JPH0429652B2 - - Google Patents

Info

Publication number
JPH0429652B2
JPH0429652B2 JP58191304A JP19130483A JPH0429652B2 JP H0429652 B2 JPH0429652 B2 JP H0429652B2 JP 58191304 A JP58191304 A JP 58191304A JP 19130483 A JP19130483 A JP 19130483A JP H0429652 B2 JPH0429652 B2 JP H0429652B2
Authority
JP
Japan
Prior art keywords
cellulose triacetate
column
cellulose
solvent
optical resolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58191304A
Other languages
Japanese (ja)
Other versions
JPS6082858A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58191304A priority Critical patent/JPS6082858A/en
Publication of JPS6082858A publication Critical patent/JPS6082858A/en
Publication of JPH0429652B2 publication Critical patent/JPH0429652B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/29Chiral phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/321Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/3212Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3217Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
    • B01J20/3219Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond involving a particular spacer or linking group, e.g. for attaching an active group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3272Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • B01J20/3274Proteins, nucleic acids, polysaccharides, antibodies or antigens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/54Sorbents specially adapted for analytical or investigative chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/58Use in a single column

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は三酢酸セルロースを担体に保持させて
なる光学分割用吸着剤に関するものである。特に
薄層クロマトグラフイーやカラムクロマトグラフ
イー用に広い用途を有する光学分割用吸着剤を提
供することを目的とする。 セルロース又は1部のセルロース誘導体がカラ
ムクロマトグラフイー用吸着剤として光学分割能
力を有することは公知であり、特に結晶形型の
微結晶セルローストリアセテート、カルボキシメ
チルセルロース、セルロース等が知られていた。
又、本発明者らは既に結晶形型の結晶性セルロ
ーストリアセテートでも、良好な分離が認められ
ることを見いだした。(特願昭58−39555号) しかしながらこれらのセルロース系吸着剤は、
次のような欠点を有していた。 (1) カラムクロマトグラフイーに使用した場合耐
圧能力が劣る。 (2) クロマトグラフイーに使用した場合、溶離液
を交換することによつて膨潤、収縮を起こす場
合がある。 (3) 理論段数が小さいために分離度が低い。 本発明者らは、これらの欠点を克服するために
鋭意研究の結果、耐圧性に優れ、溶媒交換による
膨潤、収縮がほとんどおこらず、分離度の良い光
学分割用吸着剤を見い出したものである。 すなわち、本発明は三酢酸セルロースを担体に
保持させてなる光学分割用吸着剤に関するもので
ある。 本発明の光学分割用吸着剤を構成する三酢酸セ
ルロースは、数平均重合度5〜5000であり、好ま
しくは5〜200であり、さらに好ましくは5〜70
である。担持させる前の三酢酸セルロースは、主
たる結晶部が三酢酸セルロース型の結晶形を取
る三酢酸セルロースでも主たる結晶部分かが三酢
酸セルロース型の結晶形を取る三酢酸セルロー
スでも、非晶性の三酢酸セルロースでも良いが、
三酢酸セルロースを溶解して担持させた場合に
は、いずれも結晶部分は三酢酸セルロース型を
取る三酢酸セルロースであると考えられる。 本発明でいう型又は型のセルロース又は三
酢酸セルロースの定義については、例えば右田、
米沢、近藤編になる「木材化学」(共立出版株式
会社発行)の上巻188〜189頁に述べられている。 本発明に用いる三酢酸セルロース型はG.
Hesseらの方法によつて合成できる。(G.Hesse、
R.Hagel:Chromatographia、6、277(1973);
G.Hesse、R.Hagel:ibid.、 62(1976);G.
Hesse、R.Hagel:Liebigs Ann.Chem.、1976、
996参照)。 すなわち、微結晶セルロースを不均一系で酢化
すればよい。又三酢酸セルロース型を得るに
は、型又は型のセルロースを酢化して型又
は型の三酢酸セルロースとし、これを結晶形
型の三酢酸セルロースに結晶化させることによつ
て得られる。酸化反応は、均一系反応でも不均一
系反応でも良く、反応は従来公知の方法で行なう
ことができる。 非晶性の三酢酸セルロースは型又は型のセ
ルロースを均一系で酢化するか、型又は型の
三酢酸セルロースを適当な溶媒に溶解沈澱さすこ
とによつて得られる。 酢化反応は従来公知の方法で行ない得る。例え
ば、朝倉書店“大有機化学”19、天然高分子化学
に記載の方法である。 本発明の光学分割用吸着剤を構成する担体は、
多孔質有機担体又は多孔質無機担体としてはポリ
スチレン、ポリアミド、ポリアクリレートなどか
らなる高分子物質である。多孔質無機担体として
は、シリカ、アルミナ、マグネシア、酸化チタン
及びガラス、ケイ酸塩、カオリンといつた合成若
しくは天然の物質である。好ましくはシリカ(シ
リカゲル)及びガラスである。三酢酸セルロース
との親和性を良くするために表面処理を行なつて
も良い。表面処理の方法としては、アルキルシラ
ン化合物を用いたシラン処理やプラズマによるプ
ラズマ重合処理等がある。担体の大きさは、使用
するカラム又はプレートによつて異なるが1μm
〜10mmが好ましく、さらに好ましくは1μm〜
300μmである。孔の平均孔径は10Å〜100μmが
好ましく、さらに好ましくは50Å〜50000Åであ
る。 三酢酸セルロースを多孔質担体に担持させる方
法は、化学的方法でも物理的方法でも良い。物理
的方法としては、例えば担体に対して1〜100重
量%、好ましくは5〜50重量%の三酢酸セルロー
スを溶媒に溶解し、担体と良く混合し、減圧又は
加温、気流により溶媒を留去する。さらに、吸着
させた三酢酸セルロースを結晶化する場合には、
熱処理などの処理を行なうことができる。又他の
方法として、三酢酸セルロースを溶媒に溶解し、
担体と良く混合した後、該溶媒と相溶性のない液
体中に撹拌、分散せしめ、該溶融を拡散させる方
法もある。 本発明の光学分割用吸着剤を光学分割に使用す
る際の溶媒としては、化学的方法で担持させた場
合には、通常クロマトグラフイーに使用される溶
媒を使用できるが、物理的に担持させた場合に
は、三酢酸セルロースが溶解する溶媒では使用で
きない。 本発明の光学分割用吸着剤による光学分割の対
象となる化合物は、不斉中心を持つ化合物や分子
不斉な化合物であつて、本発明の光学分割用吸着
剤によつて、光学異性体のどちらか一方がより強
く吸着されるものであればいかなるものでも良
い。 以下本発明を実施例によつて詳述するが、本発
明はこれらの実施例に限定されるものではない。
尚、実施例及び比較例中の測定値の測定方法及び
用語の意義は以下の通りである。 1 重合度 1−1 蒸気圧浸透圧法 ペーパープレツシヤーオスモメーター
CORONA 117を用いて溶媒にクロロホルム
−1%エタノールの混合溶媒を使用して測定
した。 1−2 粘度法 ジクロロメタン−メタノール(9:1)を
溶媒とし、0.2%溶液の還元粘度をもつて
〔η〕と近似し、Km=5.65×10-4を使用して
計算した。 重合度=〔η〕/Km 2 遊離水酸基の定量 Carl J.Malm(Anal.Chem.26・188(1954参
照)らの水酸基のフエニルカルバモイル化によ
る定量を行なつた。即ち、三酢酸セルロースを
90℃のビリジン中、大過剰のフエニルイソシア
ナートで30分処理し、再沈澱精製した後、紫外
吸収スペクトルの272nmの吸収強度から水酸
基とフエニルイソシアナートの反応で生成した
フエニルカルバモイル基の量を計算した。フエ
ニルカルバモイル基のモル吸光係数は705とい
う値を用いた。この値はセロビオ−スヘプタア
セテートカルバニレートから求めた値である。
得られたデータはもとの三酢酸セルロース中の
水散基の重量%として表わした。 容量比(k′)、分離係数(α)、分離度(Rs)の
定義 容量比(k′)=〔(対掌体の保持時間)−(デツドタ
イム)〕/デツドタイム 分離係数(α)=より強く吸着される対掌体の容量比/
より弱く吸着される対掌体の容量比 分離度(Rs)=2×(より強く吸着される対掌体とより
弱く吸着される対掌体の両ピーク間の距離)(両
ピークのバンド幅の合計) 合成例 1 通常の均一法酢化によつて製造された三酢酸セ
ルロース(蒸気圧浸透法による数平均重合度110、
分子量分布/=2.45、遊離水酸基含量0.35
%)140gを1.4の酢酸中で膨潤せしめ、無水酢
酸23.2ml、硫酸7.0ml、水8.4mlを加え、5時間80
℃で反応させた。その後、氷水で冷却し、26%酢
酸マグネシウム水溶液86.8gで硫酸を中和した。
生成した溶液は−イソプロパノール混合溶媒に加
えて酢酸セルロースを沈澱させ、別し、乾燥し
た。得られた三酢酸セルロースは、メタノール−
塩化メチレン(1:9)混合溶媒中の粘度より平
均重合度は23であつた。又遊離水酸基含量は0.8
%であつた。 実施例 1 シリカビーズ(Merck社製Li Chrospher
SI1000)10gを、200ml枝付丸底フラスコに入れ、
オイルバスで120℃3時間真空乾燥した後、N2
入れた。CaH2を入れて蒸溜したトルエンを、シ
リカビーズに100ml加えた。次にジフエニルジメ
トキシシラン(信越化学KBM202)を3ml加え
て撹拌後、120℃で1時間反応させた。さらに、
2〜5mlのトルエンを留去後120℃で2時間反応
させた。グラスフイルターで過し、トルエン50
mlで3回、メタノール50mlで3回洗浄し、40℃で
1時間真空乾燥を行なつた。 次にシリカビーズ約10gを200ml枝付丸底フラ
スコに入れ、100℃で3時間真空乾燥した後、常
圧に戻し、室温になつてからN2を入れた。蒸留
したトルエン100mlを乾燥したシリカビーズに加
えた。次にトリメチルシリル化剤N,O−Bis−
(トリメチルシリル)アセトアミド1mlを加えて
撹拌し、115℃で3時間反応させた。次にグラス
フイルターで過後トルエンで洗浄し約4時間真
空乾燥した。 合成例1で得られた三酢酸セルロース1.6gを
塩化メチレン10mlに溶解させ、G−3グラスフイ
ルターで過した。シラン処理したシリカビーズ
3.5gと該三酢酸セルロース溶液5.5mlを混合し、
減圧下で溶媒を留去し、三酢酸セルロースをシラ
ン処理したシリカビーズにコーテイングした。こ
れを光学分割用の充填剤とした。 比較例 1 合成例1で得られた三酢酸セルロースをアセト
ンに溶解させ、不溶部を加圧過することによつ
て除いた後、沈澱が生成しない程度の水を加え、
ロータリエバポレータを用いて溶媒を留去した。
得られた白色粉末を減圧乾燥した。これを、光学
分割用の充填剤とした。 応用例 1 比較例1で得られた酢酸セルロースをエタノー
ル中で28KHzの超音波をかけて粉砕後、酢酸セル
ロースの沈降速度の違いによつて粒径を分級し
た。沈降速度の遅い酢酸セルロースを長さ25cm、
内径0.46cmのステンレスカラムにスラリー法で充
填した。これをカラムとする。 実施例1で得られた充填剤も長さ25cm、内径
0.46cmのステンレスカラムにスラリー法で充填し
た。これをカラムとする。 これらのカラムを用いて表−1に示した各ラセ
ミ体の光学分割を試験した。使用した液体クロマ
トグラフ機は、日本分光工業(株)製のTRI
ROTAR SRを用い、使用した検出機は日本分光
工業(株)製のUVIDEC−100−IVを用いた。 流速は、0.2ml/minで測定した。 溶媒は、カラムの場合エタノールで行ない、
ヘキサン−イソプロパノール(9:1)に置換し
た場合には充填剤の体積が変化し、カラム効率が
低下した。カラムの場合には、エタノール及び
ヘキサン−イソプロパノール(9:1)で行な
い、溶媒置換による体積変化はほとんどみられな
かつた。又、カラムは100時間使用後、カラム
上部にすきまができて若干の段数の低下が見られ
たが、カラムでは段数は低下しなかつた。ベン
ゼンに対するカラム及びカラムの段数は576
段及び5700段であり、カラムの方が、はるかに
高段数なカラムであることがわかつた。表−1の
結果では、トランス−スチルベンオキサイドとト
レガ−塩基では、分離係数αはカラムの方が若
干大きいが、分離度Rsはカラムの方が大きく、
カラムの方が良いカラムであることがわかる。
他のラセミ体は、ヘキサン−イソプロパノール
(9:1)でカラムを使用した場合に分割する
ことができた。
The present invention relates to an adsorbent for optical resolution comprising cellulose triacetate supported on a carrier. The object of the present invention is to provide an adsorbent for optical resolution that has a wide range of uses, particularly for thin layer chromatography and column chromatography. It is known that cellulose or some cellulose derivatives have an optical resolution ability as an adsorbent for column chromatography, and in particular, crystalline microcrystalline cellulose triacetate, carboxymethylcellulose, cellulose, etc. have been known.
Furthermore, the present inventors have already discovered that good separation can be observed even with crystalline cellulose triacetate. (Patent Application No. 58-39555) However, these cellulose-based adsorbents
It had the following drawbacks. (1) Poor pressure resistance when used in column chromatography. (2) When used for chromatography, changing the eluent may cause swelling or shrinkage. (3) Low resolution due to small number of theoretical plates. As a result of intensive research to overcome these drawbacks, the present inventors have discovered an adsorbent for optical resolution that has excellent pressure resistance, hardly swells or shrinks due to solvent exchange, and has a good degree of separation. . That is, the present invention relates to an adsorbent for optical resolution comprising cellulose triacetate supported on a carrier. The cellulose triacetate constituting the adsorbent for optical resolution of the present invention has a number average degree of polymerization of 5 to 5000, preferably 5 to 200, and more preferably 5 to 70.
It is. Cellulose triacetate before being supported may be amorphous cellulose triacetate, whether the main crystalline part is cellulose triacetate in the form of cellulose triacetate or the main crystal part is cellulose triacetate in the form of cellulose triacetate. Cellulose acetate may also be used, but
When cellulose triacetate is dissolved and supported, the crystalline portion is considered to be cellulose triacetate in the form of cellulose triacetate. Regarding the definition of the type or type of cellulose or cellulose triacetate referred to in the present invention, see, for example, Migita,
It is described on pages 188-189 of the first volume of ``Wood Chemistry'' edited by Yonezawa and Kondo (published by Kyoritsu Publishing Co., Ltd.). The cellulose triacetate type used in the present invention is G.
It can be synthesized by the method of Hesse et al. (G. Hesse,
R. Hagel: Chromatographia, 6, 277 (1973);
G. Hesse, R. Hagel: ibid., 9 62 (1976); G.
Hesse, R. Hagel: Liebigs Ann.Chem., 1976,
996). That is, microcrystalline cellulose may be acetylated in a heterogeneous system. Cellulose triacetate can also be obtained by acetylating cellulose in the form or form to form cellulose triacetate, which is then crystallized to cellulose triacetate in the crystalline form. The oxidation reaction may be a homogeneous reaction or a heterogeneous reaction, and the reaction can be carried out by a conventionally known method. Amorphous cellulose triacetate can be obtained by acetylating cellulose in a homogeneous manner or by dissolving cellulose triacetate in a suitable solvent and precipitating it. The acetylation reaction can be carried out by a conventionally known method. For example, there is a method described in Natural Polymer Chemistry, Asakura Shoten "Oganikagaku" 19. The carrier constituting the adsorbent for optical resolution of the present invention is
The porous organic carrier or porous inorganic carrier is a polymeric material made of polystyrene, polyamide, polyacrylate, or the like. Porous inorganic supports include synthetic or natural materials such as silica, alumina, magnesia, titanium oxide and glass, silicates, kaolin. Preferred are silica (silica gel) and glass. Surface treatment may be performed to improve affinity with cellulose triacetate. Examples of surface treatment methods include silane treatment using an alkylsilane compound and plasma polymerization treatment using plasma. The size of the carrier varies depending on the column or plate used, but it is 1 μm.
~10 mm is preferred, more preferably 1 μm ~
It is 300 μm. The average diameter of the pores is preferably 10 Å to 100 μm, more preferably 50 Å to 50,000 Å. The method for supporting cellulose triacetate on a porous carrier may be a chemical method or a physical method. As a physical method, for example, 1 to 100% by weight, preferably 5 to 50% by weight of cellulose triacetate based on the carrier is dissolved in a solvent, mixed well with the carrier, and the solvent is distilled off by reducing pressure, heating, or air flow. leave Furthermore, when crystallizing adsorbed cellulose triacetate,
Treatments such as heat treatment can be performed. Another method is to dissolve cellulose triacetate in a solvent,
There is also a method of thoroughly mixing with a carrier, stirring and dispersing in a liquid that is incompatible with the solvent, and diffusing the melt. When using the adsorbent for optical resolution of the present invention for optical resolution, a solvent normally used for chromatography can be used if it is supported by a chemical method, but if it is supported physically, If cellulose triacetate is dissolved in the solvent, it cannot be used. Compounds to be optically resolved by the adsorbent for optical resolution of the present invention are compounds having an asymmetric center or compounds with molecular asymmetricity, and the adsorbent for optical resolution of the present invention can separate optical isomers. Any material may be used as long as either one is more strongly adsorbed. EXAMPLES The present invention will be described in detail below with reference to Examples, but the present invention is not limited to these Examples.
In addition, the measurement methods of measurement values and the meanings of terms in Examples and Comparative Examples are as follows. 1 Degree of polymerization 1-1 Vapor pressure osmosis method Paper pressure osmometer
Measurement was performed using CORONA 117 using a mixed solvent of chloroform and 1% ethanol as the solvent. 1-2 Viscosity method Dichloromethane-methanol (9:1) was used as a solvent, the reduced viscosity of a 0.2% solution was approximated as [η], and calculation was performed using Km = 5.65×10 -4 . Degree of polymerization = [η]/Km 2 Quantification of free hydroxyl groups Carl J. Malm (Anal.
After treatment with a large excess of phenyl isocyanate in pyridine at 90°C for 30 minutes and purification by reprecipitation, the absorption intensity at 272 nm of the ultraviolet absorption spectrum revealed that phenylcarbamoyl groups produced by the reaction between hydroxyl groups and phenyl isocyanate I calculated the amount. A value of 705 was used as the molar extinction coefficient of the phenylcarbamoyl group. This value was determined from cellobiose heptaacetate carbanilate.
The data obtained were expressed as weight percent of water dispersion groups in the original cellulose triacetate. Definition of capacity ratio (k'), separation coefficient (α), and resolution (R s ) Capacity ratio (k') = [(retention time of enantiomer) - (dead time)] / dead time separation coefficient (α) = Capacity ratio of enantiomer that is more strongly adsorbed/
Volumetric resolution of the more weakly adsorbed enantiomer (R s ) = 2 × (distance between the two peaks of the more strongly adsorbed enantiomer and the weaker adsorbed enantiomer) (bands of both peaks) Synthesis Example 1 Cellulose triacetate produced by normal homogeneous acetylation (number average degree of polymerization 110 by vapor pressure osmosis)
Molecular weight distribution/=2.45, free hydroxyl group content 0.35
%) was swollen in 1.4 acetic acid, 23.2 ml of acetic anhydride, 7.0 ml of sulfuric acid, and 8.4 ml of water were added, and swelled for 5 hours at 80 g.
The reaction was carried out at ℃. Thereafter, the mixture was cooled with ice water, and the sulfuric acid was neutralized with 86.8 g of a 26% aqueous magnesium acetate solution.
The resulting solution was added to a mixed solvent of -isopropanol to precipitate cellulose acetate, separated, and dried. The obtained cellulose triacetate was dissolved in methanol-
The average degree of polymerization was 23 based on the viscosity in a methylene chloride (1:9) mixed solvent. Also, the free hydroxyl group content is 0.8
It was %. Example 1 Silica beads (Li Chrospher manufactured by Merck)
Put 10g of SI1000) into a 200ml round-bottom flask with branches,
After vacuum drying in an oil bath at 120°C for 3 hours, N 2 was introduced. 100 ml of toluene distilled with CaH 2 was added to the silica beads. Next, 3 ml of diphenyldimethoxysilane (Shin-Etsu Chemical KBM202) was added, stirred, and reacted at 120°C for 1 hour. moreover,
After 2 to 5 ml of toluene was distilled off, the reaction was carried out at 120°C for 2 hours. Passed through a glass filter and added 50% toluene.
3 times with 50 ml of methanol and 3 times with 50 ml of methanol, and vacuum-dried at 40° C. for 1 hour. Next, about 10 g of silica beads were placed in a 200 ml round-bottomed flask with side arms, vacuum dried at 100° C. for 3 hours, the pressure returned to normal pressure, and after the temperature reached room temperature, N 2 was introduced. 100ml of distilled toluene was added to the dried silica beads. Next, the trimethylsilylating agent N,O-Bis-
1 ml of (trimethylsilyl)acetamide was added, stirred, and reacted at 115°C for 3 hours. Next, it was filtered through a glass filter, washed with toluene, and dried under vacuum for about 4 hours. 1.6 g of cellulose triacetate obtained in Synthesis Example 1 was dissolved in 10 ml of methylene chloride and filtered through a G-3 glass filter. Silanized silica beads
Mix 3.5 g and 5.5 ml of the cellulose triacetate solution,
The solvent was distilled off under reduced pressure, and cellulose triacetate was coated on silane-treated silica beads. This was used as a filler for optical resolution. Comparative Example 1 The cellulose triacetate obtained in Synthesis Example 1 was dissolved in acetone, the insoluble portion was removed by pressure filtration, and water was added to an extent that no precipitate was formed.
The solvent was distilled off using a rotary evaporator.
The obtained white powder was dried under reduced pressure. This was used as a filler for optical resolution. Application Example 1 The cellulose acetate obtained in Comparative Example 1 was pulverized in ethanol by applying ultrasonic waves at 28 KHz, and then the particle size was classified based on the difference in the sedimentation rate of the cellulose acetate. 25cm long cellulose acetate with slow sedimentation rate.
A stainless steel column with an inner diameter of 0.46 cm was packed using the slurry method. Let this be a column. The filler obtained in Example 1 also had a length of 25 cm and an inner diameter of
A 0.46 cm stainless steel column was packed using the slurry method. Let this be a column. Using these columns, optical resolution of each racemate shown in Table 1 was tested. The liquid chromatograph machine used was a TRI manufactured by JASCO Corporation.
ROTAR SR was used, and the detector used was UVIDEC-100-IV manufactured by JASCO Corporation. The flow rate was measured at 0.2 ml/min. The solvent for the column is ethanol,
When replacing with hexane-isopropanol (9:1), the volume of the packing material changed and the column efficiency decreased. In the case of the column, ethanol and hexane-isopropanol (9:1) were used, and almost no volume change was observed due to solvent replacement. Furthermore, after using the column for 100 hours, a gap was formed at the top of the column and the number of plates decreased slightly, but the number of plates did not decrease in the column. The number of columns and columns for benzene is 576
It was found that the column had a much higher number of plates, with 5,700 plates. The results in Table 1 show that for trans-stilbene oxide and Traeger base, the separation coefficient α is slightly larger for the column, but the resolution R s is larger for the column.
It can be seen that the column is a better column.
Other racemates could be resolved when using a column with hexane-isopropanol (9:1).

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 三酢酸セルロースを担体に保持させてなる光
学分割用吸着剤。
1. An adsorbent for optical resolution made by holding cellulose triacetate on a carrier.
JP58191304A 1983-10-13 1983-10-13 Adsorbent for optical splitting Granted JPS6082858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58191304A JPS6082858A (en) 1983-10-13 1983-10-13 Adsorbent for optical splitting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58191304A JPS6082858A (en) 1983-10-13 1983-10-13 Adsorbent for optical splitting

Publications (2)

Publication Number Publication Date
JPS6082858A JPS6082858A (en) 1985-05-11
JPH0429652B2 true JPH0429652B2 (en) 1992-05-19

Family

ID=16272330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58191304A Granted JPS6082858A (en) 1983-10-13 1983-10-13 Adsorbent for optical splitting

Country Status (1)

Country Link
JP (1) JPS6082858A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283123A (en) * 1989-05-03 1994-02-01 Carter Deborah H Adsorption material and method
SE9203646L (en) 1992-12-03 1994-05-24 Eka Nobel Ab Chiral adsorbents and their preparation as well as compounds on which the adsorbents are based and their preparation
JPH07260762A (en) * 1994-03-17 1995-10-13 Daicel Chem Ind Ltd Filler for high-speed liquid chromatography and manufacture thereof
KR100459314B1 (en) 1995-12-02 2005-01-17 다이셀 가가꾸 고교 가부시끼가이샤 Packing material for high-speed liquid chromatography
US9562121B2 (en) 2013-02-12 2017-02-07 National University Corporation Kanazawa University Optically active poly(diphenylacetylene) compound, preparation method therefor, and use thereof as optical isomer separating agent

Also Published As

Publication number Publication date
JPS6082858A (en) 1985-05-11

Similar Documents

Publication Publication Date Title
US4818394A (en) Separating agent
US5472599A (en) Separation agent comprising aliphatic or aromatic ester of polysaccharide
US5059328A (en) Separation agent comprising 1,3-glucan
JPH0475213B2 (en)
EP0157365A2 (en) Separation agent comprising polysaccharide carbamate
US4743377A (en) Packing material for liquid chromatography
EP0121776B1 (en) Resolving agent
EP0147804B2 (en) Method of separating optical isomers and geometrical isomers
JPH0429652B2 (en)
US4714555A (en) Agent for separation
USRE34457E (en) Separating agent
JPH0429649B2 (en)
JPH0430376B2 (en)
JPH0475215B2 (en)
JPS61233633A (en) Separation agent consisting of polysaccharide substituted aromatic carbamate derivative
JPH02289601A (en) New polysaccharide and separating agent
EP0157364A2 (en) Separation agent comprising aliphatic or aromatic ester of polysaccharide
JPH036921B2 (en)
JPH05148163A (en) Separating agent
JPS60158119A (en) Separating agent
US5268098A (en) Separation agent comprising aliphatic or aromatic ester of polysaccharide
JPS61176538A (en) Optical resolution of aralkyl alcohol
JPS62198657A (en) Optical resolution of sulfoxide
JPH0273045A (en) Optical resolution of amine derivative
JPS62198656A (en) Optical resolution of sulfonic acid ester