JPH04296409A - Optical fiber built-in bushing - Google Patents
Optical fiber built-in bushingInfo
- Publication number
- JPH04296409A JPH04296409A JP3086267A JP8626791A JPH04296409A JP H04296409 A JPH04296409 A JP H04296409A JP 3086267 A JP3086267 A JP 3086267A JP 8626791 A JP8626791 A JP 8626791A JP H04296409 A JPH04296409 A JP H04296409A
- Authority
- JP
- Japan
- Prior art keywords
- bushing
- optical fiber
- temperature
- optical
- center conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 32
- 239000004020 conductor Substances 0.000 claims abstract description 22
- 230000003287 optical effect Effects 0.000 claims abstract description 19
- 239000004065 semiconductor Substances 0.000 claims description 7
- 238000002834 transmittance Methods 0.000 claims description 4
- 238000000149 argon plasma sintering Methods 0.000 claims description 2
- 239000000835 fiber Substances 0.000 claims 1
- 239000012212 insulator Substances 0.000 abstract description 3
- 238000009529 body temperature measurement Methods 0.000 abstract 1
- 230000020169 heat generation Effects 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 230000007774 longterm Effects 0.000 description 3
- 238000013021 overheating Methods 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B17/00—Insulators or insulating bodies characterised by their form
- H01B17/005—Insulators structurally associated with built-in electrical equipment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B17/00—Insulators or insulating bodies characterised by their form
- H01B17/26—Lead-in insulators; Lead-through insulators
- H01B17/28—Capacitor type
Landscapes
- Insulators (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は実運転条件下の温度を測
定できる機能を持たせた光ファイバ内蔵ブッシングに関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bushing with a built-in optical fiber that has a function of measuring temperature under actual operating conditions.
【0002】0002
【従来の技術】ブッシングに通電すると、中心導体がジ
ュール熱により発熱し、また中心導体に巻かれたコンデ
ンサコアは課電運転中にその構成絶縁材の誘電正接の値
に比例した誘電発熱を生じるので、ブッシングの温度は
上昇する。その温度はコンデンサコアや油を劣化させな
い程度、例えばA種絶縁である油浸紙コンデンサコアで
は105 ℃以下に抑える必要がある。しかしながら高
電圧用ブッシングにおいては、その絶縁設計上の技術的
制約のためブッシング内部の温度を適切に監視する方法
がなく、当該業界での型式試験で性能を検証したうえで
定格運転レベルを把握し、現実的な運転に供していた。[Prior Art] When a bushing is energized, the center conductor generates heat due to Joule heat, and the capacitor core wound around the center conductor generates dielectric heat during energized operation in proportion to the dielectric loss tangent of its constituent insulating materials. Therefore, the temperature of the bushing increases. The temperature must be kept to a level that does not deteriorate the capacitor core or oil, for example, 105° C. or lower for an oil-immersed paper capacitor core that is Class A insulation. However, due to technical constraints in the insulation design of high-voltage bushings, there is no way to properly monitor the temperature inside the bushing. , provided for realistic driving.
【0003】上記の型式試験では、代表的な周囲条件す
なわち想定される最高気温及び浸漬油温にて定格電流を
通じて温度を確認する。この試験中の温度測定には熱電
対を用いる場合が多いが、高電圧用ブッシングでは内部
に熱電対を取り付けた状態では絶縁性能上から課通電は
不可能であるため、通電電流による温度上昇の確認しか
できなかった。また実際の運転では周囲条件も変化して
いるため、実運転下の温度ははっきりとは分からない。
ブッシングの規格では気温も浸漬油温もともに最高であ
るような条件を上限として設定されており、この条件下
で定格性能を評価している。このため実際には過負荷が
可能なはずであるが、データがないために実行できない
ことが多く、結果的にほとんどの場合ブッシングは温度
上昇に余裕を見た運転とせざるを得ず、不経済であった
。[0003] In the above type test, temperature is verified through a rated current under typical ambient conditions, ie, the maximum expected air temperature and immersion oil temperature. Thermocouples are often used to measure temperature during this test, but with high-voltage bushings, it is impossible to apply current with a thermocouple attached inside due to insulation performance, so the temperature rise due to the energizing current cannot be applied. All I could do was confirm. Furthermore, since the ambient conditions change during actual operation, the temperature under actual operation cannot be clearly determined. The bushing specifications set the upper limit to conditions where both the air temperature and the immersion oil temperature are at their highest, and the rated performance is evaluated under these conditions. Therefore, in reality, overloading should be possible, but it is often not possible due to lack of data, and as a result, in most cases, bushings have to be operated with a margin for temperature rise, which is uneconomical. Met.
【0004】更に長期間の運転によるコンデンサコアの
劣化の一つに、熱劣化に起因して誘電正接が次第に増加
する現象もある。この場合には使用により誘電発熱量が
次第に増加する。従って老朽ブッシングほど許容通電量
を抑える必要があるが、現在のところその目安を知る手
立てはなく、知らずに使用していると過熱を生じこの過
熱が更に劣化を促進するので、ついには熱逸走現象を起
こす危険があった。Furthermore, one of the deteriorations of the capacitor core due to long-term operation is a phenomenon in which the dielectric loss tangent gradually increases due to thermal deterioration. In this case, the amount of dielectric heat generated gradually increases with use. Therefore, the older the bushing is, the more it is necessary to reduce the allowable amount of current, but at present there is no way to know the guideline, and if used without knowing it, it will overheat and this overheating will further accelerate deterioration, resulting in the phenomenon of heat loss. There was a risk of causing
【0005】[0005]
【発明が解決しようとする課題】本発明は上記した従来
の問題点を解消して、実運転条件下におけるブッシング
の内部の温度を正確に測定できる光ファイバ内蔵ブッシ
ングを提供するために完成されたものである。[Problems to be Solved by the Invention] The present invention has been completed in order to solve the above-mentioned conventional problems and provide a bushing with a built-in optical fiber that can accurately measure the temperature inside the bushing under actual operating conditions. It is something.
【0006】[0006]
【課題を解決するための手段】上記の課題を解決するた
めになされた本発明は、管状の中心導体の上下の油流口
の一方から中心導体の内部に光ファイバを挿入して他方
の油流口から引出し、その両端部をブッシングの接地部
から外部に取り出して光送信器及び光受信器を接続した
ことを特徴とするものである。これらの光送信器及び光
受信器は、温度により変化する光ファイバ内での光散乱
の強さ及び散乱光の帰ってくるまでの時間からブッシン
グ内部の温度分布を測定する機能を有する。[Means for Solving the Problems] The present invention, which has been made to solve the above problems, involves inserting an optical fiber into the interior of the central conductor from one of the upper and lower oil flow ports of a tubular central conductor, and It is characterized in that it is pulled out from the flow port, and both ends of the bushing are taken out from the grounding part of the bushing to connect an optical transmitter and an optical receiver. These optical transmitters and optical receivers have a function of measuring the temperature distribution inside the bushing from the intensity of light scattering within the optical fiber, which changes with temperature, and the time it takes for the scattered light to return.
【0007】[0007]
【作用】本発明においては、光送信器から光ファイバの
内部に送り込まれた光線の散乱の強さが光ファイバ内の
温度により変化するとともに、散乱光の帰ってくるまで
の時間が光ファイバの端部からの距離により異なること
を利用してブッシングの中心導体の内部の温度分布を測
定することができる。また光ファイバは絶縁物であるの
で、課電中も常時中心導体の温度を測定することができ
、測定された温度に応じて負荷調整ができる。更に長期
間の絶縁劣化による誘電正接の増加で誘電発熱が増加し
てもそれを正確に知ることができるので、過熱の危険を
防止することもできる。[Operation] In the present invention, the intensity of scattering of the light beam sent from the optical transmitter into the inside of the optical fiber changes depending on the temperature inside the optical fiber, and the time it takes for the scattered light to return to the inside of the optical fiber changes. The temperature distribution inside the center conductor of the bushing can be measured by utilizing the fact that the temperature varies depending on the distance from the end. Furthermore, since the optical fiber is an insulator, the temperature of the center conductor can be constantly measured even during power application, and the load can be adjusted according to the measured temperature. Furthermore, even if dielectric heat generation increases due to an increase in dielectric loss tangent due to long-term insulation deterioration, this can be accurately known, and the risk of overheating can be prevented.
【0008】[0008]
【実施例】以下に本発明を図示の実施例により詳細に説
明する。図1は本発明の第1の実施例を示すもので、1
は管状の中心導体であり、その上下に油流口2、3が設
けられている。中心導体1の通電発熱とコンデンサコア
4の誘電発熱によって加熱された中心導体1内の油は上
昇し、上方の油流口2から中心導体1の外部へ流れ、外
気により低い温度になっている碍管5の内面で放熱して
再び下方の油流口3から中心導体1内に入る。この対流
循環作用によりブッシングは効率良く発熱を外部に放散
するようになっている。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in detail below with reference to illustrated embodiments. FIG. 1 shows a first embodiment of the present invention.
is a tubular central conductor, and oil flow ports 2 and 3 are provided above and below it. The oil inside the center conductor 1, which is heated by the energization heat generation of the center conductor 1 and the dielectric heat generation of the capacitor core 4, rises and flows to the outside of the center conductor 1 from the upper oil flow port 2, where the temperature is lowered by the outside air. The heat is radiated on the inner surface of the insulator tube 5 and enters the center conductor 1 again from the lower oil flow port 3. This convection circulation effect allows the bushing to efficiently dissipate heat to the outside.
【0009】この中心導体1の油流口2、3の一方から
光ファイバ6を挿入して他方の油流口から引出すことに
より、光ファイバ6を中心導体1内で一周させる。そし
て光ファイバ6の両端部はブッシングの接地部7から外
部に取り出し、光カプラー8を介して光送信器及び光受
信器9を接続する。この実施例では光ファイバ6は例え
ばゲルマニウムのような特定のドーピングエージェント
を含ませたシリカマトリックスからなるものである。By inserting the optical fiber 6 through one of the oil flow ports 2 and 3 of the center conductor 1 and pulling it out from the other oil flow port, the optical fiber 6 is made to go around the center conductor 1 once. Both ends of the optical fiber 6 are taken out from the grounding part 7 of the bushing and connected to an optical transmitter and an optical receiver 9 via an optical coupler 8. In this embodiment, the optical fiber 6 consists of a silica matrix containing a specific doping agent, for example germanium.
【0010】光ファイバ6の一端からレーザパルス光を
送ると、レーザパルス光は光ファイバ6内を進むときに
シリカやドーピングエージェントと相互反応して全方向
に等しく散乱するエネルギを発生する。この光ファイバ
6内でのレーザラマン散乱光の強度はその光ファイバ6
の温度に依存して変化し、特に後方散乱光は温度が高い
ほどその強度が大きくなる。この散乱光の一部は光源の
方へ帰ってくるが、その往復時間は距離に比例するので
、散乱光が帰ってくるまでの時間及び強さを測定すれば
位置に応じた温度を測定することが可能となる。位置は
最初に光ファイバ6を敷設したときに決まるので、ブッ
シング内のどの部分がどの温度であるかが全て分かるこ
ととなる。このようにして測定される温度分布は連続的
であり、他の測定方法(例えば感温素子の埋込み方法)
等とは異なり、位置的な測定漏れがない。When laser pulse light is sent from one end of the optical fiber 6, the laser pulse light interacts with the silica and doping agent as it travels through the optical fiber 6, generating energy that is equally scattered in all directions. The intensity of the laser Raman scattered light within this optical fiber 6 is
The intensity of backscattered light increases as the temperature increases. Some of this scattered light returns to the light source, but the round trip time is proportional to the distance, so by measuring the time and intensity of the scattered light returning, you can measure the temperature depending on the location. becomes possible. Since the position is determined when the optical fiber 6 is first installed, it is possible to know which part of the bushing has which temperature. The temperature distribution measured in this way is continuous, and other measurement methods (e.g. the method of embedding a temperature-sensitive element)
Unlike others, there are no positional measurement omissions.
【0011】図2は本発明の第2の実施例を示すもので
あり、前記と同様に光ファイバ6を中心導体1内で一周
させ、その両端部に光カプラー8を介して光送信器9a
及び光受信器9bを接続する。また図3に示すように、
中心導体1内の光ファイバ6の途中には温度により光透
過率の変わる薄い半導体10、例えばCaAs、CdT
e等を介在させておく。光送信器9aから出た光はこの
半導体10を通過する際にその部分の温度によって定ま
る光透過率に応じて減衰し、光受信器9bに戻ってくる
。戻ってきた光の強さによってブッシングの中心導体1
の内部温度を知ることができる。この場合には測定され
る温度は半導体10の設置点の温度であるから、位置的
な判別精度が良く、複数個を適切に配設すればブッシン
グの内部の温度を知ることができるのみならず、必要に
応じて外部にも敷設することにより周回経路各所の温度
分布を知ることも可能となり、運転条件判断のための豊
富な情報を得ることができる。FIG. 2 shows a second embodiment of the present invention, in which an optical fiber 6 is made to go around the center conductor 1 in the same manner as described above, and an optical transmitter 9a is connected to both ends of the optical fiber 6 via an optical coupler 8.
and an optical receiver 9b. Also, as shown in Figure 3,
In the middle of the optical fiber 6 in the center conductor 1, there is a thin semiconductor 10 whose light transmittance changes depending on the temperature, such as CaAs or CdT.
e etc. are interposed. When the light emitted from the optical transmitter 9a passes through the semiconductor 10, it is attenuated according to the light transmittance determined by the temperature of that part, and returns to the optical receiver 9b. The center conductor 1 of the bushing depends on the intensity of the returned light.
You can know the internal temperature of. In this case, the temperature measured is the temperature at the point where the semiconductor 10 is installed, so the positional discrimination accuracy is good, and by appropriately arranging multiple pieces, it is not only possible to know the temperature inside the bushing. By installing it outside as necessary, it becomes possible to know the temperature distribution at various points along the circuit route, and it is possible to obtain a wealth of information for determining operating conditions.
【0012】なお、油流口2、3は余り大きくするとそ
の部分の電界が乱れ易いために小さい口径とすることが
望ましく、油の流れを考慮して適当な大きさに設定され
ている。このためにこの部分を光ファイバ6で閉塞する
ことは極力避けるべきであるが、本発明においては1本
の光ファイバ6によりブッシング全体の温度分布を知る
ことができるので、油流口2、3の機能を損なうおそれ
はない。It should be noted that if the oil flow ports 2 and 3 are made too large, the electric field in those portions is likely to be disturbed, so it is desirable to have a small diameter, and they are set to an appropriate size in consideration of the flow of oil. For this reason, it should be avoided as much as possible to block this part with the optical fiber 6, but in the present invention, since the temperature distribution of the entire bushing can be known with one optical fiber 6, the oil flow ports 2, 3 There is no risk of loss of functionality.
【0013】[0013]
【発明の効果】以上に説明したように、本発明によれば
通電及び課電によりジュール熱及び誘電発熱が同時に発
生する実運転状態におけるブッシングの内部温度を正し
く測定することができるから、温度上昇の限界付近での
運転が可能となり、設備効率を高めることができる。ま
た本発明によれば、長期間の運転により絶縁材が劣化し
て誘電正接の増加等により発熱度合が変化しても、その
程度を常に正確に監視することができるから、過熱によ
る損傷を未然に防止することができる。As explained above, according to the present invention, it is possible to accurately measure the internal temperature of the bushing in an actual operating state where Joule heat and dielectric heat generation occur simultaneously due to energization and charging, thereby reducing the temperature rise. This makes it possible to operate near the limits of the equipment, increasing equipment efficiency. Furthermore, according to the present invention, even if the degree of heat generation changes due to an increase in dielectric loss tangent due to deterioration of the insulating material due to long-term operation, the degree of heat generation can be constantly monitored accurately, so damage caused by overheating can be prevented. can be prevented.
【図1】本発明の第1の実施例を示す断面図である。FIG. 1 is a sectional view showing a first embodiment of the present invention.
【図2】本発明の第2の実施例を示す断面図である。FIG. 2 is a sectional view showing a second embodiment of the invention.
【図3】第2の実施例における半導体取付け部の拡大断
面図である。FIG. 3 is an enlarged sectional view of a semiconductor mounting portion in a second embodiment.
1 中心導体 2 油流口 3 油流口 6 光ファイバ 7 接地部 9 光送信器及び光受信器 10 半導体 1 Center conductor 2 Oil flow port 3 Oil flow port 6 Optical fiber 7 Grounding part 9. Optical transmitter and optical receiver 10 Semiconductor
Claims (3)
から中心導体の内部に光ファイバを挿入して他方の油流
口から引出し、その両端部をブッシングの接地部から外
部に取り出して光送信器及び光受信器を接続したことを
特徴とする光ファイバ内蔵ブッシング。[Claim 1] An optical fiber is inserted into the center conductor through one of the upper and lower oil flow ports of the tubular center conductor, pulled out from the other oil flow port, and both ends of the optical fiber are taken out from the grounding portion of the bushing. A bushing with a built-in optical fiber characterized by connecting an optical transmitter and an optical receiver.
光散乱の強さ及び散乱光の帰ってくるまでの時間からブ
ッシング内部の温度分布を測定する機能を有するもので
ある請求項1記載の光ファイバ内蔵ブッシング。2. The light according to claim 1, which has a function of measuring the temperature distribution inside the bushing from the intensity of light scattering within the optical fiber that changes depending on temperature and the time taken for the scattered light to return. Bushing with built-in fiber.
途中に、温度によって光透過率の変わる半導体を挿入し
、該半導体の光透過率の変化によってブッシング内部の
温度分布を測定する機能を有するものである請求項1記
載の光ファイバ内蔵ブッシング。3. It has a function of inserting a semiconductor whose light transmittance changes depending on temperature into the middle of the optical fiber located in the center conductor, and measuring the temperature distribution inside the bushing based on the change in the light transmittance of the semiconductor. The optical fiber built-in bushing according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3086267A JPH04296409A (en) | 1991-03-25 | 1991-03-25 | Optical fiber built-in bushing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3086267A JPH04296409A (en) | 1991-03-25 | 1991-03-25 | Optical fiber built-in bushing |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04296409A true JPH04296409A (en) | 1992-10-20 |
Family
ID=13882046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3086267A Withdrawn JPH04296409A (en) | 1991-03-25 | 1991-03-25 | Optical fiber built-in bushing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04296409A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017152985A1 (en) * | 2016-03-10 | 2017-09-14 | Siemens Aktiengesellschaft | High-voltage device featuring temperature measurement, and method for measuring the temperature of a high-voltage device |
EP3428934A1 (en) * | 2017-07-10 | 2019-01-16 | ABB Schweiz AG | High voltage bushing with temperature sensor |
EP3561819A1 (en) * | 2018-04-26 | 2019-10-30 | ABB Schweiz AG | Bushing equipped with an optical fibre |
EP3654044A1 (en) * | 2018-11-15 | 2020-05-20 | ABB Schweiz AG | High-voltage lead-through device and arrangement for handling data of a high-voltage lead-through device |
EP3702746A1 (en) * | 2019-03-01 | 2020-09-02 | ABB Power Grids Switzerland AG | High voltage system comprising a temperature distribution determining device |
EP3706145A1 (en) * | 2019-03-05 | 2020-09-09 | Siemens Aktiengesellschaft | High voltage feed-through with temperature detection and transformer device with the high voltage feed-through |
-
1991
- 1991-03-25 JP JP3086267A patent/JPH04296409A/en not_active Withdrawn
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017152985A1 (en) * | 2016-03-10 | 2017-09-14 | Siemens Aktiengesellschaft | High-voltage device featuring temperature measurement, and method for measuring the temperature of a high-voltage device |
US11073430B2 (en) | 2016-03-10 | 2021-07-27 | Siemens Aktiengesellschaft | High-voltage device featuring temperature measurement, and method for measuring the temperature of a high-voltage device |
EP3428934A1 (en) * | 2017-07-10 | 2019-01-16 | ABB Schweiz AG | High voltage bushing with temperature sensor |
CN112219244A (en) * | 2018-04-26 | 2021-01-12 | Abb电网瑞士股份公司 | Ferrule equipped with optical fiber |
EP3561819A1 (en) * | 2018-04-26 | 2019-10-30 | ABB Schweiz AG | Bushing equipped with an optical fibre |
WO2019207069A1 (en) * | 2018-04-26 | 2019-10-31 | Abb Schweiz Ag | Bushing equipped with an optical fibre |
US11831133B2 (en) | 2018-04-26 | 2023-11-28 | Hitachi Energy Ltd | Bushing equipped with an optical fibre |
US11269002B2 (en) | 2018-11-15 | 2022-03-08 | Hitachi Energy Switzerland Ag | High-voltage lead-through device and arrangement for handling data of a high-voltage lead-through device |
WO2020099615A1 (en) * | 2018-11-15 | 2020-05-22 | Abb Schweiz Ag | High-voltage lead-through device and arrangement for handling data of a high-voltage lead-through device |
EP3654044A1 (en) * | 2018-11-15 | 2020-05-20 | ABB Schweiz AG | High-voltage lead-through device and arrangement for handling data of a high-voltage lead-through device |
WO2020178202A1 (en) * | 2019-03-01 | 2020-09-10 | Abb Power Grids Switzerland Ag | High voltage system comprising a temperature distribution determining device |
EP3702746A1 (en) * | 2019-03-01 | 2020-09-02 | ABB Power Grids Switzerland AG | High voltage system comprising a temperature distribution determining device |
CN113498475A (en) * | 2019-03-01 | 2021-10-12 | Abb电网瑞士股份公司 | High-pressure system comprising a temperature distribution determining device |
US11366025B2 (en) | 2019-03-01 | 2022-06-21 | Hitachi Energy Switzerland Ag | High voltage system comprising a temperature distribution determining device |
CN113498475B (en) * | 2019-03-01 | 2022-10-28 | 日立能源瑞士股份公司 | High-voltage system, high-voltage electromagnetic induction system and method for determining temperature distribution of sleeve |
EP3706145A1 (en) * | 2019-03-05 | 2020-09-09 | Siemens Aktiengesellschaft | High voltage feed-through with temperature detection and transformer device with the high voltage feed-through |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4827487A (en) | Distributed temperature sensing system for stator windings | |
US8775151B2 (en) | System and method for determining characteristics of power cables using distributed temperature sensing systems | |
Gagnon et al. | Thermally activated variable attenuation of long-range surface plasmon-polariton waves | |
US7377689B2 (en) | Transformer temperature monitoring and control | |
US6721470B2 (en) | Optical measurement device in a pressed-in conductor bar in an electrical machine | |
US20060251147A1 (en) | Transformer temperature monitoring and control | |
JP4959730B2 (en) | Flow measuring device for determining the flow direction | |
EP3428934A1 (en) | High voltage bushing with temperature sensor | |
CN101639386B (en) | Load tap changer contact overheating fault diagnosis method and device | |
RU2698484C1 (en) | Device for measuring radiation power of fiber lasers | |
JPH04296409A (en) | Optical fiber built-in bushing | |
CN112013990A (en) | Temperature on-line monitoring device for bushing conducting rod of oil-immersed transformer | |
Deng et al. | Hot‐spot temperature and temperature decay rate measurement in the oil immersed power transformer through FBG based quasi‐distributed sensing system | |
Chen et al. | Inspection of electrical wires for insulation faults and current surges using sliding temperature sensor based on optical Microfibre coil resonator | |
US20140092938A1 (en) | Method for determining a temperature in a winding of subconductors of an electric machine | |
US2496541A (en) | Bridge for measuring electromagnetic wave energy | |
US2453645A (en) | Microwave power measuring apparatus | |
JPH0242179B2 (en) | ||
US4258570A (en) | High voltage power transformer winding temperature control system | |
Anoop et al. | Thermal stress monitoring and pre-fault detection system in power transformers using fibre optic technology | |
JP3401285B2 (en) | Low temperature junction compensation device for thermocouple | |
Bascom et al. | Considerations for advanced temperature monitoring of underground power cables | |
Norton et al. | Improved fiberoptic temperature measurement system for monitoring winding temperatures in medium and large transformers | |
US2474825A (en) | Testing arrangement for protected electrical apparatus | |
McDonald | Toward increased reliability in the electric power industry: direct temperature measurement in transformers using fiber optic sensors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19980514 |