る静電荷現像用トナーである。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and contains 30 to 70% by weight of magnetic powder and has a volume resistivity of 1 x 103 Ωcm or less. Conductive magnetic toner and toner particles 10
The volume resistivity obtained by attaching 0.2 to 2.0 parts by weight of carbon black to 0 weight is 1 x 109 Ω・c
m or more of insulating non-magnetic toner at a weight ratio of 60:
This toner is characterized by being mixed at a ratio of 40 to 90:10.

【0009】導電性磁性トナーの体積固有抵抗率は、主
電極面積が1.00cm2 の円筒型電極に試料を入れ
て200g/cm2 の荷重をかけ、100V/cmの
電界下で測定された値である。
The specific volume resistivity of conductive magnetic toner is a value measured under an electric field of 100 V/cm by placing a sample in a cylindrical electrode with a main electrode area of 1.00 cm2 and applying a load of 200 g/cm2. be.

【0010】絶縁性非磁性トナーの体積固有抵抗率は導
電性磁性トナーのそれとはかなり異なるため、同様の測
定方法では測定できない。したがって、本発明の絶縁性
非磁性トナーの体積固有抵抗率は、絶縁性非磁性トナー
を200kg/cm2 の圧力下で成型し、SE−70
型固体電極(安藤電気社製)にセットした後、2500
Aキャパシタンスブリッジ(東陽テクニカ社製)で測定
した値である。
The specific volume resistivity of an insulating non-magnetic toner is quite different from that of a conductive magnetic toner, so it cannot be measured using a similar measuring method. Therefore, the specific volume resistivity of the insulating non-magnetic toner of the present invention is determined by molding the insulating non-magnetic toner under a pressure of 200 kg/cm2,
After setting it on a type solid electrode (manufactured by Ando Electric Co., Ltd.),
This is a value measured with an A capacitance bridge (manufactured by Toyo Technica).

【0011】本発明において、導電性磁性トナーは磁性
粉及びカーボンブラックを結着樹脂中に分散し機械的に
粉砕した後、体積平均粒子径7〜10μm程度に分級し
て得られる。また、分級後にトナー表面の導電性を均一
化するためにカーボンブラックなどの導電性材料を、ま
た流動性向上のためにシリカなどの添加剤を各々トナー
粒子表面に付着させてもよい。
[0011] In the present invention, the conductive magnetic toner is obtained by dispersing magnetic powder and carbon black in a binder resin, mechanically pulverizing the resulting particles, and then classifying the particles to have a volume average particle diameter of about 7 to 10 μm. Further, after classification, a conductive material such as carbon black may be attached to the surface of the toner particles to make the conductivity of the toner surface uniform, and an additive such as silica may be attached to the surface of the toner particle to improve fluidity.

【0012】本発明において、導電性磁性トナーに使用
される結着樹脂はポリスチレン、ポリエチレン、ポリプ
ロピレン、ビニル系樹脂、ポリアクリレート、ポリメタ
クリレート、ポリ塩化ビニリデン、ポリアクリロニトリ
ル、ポリエーテル、ポリカーボネート、熱可塑性ポリエ
ステル、熱可塑性エポキシ樹脂、セルロース系樹脂及び
それらのモノマーの共重合樹脂などの熱可塑性樹脂の他
、変性アクリル樹脂、フェノール樹脂、メラミン樹脂、
ユリア樹脂などの熱硬化性樹脂を使用することができる
。また磁性粉としては結晶学的にスピネル、ペロブスカ
イト、六方晶、ガーネット、オルソフェライト構造を有
するフェライトやマグネタイトなどが適用される。 フェライトの構成はニッケル、亜鉛、マンガン、マグネ
シウム、銅、リチウム、バリウム、バナジウム、クロム
、カルシウムなどの酸化物と3価の鉄酸化物との焼結体
である。
In the present invention, the binder resin used in the conductive magnetic toner is polystyrene, polyethylene, polypropylene, vinyl resin, polyacrylate, polymethacrylate, polyvinylidene chloride, polyacrylonitrile, polyether, polycarbonate, thermoplastic polyester. In addition to thermoplastic resins such as thermoplastic epoxy resins, cellulose resins, and copolymer resins of these monomers, modified acrylic resins, phenolic resins, melamine resins,
Thermosetting resins such as urea resins can be used. Further, as the magnetic powder, ferrite or magnetite having a crystallographic structure of spinel, perovskite, hexagonal crystal, garnet, orthoferrite is used. Ferrite is a sintered body of oxides of nickel, zinc, manganese, magnesium, copper, lithium, barium, vanadium, chromium, calcium, etc., and trivalent iron oxide.

【0013】本発明において、絶縁性非磁性トナーも同
様にカーボンブラックなどの着色剤や帯電量調整剤を結
着樹脂中に分散させ、粉砕・分級して得ることができる
。また、結着樹脂重合時にカーボンブラックや帯電量調
整剤を分散し、直接所望の粒子径の絶縁性非磁性トナー
を作成してもよい。このようにして得られたトナー粒子
100重量部に対し、その表面に0.2〜2.0重量部
のカーボンブラックを付着させて本発明の絶縁性非磁性
トナーを得ることができる。さらに流動性向上のために
シリカなどの添加剤を付着させてもよい。
In the present invention, the insulating non-magnetic toner can also be obtained by dispersing a colorant such as carbon black or a charge control agent in a binder resin, and then crushing and classifying the resin. Alternatively, an insulating nonmagnetic toner having a desired particle size may be directly prepared by dispersing carbon black or a charge control agent during polymerization of the binder resin. The insulating nonmagnetic toner of the present invention can be obtained by attaching 0.2 to 2.0 parts by weight of carbon black to the surface of 100 parts by weight of the toner particles thus obtained. Furthermore, additives such as silica may be attached to improve fluidity.

【0014】本発明において、絶縁性非磁性トナーに使
用される結着樹脂には前述の導電性磁性トナーに例示し
たものが適宜使用される。また、必要に応じてモノアゾ
系の金属染料やニグロシン系の染料、第4級アンモニウ
ム塩などの帯電量調整剤を使用してもよい。本発明にお
いて絶縁性非磁性トナーの表面に付着されるカーボンブ
ラックとしては、個数平均粒径、吸油量、pH等に制限
なく使用できるが、市販品として以下のものが挙げられ
る。例えば、米国キャボット社製リーガル(REGAL
)400R、660R、330R、コロンビア・カーボ
ン日本(株)製ラーベン(RAVEN)410、420
、430、450、三菱化成工業(株)製#40、#2
400B、MA−100等が挙げられる。また、これら
のカーボンブラックは単独で、あるいは二種以上を種々
の組成に組み合わせて用いることができる。
[0014] In the present invention, the binder resin used in the insulating non-magnetic toner includes those exemplified for the conductive magnetic toner described above. Further, if necessary, a charge control agent such as a monoazo metal dye, a nigrosine dye, or a quaternary ammonium salt may be used. In the present invention, the carbon black to be adhered to the surface of the insulating nonmagnetic toner can be used without any restrictions on number average particle size, oil absorption, pH, etc., and the following commercially available products may be mentioned. For example, REGAL (manufactured by Cabot, USA)
) 400R, 660R, 330R, RAVEN 410, 420 manufactured by Columbia Carbon Japan Co., Ltd.
, 430, 450, #40, #2 manufactured by Mitsubishi Chemical Industries, Ltd.
Examples include 400B and MA-100. Further, these carbon blacks can be used alone or in combination of two or more types in various compositions.

【0015】本発明の絶縁性非磁性トナーの表面にカー
ボンブラックを付着させる手段としては、タービン型攪
拌機やスーパーミキサー、ヘンシェルミキサーなどの一
般的な攪拌混合機が使用し得る。
As a means for attaching carbon black to the surface of the insulating non-magnetic toner of the present invention, a general stirring mixer such as a turbine type stirrer, a super mixer, a Henschel mixer, etc. can be used.

【作用】[Effect]

【0016】本発明の静電荷現像用トナーを構成する導
電性磁性トナーは現像電界下で電荷が静電誘導あるいは
現像スリーブより注入され、感光体上の画像潜像部と導
電性磁性トナーとの静電引力が磁気束縛力より大きくな
ると画像潜像部に付着し現像される。一方、絶縁性非磁
性トナーは現像器の穂高規制ブレードや導電性磁性トナ
ー等との間の摩擦帯電によって絶縁性非磁性トナーに電
荷が生じ画像潜像部に現像される。したがって、感光体
上の画像潜像部には多くの導電性磁性トナーと絶縁性非
磁性トナーとが混在して付着するため十分な画像濃度を
得ることができる。
In the conductive magnetic toner constituting the electrostatic charge developing toner of the present invention, charge is electrostatically induced or injected from the developing sleeve under a developing electric field, and the latent image area on the photoreceptor and the conductive magnetic toner are injected into the conductive magnetic toner. When the electrostatic attraction becomes larger than the magnetic binding force, it adheres to the latent image area and is developed. On the other hand, the insulating non-magnetic toner is charged by frictional charging between the brush height regulating blade of the developing device, the conductive magnetic toner, and the like, and is developed in the latent image area. Therefore, a large amount of conductive magnetic toner and insulating non-magnetic toner adhere to the latent image area on the photoreceptor in a mixed manner, so that sufficient image density can be obtained.

【0017】本発明の静電荷現像用トナーは現像器内で
混合攪拌され、マグネットローラーによって現像スリー
ブ上に導電性磁性トナーの穂が形成される。このため導
電性磁性トナーに含有される磁性粉は30〜70重量%
であることが必要である。30重量%未満では静電荷現
像用トナーの磁力が小さくなるため搬送性が不良となる
。また、70重量%を越えて多い場合は、磁性粉を結着
樹脂中に分散させるのが困難になるだけでなく、カーボ
ンブラック等の導電性材料の配合量が少なくなるために
導電性の確保が困難となる。絶縁性非磁性トナーは摩擦
帯電による静電気力によって導電性磁性トナーに付着し
、導電性磁性トナーと同様に画像潜像部に搬送される。 導電性磁性トナーと絶縁性非磁性トナーの混合比率は6
0:40〜90:10が良好に使用し得る。絶縁性非磁
性トナーの比率が40を越えて多い(導電性磁性トナー
の比率が60未満)場合は、導電性磁性トナーによる搬
送性が悪くなり、トナー落ちやトナー飛散などの問題が
発生しやすい。また、絶縁性非磁性トナーの比率が10
未満(導電性磁性トナーの比率が90を越えて多い)の
場合は、十分な画像濃度を得ることができなくなる。
The electrostatic charge developing toner of the present invention is mixed and stirred in a developing device, and spikes of conductive magnetic toner are formed on a developing sleeve by a magnetic roller. Therefore, the magnetic powder contained in the conductive magnetic toner is 30 to 70% by weight.
It is necessary that If it is less than 30% by weight, the magnetic force of the electrostatic charge developing toner becomes small, resulting in poor conveyance. In addition, if the amount exceeds 70% by weight, not only will it be difficult to disperse the magnetic powder in the binder resin, but the amount of conductive material such as carbon black will be reduced, making it difficult to ensure conductivity. becomes difficult. The insulating non-magnetic toner adheres to the conductive magnetic toner by electrostatic force caused by frictional charging, and is conveyed to the latent image area in the same manner as the conductive magnetic toner. The mixing ratio of conductive magnetic toner and insulating non-magnetic toner is 6
A ratio of 0:40 to 90:10 can be used satisfactorily. If the ratio of insulating non-magnetic toner is more than 40 (the ratio of conductive magnetic toner is less than 60), the transportability of the conductive magnetic toner will be poor, and problems such as toner dropping and toner scattering will likely occur. . In addition, the ratio of insulating non-magnetic toner is 10
If the ratio is less than 90 (the ratio of conductive magnetic toner is more than 90), sufficient image density cannot be obtained.

【0018】導電性磁性トナーの体積固有抵抗率が1×
103 Ω・cmを越えて大きい場合は、静電荷現像用
トナーとしての体積固有抵抗率が高くなってしまい、低
電位での現像が困難になる。また、絶縁性非磁性トナー
の体積固有抵抗率が1×109Ω・cm未満の場合には
電荷の漏洩によって十分な摩擦帯電量を得ることができ
なくなり、結果として画像濃度が低くなる。
The volume resistivity of the conductive magnetic toner is 1×
If it exceeds 10 3 Ω·cm, the specific volume resistivity of the toner for electrostatic charge development becomes high, making it difficult to develop at a low potential. Furthermore, if the specific volume resistivity of the insulating nonmagnetic toner is less than 1×10 9 Ω·cm, a sufficient amount of triboelectric charge cannot be obtained due to charge leakage, resulting in a low image density.

【0019】本発明の静電荷現像用トナーを現像器内で
攪拌すると、導電性磁性トナー表面に露出もしくは付着
しているカーボンブラックの一部が絶縁性非磁性トナー
表面に移行する。このため導電性磁性トナーへの電荷注
入が不良となり、カブリなどの画像不良が発生する。本
発明では上記カーボンブラックの移行を防ぐために予め
絶縁性非磁性トナー表面にカーボンブラックを付着させ
ておくものである。カーボンブラック付着量はトナー粒
子100重量部に対し0.2〜2.0重量部、好ましく
は0.5〜1.5重量部が適当である。付着量が2.2
重量部より少ないとカーボンブラックの移行が生じてし
まい、画像が悪化する。また、付着量が2.0重量部よ
り多いと絶縁性非磁性トナーの摩擦帯電量が低くなって
しまうために画像濃度が低下する。
When the electrostatic charge developing toner of the present invention is stirred in a developing device, a portion of the carbon black exposed or attached to the surface of the conductive magnetic toner is transferred to the surface of the insulating non-magnetic toner. As a result, charge injection into the conductive magnetic toner becomes defective, resulting in image defects such as fog. In the present invention, carbon black is previously attached to the surface of the insulating nonmagnetic toner in order to prevent the carbon black from migrating. The amount of carbon black deposited is suitably 0.2 to 2.0 parts by weight, preferably 0.5 to 1.5 parts by weight, per 100 parts by weight of toner particles. Adhesion amount is 2.2
If the amount is less than parts by weight, carbon black will migrate and the image will deteriorate. Furthermore, if the amount of adhesion is more than 2.0 parts by weight, the amount of triboelectric charge of the insulating non-magnetic toner will be low, resulting in a decrease in image density.

【0020】[0020]

【実施例】以下本発明の実施例について説明する。なお
「部」とは重量部を表わす。 実施例1   上記配合の材料を2本ロールの混練機で溶融混練を
行いジェットミルで粉砕をして分級し、体積平均粒子径
9μmの導電性磁性トナーを得た。この導電性磁性トナ
ーの体積固有抵抗率は5×102 Ω・cmであった。 さらに、   上記配合の材料を2本ロールの混練機で溶融混練を
行いジェットミルで粉砕をして分級し、体積平均粒子径
9μmのトナー粒子を得た。さらにこのトナー粒子10
0部に対し1.0部のカーボンブラック(MA−100
:三菱化成工業社製)を混合して絶縁性非磁性トナーを
得た。この絶縁性非磁性トナーの体積固有抵抗率は3×
1010Ω・cmであった。上記導電性磁性トナーと絶
縁性非磁性トナーを70:30重量部の割合で混合して
本発明の静電荷現像用トナーを得た。
[Examples] Examples of the present invention will be described below. Note that "parts" represent parts by weight. Example 1 The above-mentioned materials were melt-kneaded using a two-roll kneader, pulverized using a jet mill, and classified to obtain a conductive magnetic toner having a volume average particle diameter of 9 μm. The volume specific resistivity of this conductive magnetic toner was 5×10 2 Ω·cm. Furthermore, the above-mentioned blended materials were melt-kneaded using a two-roll kneader, pulverized using a jet mill, and classified to obtain toner particles having a volume average particle diameter of 9 μm. Furthermore, this toner particle 10
0 parts to 1.0 parts of carbon black (MA-100
: manufactured by Mitsubishi Chemical Industries, Ltd.) to obtain an insulating non-magnetic toner. The specific volume resistivity of this insulating non-magnetic toner is 3×
It was 1010Ω·cm. The above conductive magnetic toner and insulating non-magnetic toner were mixed in a ratio of 70:30 parts by weight to obtain a toner for electrostatic charge development of the present invention.

【0021】実施例2   上記配合の材料を2本ロールの混練機で溶融混練を
行いジェットミルで粉砕をして分級し、体積平均粒子径
9μmの導電性磁性トナーを得た。この導電性磁性トナ
ーの体積固有抵抗率は8×102 Ω・cmであった。 さらに、   上記配合の材料を2本ロールの混練機で溶融混練を
行いジェットミルで粉砕をして分級し、体積平均粒子径
9μmのトナー粒子を得た。さらにこのトナー粒子10
0部に対し0.5部のカーボンブラック(MA−100
:三菱化成工業社製)を混合して絶縁性非磁性トナーを
得た。この絶縁性非磁性トナーの体積固有抵抗率は9×
109 Ω・cmであった。上記導電性磁性トナーと絶
縁性非磁性トナーを70:30重量部の割合で混合して
本発明の静電荷現像用トナーを得た。
Example 2 The above-mentioned blended materials were melt-kneaded using a two-roll kneader, pulverized using a jet mill, and classified to obtain a conductive magnetic toner having a volume average particle diameter of 9 μm. The volume specific resistivity of this conductive magnetic toner was 8×10 2 Ω·cm. Furthermore, the above-mentioned blended materials were melt-kneaded using a two-roll kneader, pulverized using a jet mill, and classified to obtain toner particles having a volume average particle diameter of 9 μm. Furthermore, this toner particle 10
0 parts to 0.5 parts of carbon black (MA-100
: manufactured by Mitsubishi Chemical Industries, Ltd.) to obtain an insulating non-magnetic toner. The volume resistivity of this insulating non-magnetic toner is 9×
It was 109 Ω·cm. The above conductive magnetic toner and insulating non-magnetic toner were mixed in a ratio of 70:30 parts by weight to obtain a toner for electrostatic charge development of the present invention.

【0022】比較例1   上記配合の材料を2本ロールの混練機で溶融混練を
行いジェットミルで粉砕して分級し、体積平均粒子径9
μmの導電性磁性トナーを得た。この導電性磁性トナー
の体積固有抵抗率は6×104 Ω・cmであった。上
記導電性磁性トナーと実施例1の絶縁性非磁性トナーを
70:30重量部の割合で混合して比較例1の静電荷現
像用トナーを得た。
Comparative Example 1 The above-mentioned blended materials were melt-kneaded in a two-roll kneader, pulverized and classified in a jet mill, and the volume average particle diameter was 9.
A conductive magnetic toner with a diameter of μm was obtained. The volume specific resistivity of this conductive magnetic toner was 6×10 4 Ω·cm. The above conductive magnetic toner and the insulating non-magnetic toner of Example 1 were mixed in a ratio of 70:30 parts by weight to obtain a toner for electrostatic charge development of Comparative Example 1.

【0023】比較例2   上記配合の材料を2本ロールの混練機で溶融混練を
行いジェットミルで粉砕をして分級し、体積平均粒子径
9μmのトナー粒子を得た。さらにこのトナー粒子10
0部に対し1.0部のカーボンブラック(MA−100
:三菱化成工業社製)を混合して絶縁性非磁性トナーを
得た。この絶縁性非磁性トナーの体積固有抵抗率は6×
108 Ω・cmであった。実施例1の導電性磁性トナ
ーと上記絶縁性非磁性トナーを70:30重量部の割合
で混合して比較例2の静電荷現像用トナーを得た。
Comparative Example 2 The above-mentioned blended materials were melt-kneaded using a two-roll kneader, pulverized using a jet mill, and classified to obtain toner particles having a volume average particle diameter of 9 μm. Furthermore, this toner particle 10
0 parts to 1.0 parts of carbon black (MA-100
: manufactured by Mitsubishi Chemical Industries, Ltd.) to obtain an insulating non-magnetic toner. The specific volume resistivity of this insulating non-magnetic toner is 6×
It was 108 Ω·cm. An electrostatic charge developing toner of Comparative Example 2 was obtained by mixing the conductive magnetic toner of Example 1 and the insulating non-magnetic toner in a ratio of 70:30 parts by weight.

【0024】比較例3 実施例1の絶縁性非磁性トナーにおいてカーボンブラッ
クを混合せずに絶縁性非磁性トナーを得た。この絶縁性
非磁性トナーの体積固有抵抗率は5×1010Ω・cm
であった。さらに、実施例1の導電性磁性トナーと上記
絶縁性非磁性トナーを70:30重量部の割合で混合し
て比較例3の静電荷現像用トナーを得た。
Comparative Example 3 An insulating non-magnetic toner was obtained by adding no carbon black to the insulating non-magnetic toner of Example 1. The specific volume resistivity of this insulating non-magnetic toner is 5×1010Ω・cm
Met. Further, the electroconductive magnetic toner of Example 1 and the insulating non-magnetic toner were mixed in a ratio of 70:30 parts by weight to obtain a toner for electrostatic charge development of Comparative Example 3.

【0025】比較例4 実施例1の絶縁性非磁性トナーにおいて混合するカーボ
ンブラック量を3重量部として絶縁性非磁性トナーを得
た。この絶縁性非磁性トナーの体積固有抵抗率は2×1
010Ω・cmであった。さらに、実施例1の導電性磁
性トナーと上記絶縁性非磁性トナーを70:30重量部
の割合で混合して比較例4の静電荷現像用トナーを得た
Comparative Example 4 An insulating non-magnetic toner was obtained by changing the amount of carbon black mixed into the insulating non-magnetic toner of Example 1 to 3 parts by weight. The volume resistivity of this insulating non-magnetic toner is 2×1
It was 0.010Ω·cm. Further, the electroconductive magnetic toner of Example 1 and the above insulating non-magnetic toner were mixed in a ratio of 70:30 parts by weight to obtain a toner for electrostatic charge development of Comparative Example 4.

【0026】比較例5 実施例1の導電性磁性トナーのみで比較例5の静電荷現
像用トナーとした。
Comparative Example 5 An electrostatic charge developing toner of Comparative Example 5 was prepared using only the conductive magnetic toner of Example 1.

【0027】比較例6 実施例1の導電性磁性トナーと実施例1の絶縁性非磁性
トナーを50:50重量部の割合で混合し、比較例6の
静電荷現像用トナーを得た。
Comparative Example 6 The conductive magnetic toner of Example 1 and the insulating non-magnetic toner of Example 1 were mixed in a ratio of 50:50 parts by weight to obtain an electrostatic charge developing toner of Comparative Example 6.

【0028】以上の実施例1〜2及び比較例1〜6のト
ナーを現像電位が40VであるLED反転プリンタに適
用して試験したところ、表1の結果を得た。
When the toners of Examples 1 to 2 and Comparative Examples 1 to 6 were applied to an LED reversing printer with a developing potential of 40 V and tested, the results shown in Table 1 were obtained.

【0029】[0029]

【表1】[Table 1]

【0030】表1の画像濃度はマクベスRD914反射
濃度計で測定した値である。また、カブリ値はREFL
ECTOMETER  TC−6D(東京電色社製)で
測定した値である。表1から明らかなように本発明の静
電荷現像用トナーは画像濃度及び画像の解像度も良好で
あって、カブリも極めて少ないものであった。これに対
して、比較例1、比較例4及び比較例5は画像濃度が低
く、比較例2、比較例3及び比較例6についてはカブリ
が多く実用上支障をきたすことが確認された。
The image densities in Table 1 are values measured with a Macbeth RD914 reflection densitometer. Also, the fog value is REFL
This is a value measured with ECTOMETER TC-6D (manufactured by Tokyo Denshokusha). As is clear from Table 1, the toner for electrostatic charge development of the present invention had good image density and image resolution, and had very little fog. On the other hand, it was confirmed that Comparative Example 1, Comparative Example 4, and Comparative Example 5 had low image density, and Comparative Example 2, Comparative Example 3, and Comparative Example 6 had a lot of fog, which caused problems in practical use.

【0031】[0031]

【発明の効果】本発明は低電位現像システムにおいて十
分な画像濃度を得、かつカブリがなく良好な画像を得る
ことができる静電荷現像用トナーを提供することができ
る。
Effects of the Invention The present invention can provide a toner for electrostatic charge development which can obtain sufficient image density in a low potential development system and can provide good images without fogging.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  磁性粉を30〜70重量%含有してな
る体積固有抵抗率が1×103 Ω・cm以下である導
電性磁性トナーと、あらかじめトナー粒子100重量部
に対してカーボンブラックを0.2〜2.0重量部付着
させてなる体積固有抵抗率が1×109 Ω・cm以上
である絶縁性非磁性トナーとを、重量比で60:40〜
90:10の割合で混合してなることを特徴とする静電
荷現像用トナー。
1. A conductive magnetic toner containing 30 to 70% by weight of magnetic powder and having a specific volume resistivity of 1×10 3 Ω·cm or less, and carbon black added to 100 parts by weight of toner particles in advance. .2 to 2.0 parts by weight of an insulating non-magnetic toner having a specific volume resistivity of 1 x 109 Ωcm or more, in a weight ratio of 60:40 to 2.0 parts by weight.
An electrostatic charge developing toner characterized by being mixed at a ratio of 90:10.
JP3084587A 1991-03-26 1991-03-26 Toner for electrostatic charge development Expired - Lifetime JP2533007B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3084587A JP2533007B2 (en) 1991-03-26 1991-03-26 Toner for electrostatic charge development
US07/856,717 US5258254A (en) 1991-03-26 1992-03-24 Toner for developing static charge images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3084587A JP2533007B2 (en) 1991-03-26 1991-03-26 Toner for electrostatic charge development

Publications (2)

Publication Number Publication Date
JPH04296763A true JPH04296763A (en) 1992-10-21
JP2533007B2 JP2533007B2 (en) 1996-09-11

Family

ID=13834805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3084587A Expired - Lifetime JP2533007B2 (en) 1991-03-26 1991-03-26 Toner for electrostatic charge development

Country Status (1)

Country Link
JP (1) JP2533007B2 (en)

Also Published As

Publication number Publication date
JP2533007B2 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
JP2533007B2 (en) Toner for electrostatic charge development
JP2887717B2 (en) Electrostatic toner
JP2754600B2 (en) Electrophotographic color toner
JPS6342778B2 (en)
JP2581631B2 (en) Electrostatic toner
JPH024281A (en) Magnetic carrier
JP2503221B2 (en) Developer for electrostatic image
JPH08272132A (en) Electrostatic latent image developer
JP2686481B2 (en) Toner for electrostatic charge development
JPH04296764A (en) Toner for developing electrostatic charge image
US5258254A (en) Toner for developing static charge images
JP2567748B2 (en) Toner for electrostatic charge development
JP2887713B2 (en) Electrostatic toner
JPH0257302B2 (en)
JP2686480B2 (en) Toner for electrostatic charge development
JP2640298B2 (en) Electrostatic toner
JPH0816794B2 (en) Conductive magnetic toner
JPH0119580B2 (en)
JP3249924B2 (en) Image forming method and magnetic toner used therefor
JP2979760B2 (en) Transfer method
JP2632250B2 (en) Two-component developer for electrophotography
JPH0136615B2 (en)
JPH0222669A (en) Magnetic color toner
JPS6313057A (en) Developer for electrostatic development
JPH0728272A (en) Electrically conductive magnetic toner

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960402