JPH0429583A - Method and apparatus for controlling motor - Google Patents

Method and apparatus for controlling motor

Info

Publication number
JPH0429583A
JPH0429583A JP2133859A JP13385990A JPH0429583A JP H0429583 A JPH0429583 A JP H0429583A JP 2133859 A JP2133859 A JP 2133859A JP 13385990 A JP13385990 A JP 13385990A JP H0429583 A JPH0429583 A JP H0429583A
Authority
JP
Japan
Prior art keywords
phase
current
vibration
motor
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2133859A
Other languages
Japanese (ja)
Other versions
JP2608619B2 (en
Inventor
Kazuyuki Hiramoto
平元 一之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makino Milling Machine Co Ltd
Original Assignee
Makino Milling Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Milling Machine Co Ltd filed Critical Makino Milling Machine Co Ltd
Priority to JP2133859A priority Critical patent/JP2608619B2/en
Publication of JPH0429583A publication Critical patent/JPH0429583A/en
Application granted granted Critical
Publication of JP2608619B2 publication Critical patent/JP2608619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To accurately suppress vibration of a motor in a simple structure by sequentially varying the amplitudes of exciting currents to be supplied to phase windings of the motor at respective exciting coils, and moving the variation synchronously with the detected rotary position signal. CONSTITUTION:When a phase thetam and amplitude coefficient (m) to be supplied to a damping modulator MC are decided, it is divided into the case in which a rotary unbalance due to the deviation of the center of a shaft and the center of gravity is previously known and the case in which it is not previously known. In the former case, the phase thetam is fixed, and the coefficient (m) is varied in proportion to the rotating speed omegar obtained by differentiating a rotary position signal thetar. In the latter case, for example, there is no room for searching a rotary unbalance, or rotary unbalance is generated by an additive such as a tool, etc. In this case, the thetam and the m for minimizing the vibration are searched by scanning a table in a range of 0 - 2pi in terms of the phase thetam and in a range of 0 - 1 in terms of the coefficient (m).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は制振機能を有する電動機の制御方法および制御
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control method and a control device for an electric motor having a vibration damping function.

〔従来の技術〕[Conventional technology]

一般に高速回転するモータにおいて発生する自励振動は
、モータ自身の軸重心のずれや軸のクリアランスによる
回転アンバランスに起因する場合と、モータに接続され
る従動側負荷に起因する場合とある。このような振動は
モータを搭載する機器の機能、性能に大きく影響し、極
端な場合ではモータ自身の破損に繋がることもある。
In general, self-excited vibrations that occur in a motor that rotates at high speed can be caused by rotational unbalance due to a shift in the center of gravity of the motor's shaft or shaft clearance, or can be caused by a driven load connected to the motor. Such vibrations greatly affect the function and performance of equipment equipped with the motor, and in extreme cases may even lead to damage to the motor itself.

このような振動に対する対策としてパッシブ型制振機構
とアクティブ型制振機構が提案されている。
As countermeasures against such vibrations, passive vibration damping mechanisms and active vibration damping mechanisms have been proposed.

パッシブ型の一例として、従動側の軸に液体や鋼球を密
封したリングを装着する自動バランス機構が提案されて
いる。この方式では軸の回転と共に生じる遠心力により
、液体や鋼球がリング内で一定の状態に分散配置される
性質を利用し振動を吸収するものである。このように振
動そのものを抑止せずに発生した振動を制動する点でパ
ッシブ型制振機構と呼ばれる。
As an example of a passive type, an automatic balance mechanism has been proposed in which a ring sealed with liquid or steel balls is attached to the driven shaft. This method absorbs vibrations by utilizing the property that liquid and steel balls are uniformly distributed within the ring due to the centrifugal force generated as the shaft rotates. It is called a passive vibration damping mechanism because it damps the vibrations that occur without suppressing the vibrations themselves.

一方、積極的に振動を抑止するアクティブ型制振機構が
ある。例えば、モータの軸を磁気的に受ける磁気軸受に
おいて磁気軸受の励磁を軸回転と発生する振動に合わせ
て積極的に制振する方式や、空気軸受のエアパッドと軸
の間の間隙を制御して動剛性を変化させ制振する方式が
提案されている。
On the other hand, there is an active vibration damping mechanism that actively suppresses vibrations. For example, in a magnetic bearing that magnetically receives the shaft of a motor, there is a method in which the excitation of the magnetic bearing is actively suppressed in accordance with the shaft rotation and vibrations generated, and a method in which the gap between the air pad and the shaft of an air bearing is controlled. A method of damping vibration by changing dynamic stiffness has been proposed.

しかし、上述の制振方式はパッシブ型にしろアクティブ
型にしろ振動そのものに着目してこれを抑制しようとす
るものである。
However, the above-mentioned vibration damping methods, whether passive or active, focus on the vibration itself and attempt to suppress it.

一方、誘導モータや同期モータ等のACモータをサーボ
系に使用する提案は従来から多くなされており、例えば
誘導モータにベクトル制御方式を適用したACサーボモ
ータがある。この方式は、詳細は後述するが、基本的に
ACサーボモータに入力される電流を電流検出器で検出
し、回転速度を速度検出器で検出し、さらに、回転子位
置を位置検出器により検出し、これらを各々フィードバ
ックすることにより電流制御、速度制御、及び位置制御
を行うものである。
On the other hand, there have been many proposals to use AC motors, such as induction motors and synchronous motors, in servo systems. For example, there are AC servo motors in which a vector control method is applied to an induction motor. The details of this method will be described later, but basically the current input to the AC servo motor is detected by a current detector, the rotation speed is detected by a speed detector, and the rotor position is detected by a position detector. However, current control, speed control, and position control are performed by feeding these back to each other.

本発明はこのACサーボモータの制御方式にさらに、A
Cサーボ制御機能と併せてモータの制振機能をも持たせ
ることにより、サーボ系に限らず工作機械等のモータ振
動に対処するものである。
The present invention further provides a control method for this AC servo motor.
By providing a motor vibration damping function in addition to the C servo control function, it is possible to cope with motor vibrations not only in servo systems but also in machine tools and the like.

従って、本発明による制振機能は積極的に振動を抑止す
る点でアクティブ型制振機構と言える。
Therefore, the vibration damping function according to the present invention can be said to be an active vibration damping mechanism in that it actively suppresses vibrations.

第8図は従来のACサーボモータの制御装置ブロック構
成図である。図中、IMは誘導モータ、SSは回転位置
検出器、CTは電流検出器、PIは電力変換器、CAは
電流制御増幅器、PAはCAとPIを総称した電力増幅
器、CGは3相電流指令発生回路である。
FIG. 8 is a block diagram of a conventional AC servo motor control device. In the figure, IM is an induction motor, SS is a rotational position detector, CT is a current detector, PI is a power converter, CA is a current control amplifier, PA is a power amplifier that collectively refers to CA and PI, and CG is a three-phase current command. This is a generation circuit.

回転位置検出器SSは例えばロータリ・エンコーダであ
り、絶対位相θrを出力するアブソリュート・エンコー
ダである。また位相を微分した回転速度ωrを出力する
ようにすることも可能である。
The rotational position detector SS is, for example, a rotary encoder, and is an absolute encoder that outputs an absolute phase θr. It is also possible to output the rotational speed ωr obtained by differentiating the phase.

電力変換器PIは内蔵コンバータ(図示せず)により交
流を直流に変換し、次に内蔵インバータ(図示せず)に
よりその直流を交流に変換し、電流制御増幅器CAの出
力をモータを駆動し得る大きさの電力にしてモータIM
に供給する。
The power converter PI may convert alternating current to direct current with a built-in converter (not shown), and then convert the direct current to alternating current with a built-in inverter (not shown), and drive the motor with the output of the current control amplifier CA. Motor IM based on the power of the size
supply to.

電流検出器CTは各巻線に流れる電流を検出し、検出電
流iu 、’iv 、 i智を対応する電流制御増幅器
CAにフィードバックする。
The current detector CT detects the current flowing through each winding, and feeds back the detected currents iu, 'iv, and i to the corresponding current control amplifiers CA.

電流制御増幅器CAは各相巻線毎に設けられ、フィード
バックされた各検出電流iu 、 iviwと対応する
電流指令値Iu 、 Iv 、 Iwとを加算し、その
結果を増幅して電力変換器PIに送る。
The current control amplifier CA is provided for each phase winding, adds the feedback detected currents iu, iviv and the corresponding current command values Iu, Iv, Iw, amplifies the result, and sends it to the power converter PI. send.

3相電流指令発生回路CGは電流振幅指令I、及びすべ
り周波数指令ωSと回転速度ωrの差のすべり周波数W
1とに基づき各電流指令IuIv 、 Iwを発生する
The three-phase current command generation circuit CG generates a current amplitude command I and a slip frequency W that is the difference between the slip frequency command ωS and the rotational speed ωr.
The current commands IuIv and Iw are generated based on the current commands IuIv and Iw.

第9図は従来の励磁コイルの結線図である。図示のよう
に、4個のU相コイル、Ul、U2U3.U4は全て並
列接続され、電力変換器PIに接続される。そしてV相
、W相についても全く同様に接続されている。従って、
各相毎に電流を電流検出器CTにより一括検出し電流制
御増幅器CAにフィードバックし各相毎に電流を一括制
御する。
FIG. 9 is a wiring diagram of a conventional excitation coil. As shown in the figure, there are four U-phase coils, Ul, U2U3. U4 are all connected in parallel and connected to power converter PI. The V-phase and W-phase are also connected in exactly the same way. Therefore,
The current for each phase is collectively detected by the current detector CT and fed back to the current control amplifier CA to collectively control the current for each phase.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述の従来技術において、パッシブ型制振機構やアクテ
ィブ型制振機構のように振動そのものを抑制する対策で
は、パッシブ型にあっては従属側負荷の変動によるアン
バランスは完全には救済できずに残り、またアクティブ
型にあっては制振機構を極めて複雑かつ高価なものにす
る問題がある。
In the above-mentioned conventional technology, measures to suppress vibration itself such as passive vibration damping mechanisms and active vibration damping mechanisms cannot completely relieve the unbalance caused by fluctuations in the slave side load in the passive type. Another problem with the active type is that it makes the damping mechanism extremely complex and expensive.

また、ACサーボモータにおいても制御装置では上述の
ように各相の励磁コイルを並列接続し一括制御するため
微妙な振動制御(制振)まではできないという不都合が
ある。
Furthermore, in the case of an AC servo motor, the control device has the disadvantage that, as described above, the excitation coils of each phase are connected in parallel and collectively controlled, so that delicate vibration control (vibration suppression) cannot be performed.

本発明の目的は、従来のACサーボモータの制御方式を
改良し、ACサーボ制御機能と併せてモータの制振機能
をも持たせることにより、サーボ系に限らず一般の工作
機械のモータの振動をも簡単な構造かつ高精度で抑止可
能とする制振機能を有する電動機の制御方法および装置
を提供することにある。
The purpose of the present invention is to improve the conventional AC servo motor control system and provide a motor vibration damping function in addition to the AC servo control function. An object of the present invention is to provide a method and apparatus for controlling an electric motor having a vibration damping function that can suppress vibrations with a simple structure and high precision.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理構成図である。 FIG. 1 is a diagram showing the principle configuration of the present invention.

本発明は、電動機の各相巻線に供給する励磁電流の大き
さと位相を励磁コイル毎に順次変化させ、かつ検出した
回転位置信号に同期してこの変化を移動させるようにし
たものである。
The present invention sequentially changes the magnitude and phase of an excitation current supplied to each phase winding of a motor for each excitation coil, and moves this change in synchronization with a detected rotational position signal.

詳述すると、第1の発明によれば回転する電動機の振動
を検出し、前記電動機の各相巻線毎に供給する電流の大
きさと位相を前記電動機の回転数に同期して順次変化さ
せ、前記電動機の振動が小さくなったときの電流の大き
さとその位相を求め、その電流を前記電動機に供給して
前記電動機の振動を極力小さく維持する電動機の制御方
法、が提供される。また、第2の発明によれば電動機の
各相巻線に供給する励磁電流の大きさと位相を励磁コイ
ル毎に順次変化させるようにした電動機の制御装置にお
いて、前記電動機の各相巻線毎に増幅した電流を供給す
る電力増幅手段と、前記電動機から検出する振動に基づ
き前記各電力増幅手段の各相に供給する電流の大きさと
位相を前記電動機の振動が極力小さくなるように制釦す
る電流制御手段と、該電流制御手段から出力された電流
の大きさ及び位相と前記電動機から検出される回転位置
信号とに基づき、前記各電力増幅手段に対し変調された
各相電流を供給する制振変調手段とを具備したことを特
徴とする電動機の制御装置、が提供される。
Specifically, according to the first invention, vibrations of a rotating electric motor are detected, and the magnitude and phase of the current supplied to each phase winding of the electric motor are sequentially changed in synchronization with the rotational speed of the electric motor, A method for controlling a motor is provided, in which the magnitude and phase of a current when the vibration of the motor becomes small is determined, and the current is supplied to the motor to keep the vibration of the motor as small as possible. According to a second aspect of the present invention, there is provided a control device for an electric motor in which the magnitude and phase of the excitation current supplied to each phase winding of the motor are sequentially changed for each excitation coil. a power amplifying means for supplying an amplified current; and a current for controlling the magnitude and phase of the current supplied to each phase of each of the power amplifying means based on vibrations detected from the electric motor so that vibrations of the electric motor are minimized. a control means, and vibration damping for supplying each phase current modulated to each of the power amplification means based on the magnitude and phase of the current output from the current control means and the rotational position signal detected from the electric motor. Provided is a motor control device characterized by comprising a modulation means.

[作 用〕 本発明では誘導モータもしくは同期モータにおいて、従
来並列接続され一括制御されてきた励磁コイルを第3図
に示すように各コイル個別に制御し、基本的には並列接
続時と同様の制御を各コイルに加える。
[Function] In the present invention, in an induction motor or a synchronous motor, the excitation coils, which have conventionally been connected in parallel and controlled collectively, are individually controlled as shown in Fig. 3, and basically the same as when connected in parallel. Apply control to each coil.

一方、モータ軸の重心ずれによる遠心力は、モータ回転
数によりその大きさを変化させ、モータ回転速度と同じ
回転速度で移動しながらラジアル方向に発生する。ある
瞬間ある回転角度位置において、モータの励磁電流を制
御して遠心力と同じ大きさで方向反対の吸引力をロータ
とステータとの闇で発生させ、かつこの吸引力をモータ
の回転速度と同じ回転速度で移動させると、遠心力と吸
引力とが相殺されて遠心力に起因する振動がなくなる。
On the other hand, the centrifugal force due to the deviation of the center of gravity of the motor shaft changes its magnitude depending on the motor rotation speed, and is generated in the radial direction while moving at the same rotation speed as the motor rotation speed. At a certain moment and at a certain rotation angle position, the excitation current of the motor is controlled to generate an attractive force between the rotor and the stator of the same magnitude and opposite direction as the centrifugal force, and to make this attractive force equal to the rotational speed of the motor. When moving at rotational speed, centrifugal force and suction force cancel each other out, eliminating vibrations caused by centrifugal force.

また遠心力の大きさが変化する場合は、その遠心力の大
きさに応じて吸引力の大きさも変化させるのである。
Furthermore, when the magnitude of the centrifugal force changes, the magnitude of the suction force is also changed in accordance with the magnitude of the centrifugal force.

つまり、励磁コイルに与える電流を上述の各コイル個別
に制御するのに重畳する形で、ロータ回転に同期しかつ
遠心力に見合った大きさ及び位相差を持った励磁強度に
変調する。これにより吸弓力が周方向で変化することに
なり、遠心力を打ち消しながら回転力が得られることに
なる。
In other words, the current applied to the excitation coil is modulated to an excitation intensity that is synchronized with the rotation of the rotor and has a magnitude and phase difference commensurate with the centrifugal force, in a manner that is superimposed on the individual control of each coil described above. As a result, the suction force changes in the circumferential direction, and rotational force is obtained while canceling centrifugal force.

〔実施例〕〔Example〕

第2図は本発明の一実施例ブロック構成図である。第2
図において、従来と同一の構成要素には同一の参照符号
を与える。図中、VTは振動検出器、PCは電流制御手
段としての制振位相・振幅指令発生回路、MCは制振変
調回路である。
FIG. 2 is a block diagram of an embodiment of the present invention. Second
In the figures, the same components as in the prior art are given the same reference numerals. In the figure, VT is a vibration detector, PC is a vibration damping phase/amplitude command generation circuit as a current control means, and MC is a vibration damping modulation circuit.

前述のように、モータの機械的構造は変わらず、第3図
に示すように、単に巻線1極毎にリード線を取り出す。
As described above, the mechanical structure of the motor remains unchanged, and the lead wires are simply taken out for each pole of the winding, as shown in FIG.

従って、電流検出器、電力変換器、電流制御増幅器、制
振変調回路等は図示のように全て極数分の組数だけ(本
実施例では4組)必要となる。即ち、CTI〜CT4は
電流検出器、FIL〜PI4は電力変換器、CAL〜C
A4は電流制御増幅器、MCl −MC4は制振変調回
路であり4組設けられる。
Therefore, as shown in the figure, the number of current detectors, power converters, current control amplifiers, vibration damping modulation circuits, etc. is equal to the number of poles (four in this embodiment). That is, CTI to CT4 are current detectors, FIL to PI4 are power converters, and CAL to C
A4 is a current control amplifier, MCl-MC4 is a damping modulation circuit, and four sets are provided.

但し、電力変換器はそのまま4倍必要ではなく4分の1
の性能のものを4台設ければよい。
However, the power converter does not need to be 4 times as it is, but 1/4 the time.
All you need to do is install four units with the same performance.

このように、制御装置は極数分だけ並列に電力変換器等
を接続し、これらに供給する電流指令値に、制振を目的
とする指令値(制振指令値)を掛は合わせる構成とする
In this way, the control device has a configuration in which power converters, etc. are connected in parallel as many as the number of poles, and the current command value supplied to these is multiplied by a command value for the purpose of damping vibration (vibration control command value). do.

後述する第5図で説明するように、各励磁コイルの制振
指令値は目的の場所の振動が最小となるように、周方向
に1を中心とする正弦分布をなし、ロータの回転とある
位相差を持って進行する。正弦分布の振幅係数と位相差
は学習制御によって回転開始からの僅かの時間で決めら
れ、回転中も常に最適化を続けることが可能である。
As explained in Fig. 5, which will be described later, the vibration suppression command value of each exciting coil has a sinusoidal distribution centered on 1 in the circumferential direction so that the vibration at the target location is minimized, and the rotation of the rotor is Proceeds with a phase difference. The amplitude coefficient and phase difference of the sine distribution are determined by learning control in a short time from the start of rotation, and optimization can be continued at all times during rotation.

第4図は第2図の制振変調回路の一実施例ブロック構成
図である。第4図において、MTは乗算器、ADは加算
器、AMPは増幅器、○SCは第5図(C)に示す正弦
波をN種類発振する正弦波発振器である。この場合、正
弦波発振器O8Cには制振位相・振幅指令発生回路PC
から位相θmと振幅係数mが人力され、さらに、回転位
置検出器SSで検出された回転位置信号θrを入力し、
下式の如き正弦波をN種類出力する。
FIG. 4 is a block diagram of an embodiment of the vibration damping modulation circuit of FIG. 2. In FIG. 4, MT is a multiplier, AD is an adder, AMP is an amplifier, and SC is a sine wave oscillator that oscillates N types of sine waves shown in FIG. 5(C). In this case, the sine wave oscillator O8C includes a damping phase/amplitude command generation circuit PC.
The phase θm and amplitude coefficient m are manually inputted from , and the rotational position signal θr detected by the rotational position detector SS is inputted,
Outputs N types of sine waves as shown in the following formula.

5in(θr+θm+(2π/N) X i) 川(1
)ここで、Nは励磁コイルの数(本実施例ではN=12
)であり、1はO〜(N−1)の整数である。
5in(θr+θm+(2π/N) X i) River (1
) Here, N is the number of excitation coils (in this example, N=12
), where 1 is an integer from O to (N-1).

発振器OSCは式(1)を各組毎に1=D〜11まで出
力すると各々の乗算器MTにおいて振幅係数mが乗じら
れ、さらに加算器ADにて電流指令発生回路CGからの
各相の電流指令値Iu ・rvI−が加えられる。この
結果、例えばU相について下式が得られる。
When the oscillator OSC outputs equation (1) from 1=D to 11 for each set, each multiplier MT multiplies the amplitude coefficient m, and the adder AD calculates the current of each phase from the current command generation circuit CG. A command value Iu·rvI- is added. As a result, for example, the following equation is obtained for the U phase.

Iu l =Iu (1+m−5in(θr+θm+(
2π/12)Xi))・・・(2) ここで、Iulはi=Q、Iu2は1=3、Iu3は1
=6、Iu4はi=9である。
Iu l =Iu (1+m-5in(θr+θm+(
2π/12)Xi))...(2) Here, Iul is i=Q, Iu2 is 1=3, Iu3 is 1
=6, and i=9 for Iu4.

■相、W相についても全く同様にして求めることができ
る。
Phase (2) and phase W can also be determined in exactly the same manner.

第5図(a)、  (b)、  (C)は第4図回路の
基本動作の説明図である。(a)において、制振変調回
路MCは3相電流指令発生回路CGからのUV・W相の
3相交流を受けると、回転位置信号θr及び位相θmと
振幅係数mに基づき第4図の具体的回路によりIul〜
Iw4を出力する。
5(a), (b), and (C) are explanatory diagrams of the basic operation of the circuit of FIG. 4. In (a), when the vibration damping modulation circuit MC receives three-phase alternating current of UV and W phases from the three-phase current command generation circuit CG, the vibration damping modulation circuit MC receives the rotational position signal θr, the phase θm, and the amplitude coefficient m as shown in FIG. Iul~ by the circuit
Output Iw4.

(b)において、U・V・Wの3相で1相が4組の場合
、図示のように12個の励磁コイルとなる。
In (b), when there are three phases of U, V, and W, and each phase has four sets, there are 12 exciting coils as shown in the figure.

即ち、Ul 〜U4.Vl 〜V4.Wl 〜W4(7
)12個の励磁コイルである。
That is, Ul to U4. Vl~V4. Wl ~ W4 (7
) 12 excitation coils.

(c)は、(b)図を展開したもので、U、V。(c) is an expanded version of figure (b), with U and V.

Wの変調を説明する図である。各相U、V、Wの電流値
を図示のように変調して強弱(振幅係数m)を持たせる
と、例えば同じU相でも変調をがけた励磁コイルに強い
吸引力Xを生じ、ロータは吸弓力の強い方に引き寄せら
れて回転する。しかしこのまま一方向に偏った吸引力X
では振動を発生することは明らかである。
It is a figure explaining modulation of W. If the current values of each phase U, V, and W are modulated as shown in the figure to give them strengths and weaknesses (amplitude coefficient m), for example, even in the same U phase, a strong attractive force X will be generated in the modulated excitation coil, and the rotor will It is drawn to the side with the stronger bow suction force and rotates. However, as it is, the attraction force X is biased in one direction.
It is clear that vibrations are generated.

本発明では吸引力を回転させるた26 (c)図のよう
な変調のカーブを回転位置検出器ssにより検出された
回転位蓋θrまたはこれを微分して得た回転速度ωrに
同期して移動させることにある。
In the present invention, in order to rotate the suction force, the modulation curve as shown in Figure 26(c) is moved in synchronization with the rotational position θr detected by the rotational position detector ss or the rotational speed ωr obtained by differentiating this. It's about letting people know.

一方、一般にモータ軸の振動は重心のずれによる遠心力
により発生する。従って、この遠心力を打ち消す方向に
吸引力を加えれば力関係が相殺されて振動が抑止できる
はずである。よって、本発明では上述のように変調のカ
ーブを回転速度ωrに同期して移動させ吸引力を回転さ
せることにより、常に遠心力を打ち消し振動を抑止しよ
うとするものである。
On the other hand, vibration of a motor shaft is generally caused by centrifugal force caused by a shift in the center of gravity. Therefore, if suction force is applied in a direction that cancels out this centrifugal force, the force relationship will be canceled out and vibrations should be suppressed. Therefore, in the present invention, as described above, by moving the modulation curve in synchronization with the rotational speed ωr and rotating the suction force, the centrifugal force is always canceled out and vibrations are suppressed.

第6図は第2図の制振位相・振幅指令発生回路PCの一
実施例ブロック図である。
FIG. 6 is a block diagram of an embodiment of the damping phase/amplitude command generation circuit PC shown in FIG. 2.

ここで、制振変調回路MCに供給する位相θmと振幅係
数mを決定する場合に、基杏的に、軸の中心と重心のず
れにより生じる回転アンバランスが予め判明している場
合と、予め判明していない場合に分けられる。前者の場
合では位相θmは固定であり、振幅係数mは回転位置信
号θrを微分して得られる回転速度ωrに比例して変化
する。
Here, when determining the phase θm and amplitude coefficient m to be supplied to the vibration damping modulation circuit MC, there are two cases in which the rotational imbalance caused by the deviation between the center of the shaft and the center of gravity is known in advance, and It is divided if it is not clear. In the former case, the phase θm is fixed, and the amplitude coefficient m changes in proportion to the rotational speed ωr obtained by differentiating the rotational position signal θr.

後者の場合は例えば、生産効率の点で回転アンバランス
を探し出す余裕がない場合、あるいは工具等の付加物に
より回転アンバランスが生じる場合である。この場合、
位相θmを0〜2πの範囲で、振幅係数mを0〜1の範
囲でテーブルをスキャンして振動が最も小さくなる6m
とmを検索する。
In the latter case, for example, there is no room to detect rotational imbalance due to production efficiency, or rotational imbalance is caused by an additional object such as a tool. in this case,
Scan the table with the phase θm in the range of 0 to 2π and the amplitude coefficient m in the range of 0 to 1 to find 6m where the vibration is the smallest.
and m.

本回路は振動検出器VTにより検出されたモータの振動
αを入力し、上述の2つの場合について学習制御により
求めた位相θm及び振幅係数mを制振変調回路MCに送
出する回路である。
This circuit is a circuit that inputs the vibration α of the motor detected by the vibration detector VT, and sends the phase θm and amplitude coefficient m obtained by learning control for the above two cases to the vibration damping modulation circuit MC.

TBは第7図に示すように各種の位相θm及び振幅係数
mの組合せを格納するテーブルであり、ROMに格納さ
れる。SCはテーブルTBの位相θm及び振幅係数mを
スキャンするスキャン手段であり、スキャン結果として
位相θm及び振幅係数mを出力する。
As shown in FIG. 7, TB is a table storing various combinations of phases θm and amplitude coefficients m, and is stored in the ROM. SC is a scanning means for scanning the phase θm and amplitude coefficient m of the table TB, and outputs the phase θm and amplitude coefficient m as the scanning result.

MOCはモー上゛制御回路であり、実際の振動測定前に
学習制御により前述の後者の場合について最適なθmと
mを求するモードと、実際の振動制御を行うモードを切
り換える手段である。従って、回転アンバランスが判明
していない場合に、学習制御の段階ではスイッチ5ll
ll、SW2をスキャン手段側(接点a側)に設定して
予めテーブルの位相θm及び振幅係数mをスキャンし、
制振変調回路MCにこれらの値を順次与え、系の振動A
が最も小さくなるときの位相θm及び振幅係数mを求め
る。求tられたθmとm及び振動Aは保持回路HOLに
保持される。なお、振動Aは振動算出回路VCにより一
定時間間隔の振動を積分して求めた値である。
The MOC is a mode control circuit, and is a means for switching between a mode in which the optimal θm and m are determined for the latter case by learning control before actual vibration measurement, and a mode in which actual vibration control is performed. Therefore, if the rotational imbalance is not known, at the learning control stage, the switch 5ll
ll, SW2 is set to the scanning means side (contact a side) and the phase θm and amplitude coefficient m of the table are scanned in advance,
These values are sequentially given to the vibration damping modulation circuit MC, and the vibration A of the system is
Find the phase θm and amplitude coefficient m when the value is the smallest. The obtained θm and m and the vibration A are held in the holding circuit HOL. Note that the vibration A is a value obtained by integrating vibrations at fixed time intervals by the vibration calculation circuit VC.

次にスイッチSWI、SW2を接点す側に設定し、この
設定された位相θm及び振幅係数mを制振変調回路MC
に供給して実際の振動制御を行う。
Next, set the switches SWI and SW2 to the contact side, and apply the set phase θm and amplitude coefficient m to the damping modulation circuit MC.
to perform actual vibration control.

方、工具の変更等、何らかの外部要因により回転アンバ
ランスが大きくなり系の振動が大きくなった場合は、こ
のときに生じた振動αの債分値Bを振動算出回路VCに
より求め、比較器COMにて予め求めた振動の最小値A
と比較する。この場合、振動Bの方が小さければ位相θ
mと振幅係数mを変える必要はない。しかし、振動Bの
方が大きい場合はモード制御回路MOCによりスイッチ
SWI。
On the other hand, if the rotational unbalance becomes large due to some external factor such as a tool change, and the vibration of the system increases, the value B of the vibration α that occurs at this time is determined by the vibration calculation circuit VC, and the comparator COM The minimum value of vibration A determined in advance by
Compare with. In this case, if vibration B is smaller, the phase θ
There is no need to change m and the amplitude coefficient m. However, if vibration B is larger, the mode control circuit MOC causes switch SWI.

SW2を接点a側にし再度テーブルTBをスキャンして
前述のようにこの系の振動の最小値を探し出すことにな
る。そして、再度スイッチを接点す側に設定し振動制御
を行う。
Switch SW2 to the contact a side and scan the table TB again to find the minimum value of the vibration of this system as described above. Then, the switch is set to the contact side again to perform vibration control.

なお、保持回路HOLは、前回の値と今回の値を比較し
小さい方の値を保持するような保持回路であればよい。
Note that the holding circuit HOL may be any holding circuit that compares the previous value and the current value and holds the smaller value.

第7図は前述のθmとmの関係を格納するテーブルの一
例であり、ROMに格納される。横軸はθm、縦軸は振
幅係数mである。θmの範囲は0〜2πであり、mの範
囲は0〜1である。
FIG. 7 is an example of a table storing the relationship between θm and m described above, and is stored in the ROM. The horizontal axis is θm, and the vertical axis is the amplitude coefficient m. The range of θm is 0 to 2π, and the range of m is 0 to 1.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、構造の複雑な機
械的制振装置を付加することなく、構造簡単な電気的手
段だけで、精度よく電動機の振動を抑止できる、電動機
の制御方法及び装置が得られた。また、この電動機に負
荷を接続し、事前にその系のアンバランスとそれに起因
する振動について知るところがなくても、回転開始より
わずかの時間で制振でき、更に、電動機の負荷が変化し
た場合にも、迅速に応答できる。
As explained above, according to the present invention, there is provided a method and method for controlling an electric motor that can accurately suppress vibrations of the electric motor using electrical means with a simple structure without adding a mechanical vibration damping device with a complicated structure. The device was obtained. In addition, even if a load is connected to this motor and there is no prior knowledge of the unbalance of the system and the vibrations caused by it, vibration can be suppressed in a short period of time from the start of rotation. can also respond quickly.

【図面の簡単な説明】 第1図は本発明の原理構成図、 第2図は本発明の一実施例ブロック構成図、第3図は本
発明の励磁コイル結線図、 第4図は第2図の制振変調回路の一実施例ブロック図、 第5図(a)、  (b)、  (c) は本発明の詳
細な説明図、 第6図は第2図の制振位相・振幅指令発生回路の一実施
例ブロック構成図、 第7図は第6図のテーブルの一例、 第8図は従来の制御装置のブロック構成図、及び、 第9図は従来の励磁コイル結線図である。 (符号の説明) IM・・・誘導電動機、  CT・・・電流検出器、P
A・・・電力増幅器、  PI・・・電力変換器、CA
・・・電流制御増幅器、MC・・・制振変調回路、CC
・・・電流制御手段、 PC・・・制振位相・振幅指令発生回路、CG・・・3
相電流指令発生回路、 VT・・・振動検8器、 SS・・・回転位置検出器。 U相コイル 本発明の励磁コイル結線図 第 + E U相コイル 従来の励磁コイル結線図 第 回
[Brief Description of the Drawings] Fig. 1 is a basic configuration diagram of the present invention, Fig. 2 is a block diagram of an embodiment of the present invention, Fig. 3 is an excitation coil connection diagram of the present invention, and Fig. 4 is a diagram of the second embodiment of the present invention. 5(a), (b), and (c) are detailed explanatory diagrams of the present invention. FIG. 6 is the damping phase/amplitude command of FIG. 2. FIG. 7 is an example of the table shown in FIG. 6, FIG. 8 is a block diagram of a conventional control device, and FIG. 9 is a conventional excitation coil connection diagram. (Explanation of symbols) IM...Induction motor, CT...Current detector, P
A...Power amplifier, PI...Power converter, CA
...Current control amplifier, MC...Vibration damping modulation circuit, CC
...Current control means, PC...Vibration suppression phase/amplitude command generation circuit, CG...3
Phase current command generation circuit, VT...8 vibration detectors, SS...rotational position detector. U-phase coil Excitation coil wiring diagram of the present invention No. +E U-phase coil Conventional excitation coil wiring diagram No. 1

Claims (1)

【特許請求の範囲】 1、回転する電動機の振動を検出し、前記電動機の各相
巻線毎に供給する電流の大きさと位相を前記電動機の回
転数に同期して順次変化させ、前記電動機の振動が小さ
くなったときの電流の大きさとその位相を求め、その電
流を前記電動機に供給して前記電動機の振動を極力小さ
く維持するようにしたことを特徴とする電動機の制御方
法。 2、電動機の各相巻線に供給する励磁電流の大きさと位
相を励磁コイル毎に順次変化させるようにした電動機の
制御装置において、前記電動機の各相巻線毎に増幅した
電流を供給する電力増幅手段と、前記電動機から検出す
る振動に基づき前記各電力増幅手段の各相に供給する電
流の大きさと位相を前記電動機の振動が極力小さくなる
ように制御する電流制御手段と、該電流制御手段から出
力された電流の大きさ及び位相と前記電動機から検出さ
れる回転位置信号とに基づき、前記各電力増幅手段に対
し変調された各相電流を供給する制振変調手段とを具備
することを特徴とする電動機の制御装置。
[Claims] 1. The vibration of a rotating electric motor is detected, and the magnitude and phase of the current supplied to each phase winding of the electric motor are sequentially changed in synchronization with the rotational speed of the electric motor. A method for controlling an electric motor, characterized in that the magnitude and phase of the current when the vibration becomes small are determined, and the current is supplied to the electric motor to keep the vibration of the electric motor as small as possible. 2. In a motor control device that sequentially changes the magnitude and phase of the excitation current supplied to each phase winding of the motor for each excitation coil, the electric power that supplies the amplified current to each phase winding of the motor. an amplifying means; a current controlling means for controlling the magnitude and phase of the current supplied to each phase of each of the power amplifying means based on vibrations detected from the electric motor so as to minimize vibrations of the electric motor; and the current controlling means. vibration damping modulation means for supplying each phase current modulated to each of the power amplification means based on the magnitude and phase of the current output from the electric motor and the rotational position signal detected from the electric motor. Characteristic electric motor control device.
JP2133859A 1990-05-25 1990-05-25 Method and apparatus for controlling electric motor Expired - Fee Related JP2608619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2133859A JP2608619B2 (en) 1990-05-25 1990-05-25 Method and apparatus for controlling electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2133859A JP2608619B2 (en) 1990-05-25 1990-05-25 Method and apparatus for controlling electric motor

Publications (2)

Publication Number Publication Date
JPH0429583A true JPH0429583A (en) 1992-01-31
JP2608619B2 JP2608619B2 (en) 1997-05-07

Family

ID=15114715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2133859A Expired - Fee Related JP2608619B2 (en) 1990-05-25 1990-05-25 Method and apparatus for controlling electric motor

Country Status (1)

Country Link
JP (1) JP2608619B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282888A (en) * 2003-03-14 2004-10-07 Toshiba Corp Apparatus and method for driving motor
JP2015180183A (en) * 2010-04-09 2015-10-08 ダニエル・ジョン・ケンウェイ System and method for energy storage and retrieval

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62118790A (en) * 1985-11-15 1987-05-30 Sanyo Electric Co Ltd Vibration preventing device for motor
JPS6291596U (en) * 1985-11-29 1987-06-11
JPS6425896U (en) * 1987-08-07 1989-02-14

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62118790A (en) * 1985-11-15 1987-05-30 Sanyo Electric Co Ltd Vibration preventing device for motor
JPS6291596U (en) * 1985-11-29 1987-06-11
JPS6425896U (en) * 1987-08-07 1989-02-14

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282888A (en) * 2003-03-14 2004-10-07 Toshiba Corp Apparatus and method for driving motor
JP2015180183A (en) * 2010-04-09 2015-10-08 ダニエル・ジョン・ケンウェイ System and method for energy storage and retrieval

Also Published As

Publication number Publication date
JP2608619B2 (en) 1997-05-07

Similar Documents

Publication Publication Date Title
Ogasawara et al. An approach to real-time position estimation at zero and low speed for a PM motor based on saliency
KR100391220B1 (en) Method and apparatus for measuring flux, position and velocity in actuators for transducerless AC machines
JP5892628B2 (en) Bearingless motor
US6770992B2 (en) Magnetic bearing apparatus
Chiba et al. Stable operation of induction-type bearingless motors under loaded conditions
EP1219015A1 (en) Low ripple permanent magnet motor control
EP3314733B1 (en) A control device and a method for controlling magnetic levitation and torque generation
JPH08214600A (en) Method and apparatus for controlling motor
JP2005323490A (en) Permanent magnet synchronous motor device and controller
JP5447810B2 (en) Motor drive device and torque ripple removal method
Dwivedi et al. Vector Control vs Direct Torque Control comparative evaluation for PMSM drive
Ueno et al. Characteristics and control of a bidirectional axial gap combined motor-bearing
Beres et al. Sensorless IFOC of induction motor with current regulators in current reference frame
JP2000166278A (en) Control device of synchronous motor
US5898287A (en) Slip controlled induction motor using variable frequency transducer and method for controlling slip
JP4198866B2 (en) Bearingless motor control device
JPH0429583A (en) Method and apparatus for controlling motor
JP2018506956A (en) Control device for asynchronous machine and method of operating asynchronous machine
JP2584885B2 (en) Spindle device of machine tool with vibration control function
JP2008043175A (en) Control unit for motor
JP3524303B2 (en) Radial rotating body position control device
JP4894125B2 (en) Method for positioning a permanent magnet synchronous motor
Ueno et al. Vector control of an induction type axial gap combined motor-bearing
JP2019030095A (en) Motor controller and motor control method
JPH10201300A (en) Bearing and motor in one

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees