JPH04295756A - Oxygen sensor - Google Patents

Oxygen sensor

Info

Publication number
JPH04295756A
JPH04295756A JP3060465A JP6046591A JPH04295756A JP H04295756 A JPH04295756 A JP H04295756A JP 3060465 A JP3060465 A JP 3060465A JP 6046591 A JP6046591 A JP 6046591A JP H04295756 A JPH04295756 A JP H04295756A
Authority
JP
Japan
Prior art keywords
electrodes
electrolyte layer
oxygen sensor
surface side
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3060465A
Other languages
Japanese (ja)
Other versions
JP3003957B2 (en
Inventor
Chikaaya Abe
安部 親礼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP3060465A priority Critical patent/JP3003957B2/en
Publication of JPH04295756A publication Critical patent/JPH04295756A/en
Application granted granted Critical
Publication of JP3003957B2 publication Critical patent/JP3003957B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To make it possible to detect the concentration of oxygen adequately regardless of the temperature of measuring atmosphere even when a heater is not used by forming the shape of each electrode which is formed on the surface of a solid electrolyte layer as the shape which is expanded to the approxiamtely equal distance from a through hole. CONSTITUTION:The surface of a hollow tubular body 2 is covered with a solid electrolyte layer 3. First-third reference electrodes 4a-4c are provided on the inner-surafce side of the electrolyte layer 3, and first-third measuring electrodes 5a-5c are provided on the outer surface side. First-third through holes 6a-6c are further formed so as to penetrate the tubular body 2 from the inner surface side to the outer surface side. The circular electrodes 4a-4c are provided at the inner surface side so as to hold the electrolyte layer 3 in such a way that the through holes 6a-6c are the centers of the circles. The circular electrodes 5a-5c are provided on the outer surface side of the electrode layer by the same way. The inner surface side of the electrode layers 3 is in contact with reference gas, and the outer surface side is in contact with gas to be measured. The current flowing across the electrodes provided on both surfaces is measured, and the partial pressure of oxygen in the gas to be measured is obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、例えば内燃機関や各種
燃焼機器等の排気中における酸素濃度を測定する酸素セ
ンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxygen sensor for measuring oxygen concentration in exhaust gas from, for example, internal combustion engines and various combustion equipment.

【0002】0002

【従来の技術】従来より、公害防止、燃費向上を目的と
して、内燃機関の排ガス中の酸素分圧を測定し、該測定
値に基づいた内燃機関の空燃比フィードバック制御が行
われている。この様な排ガス中の酸素分圧の測定は、例
えば、ジルコニアーイットリア固溶体等の酸素イオン伝
導性の固体電解質層からなる検出素子を備えた酸素セン
サにより行われている。
2. Description of the Related Art Conventionally, for the purpose of preventing pollution and improving fuel efficiency, the partial pressure of oxygen in the exhaust gas of an internal combustion engine has been measured, and air-fuel ratio feedback control of the internal combustion engine has been performed based on the measured value. Such measurement of the oxygen partial pressure in exhaust gas is performed, for example, by an oxygen sensor equipped with a detection element made of a solid electrolyte layer that conducts oxygen ions, such as a zirconia-yttria solid solution.

【0003】上記酸素センサとしては、例えば、平板形
状の検出素子の表面に測定電極を形成して酸素分圧を測
定するものが提案されている(特開昭55−12544
8号公報又は特開昭60ー36949号公報等参照)。 また、平板形状の検出素子の方向性を改善する目的で、
円筒状の検出素子の周囲に複数の矩形状の電極を配置し
たものも提案されている(特開平1−43753号公報
参照)。
As the above-mentioned oxygen sensor, for example, one has been proposed that measures oxygen partial pressure by forming a measuring electrode on the surface of a flat detection element (Japanese Patent Application Laid-Open No. 12544/1983).
(See Publication No. 8 or Japanese Unexamined Patent Publication No. 60-36949, etc.). In addition, in order to improve the directionality of the flat detection element,
A sensor in which a plurality of rectangular electrodes are arranged around a cylindrical detection element has also been proposed (see Japanese Patent Laid-Open No. 1-43753).

【0004】0004

【発明が解決しようとする課題】しかしながら、この様
な酸素センサでは、有効電極面積が小さいので内部抵抗
が高くなり、よって通常の測定にはヒータを必要とする
という問題があった。
However, such an oxygen sensor has a problem in that the effective electrode area is small, so the internal resistance is high, and therefore a heater is required for normal measurements.

【0005】つまり、ヒータによる検出素子の加熱がな
い場合には、測定雰囲気の温度が一定以下に低下すると
、内部抵抗が高いために安定した十分なセンサ出力が得
られず、よって、この酸素センサに出力に基づいて行わ
れる空燃比等の制御が好適に行えないという問題があっ
た。
In other words, in the absence of heating of the detection element by a heater, if the temperature of the measurement atmosphere drops below a certain level, a stable and sufficient sensor output cannot be obtained due to the high internal resistance, and therefore, this oxygen sensor However, there is a problem in that the air-fuel ratio, etc., cannot be properly controlled based on the output.

【0006】本願は、ヒータを使用しない場合でも、測
定雰囲気の温度にかかわらず、好適に酸素濃度を検出で
きる酸素センサを提供することを目的とする。
An object of the present invention is to provide an oxygen sensor that can suitably detect oxygen concentration regardless of the temperature of the measurement atmosphere even when a heater is not used.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の請求項1の発明は、一端側を開口し他端側に閉鎖壁を
設けた中空筒状体と、該中空筒状体の内面側と外面側と
を連通する複数の貫通孔と、該貫通孔を覆って上記中空
筒状体を包む酸素イオン伝導性の固体電解質層と、を備
えた酸素センサにおいて、上記貫通孔に対応して上記固
体電解質層の内側面及び外側面に各々電極を形成すると
ともに、該電極の形状を上記貫通孔から略等距離にまで
広げた形状としたことを特徴とする酸素センサを要旨と
する。
[Means for Solving the Problems] The invention of claim 1 to achieve the above object provides a hollow cylindrical body having an open end and a closed wall on the other end, and an inner surface of the hollow cylindrical body. An oxygen sensor comprising a plurality of through holes that communicate between the side and the outer surface side, and an oxygen ion conductive solid electrolyte layer that covers the through holes and wraps the hollow cylindrical body, the oxygen sensor having a plurality of through holes that correspond to the through holes. The object of the present invention is to provide an oxygen sensor characterized in that electrodes are formed on the inner and outer surfaces of the solid electrolyte layer, respectively, and the shape of the electrodes is expanded to approximately the same distance from the through hole.

【0008】また、請求項2の酸素センサは、上記請求
項1の酸素センサであって、上記電極のうち少なくとも
2個の電極が、内側面及び外側面の各々で互いに接続し
て一体とされたことを特徴とする酸素センサを要旨とす
る。
The oxygen sensor according to claim 2 is the oxygen sensor according to claim 1, wherein at least two of the electrodes are integrally connected to each other on each of the inner and outer surfaces. This article focuses on an oxygen sensor characterized by:

【0009】ここで、固体電解質としては、酸素イオン
伝導性を有するもので、例えばZrO2−Y2O3,Z
rO2−CaO等が用いられる。電極は、例えば、白金
等の貴金属又はこれらにセラミック粉末を混合したガス
透過質のものによって実現できる。
[0009] Here, the solid electrolyte is one having oxygen ion conductivity, such as ZrO2-Y2O3, Z
rO2-CaO etc. are used. The electrodes can be made of, for example, noble metals such as platinum or gas-permeable materials mixed with ceramic powder.

【0010】これらは、例えば、電極を厚膜印刷した固
体電解質のグリーンシートを、中空筒状体に巻き付ける
が、その巻き付けの際には、その内面側の電極と中空筒
状体の貫通孔とが対応する位置に配置する。そして、中
空筒状体に巻き付けた後に治具により筒状に固定し、焼
成一体化することにより酸素センサとすることができる
[0010] For example, a green sheet of solid electrolyte on which electrodes are thickly printed is wrapped around a hollow cylindrical body, but when the winding is done, the inner surface of the electrode and the through-hole of the hollow cylindrical body are connected to each other. is placed in the corresponding position. Then, after winding it around a hollow cylindrical body, it is fixed in a cylindrical shape using a jig, and is baked and integrated to form an oxygen sensor.

【0011】また、中空筒状体に形成された複数の貫通
孔は、中空筒状体の軸を中心として、同じ中心角の間隔
で配置されていると方向性が少なく好適である。上記固
体電解質の内側面及び外側面に形成された電極の形状と
しては、円形が好ましいが、それ以外にも、辺の数が多
い(例えば辺の数が6以上の)多角形の電極も採用可能
である。
[0011] Furthermore, it is preferable that the plurality of through holes formed in the hollow cylindrical body are arranged at intervals of the same center angle with the axis of the hollow cylindrical body as the center, since this reduces directivity. The shape of the electrodes formed on the inner and outer surfaces of the solid electrolyte is preferably circular, but polygonal electrodes with a large number of sides (for example, 6 or more sides) may also be used. It is possible.

【0012】上記中空筒状体は、開口した一端側から筒
内を通り貫通孔に達して、基準酸素源としての大気を導
入する基準気体導入路を構成するものである。この中空
筒状体は、例えば金型プレスもしくは押出成形等により
加工することができる。尚、この材質としては、例えば
、熱膨張率の違いによって生ずる破損を防止するための
に、上記固体電解質の熱膨張率に近い値を持つセラミッ
クスや金属等が使用されるが、測定ガスが内燃機関の排
ガスである場合には、600℃以上の高温となるので、
セラミックスを使用すると好適である。また例えば、ス
テンレス合金等の金属を使用する場合には、固体電解質
層の内周面と電極との間を絶縁して使用する。
[0012] The hollow cylindrical body constitutes a reference gas introduction path that passes through the cylinder from one open end side and reaches the through hole to introduce atmospheric air as a reference oxygen source. This hollow cylindrical body can be processed, for example, by die pressing or extrusion molding. As this material, for example, ceramics or metals having a coefficient of thermal expansion close to that of the solid electrolyte are used in order to prevent damage caused by differences in coefficient of thermal expansion. If it is exhaust gas from an engine, the temperature will be over 600℃, so
It is preferable to use ceramics. For example, when a metal such as a stainless steel alloy is used, the inner peripheral surface of the solid electrolyte layer and the electrodes are insulated.

【0013】尚、本発明の酸素センサは、ヒータが無い
場合にも十分に作動するが、低い測定環境でもより精度
よく機能するために、ヒータを配置してもよい。
Although the oxygen sensor of the present invention operates satisfactorily even without a heater, a heater may be provided in order to function more accurately even in a low-temperature measurement environment.

【0014】[0014]

【作用】本発明の酸素センサには、中空筒状体の開口し
ている一端側から複数の貫通孔を介して、固体電解質層
の内面側の電極に至る基準気体導入路が形成される。従
って、固体電解質層は、その内面側が基準気体に、一方
、外面側が測定ガスに各々触れるので、両面に設けられ
た電極間に流れる電流を計測することにより、測定ガス
中の酸素分圧を求めることができる。
[Operation] In the oxygen sensor of the present invention, a reference gas introduction path is formed from one open end of the hollow cylindrical body to the electrode on the inner surface of the solid electrolyte layer via a plurality of through holes. Therefore, since the inner surface of the solid electrolyte layer is in contact with the reference gas and the outer surface is in contact with the measurement gas, the oxygen partial pressure in the measurement gas can be determined by measuring the current flowing between the electrodes provided on both sides. be able to.

【0015】そして上記電極は、貫通孔を中心として略
等距離に広がる様に形成されているので、有効電極面積
が極めて大きい。よって貫通孔からの酸素の移動が効率
よく行われるので内部抵抗が少ない。その結果、測定環
境の温度が低い場合でも、ヒータを使用することなく、
精密に酸素濃度を検出することが可能となる。
[0015] Since the electrodes are formed so as to spread approximately equidistantly from the center of the through hole, the effective electrode area is extremely large. Therefore, since oxygen is efficiently transferred from the through-hole, internal resistance is low. As a result, even when the temperature of the measurement environment is low, the measurement can be performed without using a heater.
It becomes possible to accurately detect oxygen concentration.

【0016】[0016]

【実施例】以下本発明の第1実施例を図に基づいて説明
する。尚、説明上各図は部分毎の縮尺が異なる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings. Incidentally, for the sake of explanation, the scale of each part in each figure is different.

【0017】図1及び図1のA−A端面図である図2に
示す様に、第1実施例の酸素センサ1は、中空筒状体2
の表面に、固体電解質層3が被覆されたものである。こ
の固体電解質層3の内面側には第1〜第3基準電極4a
〜4cが設けられ、一方、外面側には第1〜第3測定電
極5a〜5cが設けられ、更に、中空筒状体2の内面側
と外面側とを連通して第1〜第3貫通孔6a〜6cが形
成されている。
As shown in FIG. 1 and FIG. 2 which is an A-A end view of FIG. 1, the oxygen sensor 1 of the first embodiment has a hollow cylindrical body 2
The surface of the solid electrolyte layer 3 is coated with a solid electrolyte layer 3. On the inner surface side of this solid electrolyte layer 3 are first to third reference electrodes 4a.
- 4c are provided, and on the other hand, first to third measurement electrodes 5a to 5c are provided on the outer surface side. Holes 6a to 6c are formed.

【0018】つまり、第1〜第3貫通孔6a〜6cは、
中空筒状体2の中心軸を中心にして120度毎に形成さ
れており、この第1〜第3貫通孔6a〜6cを円の中心
とする様に、固体電解質層3を挟んで内面側に円形の第
1〜第3基準電極4a〜4cが設けられ、その外面側に
も同様に円形の第1〜第3測定電極5a〜5cが各々設
けられている。
In other words, the first to third through holes 6a to 6c are as follows:
They are formed at intervals of 120 degrees around the central axis of the hollow cylindrical body 2, and the inner surface side with the solid electrolyte layer 3 in between is formed so that the first to third through holes 6a to 6c are the centers of the circle. Circular first to third reference electrodes 4a to 4c are provided on the outer surface thereof, and similarly circular first to third measurement electrodes 5a to 5c are respectively provided on the outer surface thereof.

【0019】上記第1〜第3基準電極4a〜4cは、電
極線7によって一体に接続され、固体電解質層3に設け
られたスルーホール7(図4)を介して基準電極端子1
4に接続されている。一方、第1〜第3測定電極5a〜
5cは、電極線8によって一体に接続されて、測定電極
端子15に接続されている。
The first to third reference electrodes 4a to 4c are connected together by an electrode wire 7, and are connected to the reference electrode terminal 1 through a through hole 7 (FIG. 4) provided in the solid electrolyte layer 3.
Connected to 4. On the other hand, the first to third measurement electrodes 5a to
5c are connected together by an electrode wire 8 and connected to a measurement electrode terminal 15.

【0020】次に、酸素センサ1の各部材及び製造法を
、図3ないし図5に基づいて説明する。まず、図3に示
す様に、中空筒状体2は、外径3.2mm、内径1.6
mmの中空円筒であって、一端は開口部18を、他端は
閉鎖壁19を各々有している。上記閉鎖壁19近傍の側
壁2aには、上述した直径1mmの第1〜第3貫通孔6
a〜6cが、中心角120度毎に穿設されている。従っ
て、上記開口部18から中空部20を介して、第1〜第
3貫通孔6a〜6cに至る基準気体導入路が形成されて
いる。このような中空筒状体2は、金型プレスまたは押
出成形によって容易に加工できる。
Next, each component and manufacturing method of the oxygen sensor 1 will be explained based on FIGS. 3 to 5. First, as shown in FIG. 3, the hollow cylindrical body 2 has an outer diameter of 3.2 mm and an inner diameter of 1.6 mm.
It is a hollow cylinder of mm in diameter, and has an opening 18 at one end and a closing wall 19 at the other end. In the side wall 2a near the closing wall 19, the first to third through holes 6 each having a diameter of 1 mm are provided.
A to 6c are drilled at every 120 degrees of central angle. Therefore, a reference gas introduction path is formed from the opening 18 to the first to third through holes 6a to 6c via the hollow part 20. Such a hollow cylindrical body 2 can be easily processed by die pressing or extrusion molding.

【0021】上記固体電解質層3は、図4に示す様に、
ZrO2−Y2O3固溶体の原料粉末に、通常使用され
るバインダを混合したグリーンシート3aから得られる
。 該グリーンシート3aの隅には、第1〜第3基準電極4
a〜4cを基準電極端子14に接続するためのスルーホ
ール7が穿設されている。
As shown in FIG. 4, the solid electrolyte layer 3 has the following structure:
The green sheet 3a is obtained by mixing a commonly used binder with a raw material powder of ZrO2-Y2O3 solid solution. At the corners of the green sheet 3a are first to third reference electrodes 4.
Through holes 7 are provided for connecting a to 4c to the reference electrode terminal 14.

【0022】上記固体電解質層3の内周面となる上記グ
リーンシート3aの裏面には、ジルコニアを含む白金か
ら成る厚さ10μmの第1〜第3基準電極4a〜4c、
及び電極線7が厚膜印刷される。
On the back surface of the green sheet 3a, which is the inner peripheral surface of the solid electrolyte layer 3, there are first to third reference electrodes 4a to 4c made of platinum containing zirconia and having a thickness of 10 μm;
And the electrode wire 7 is printed in a thick film.

【0023】一方、上記固体電解質層3の外周面となる
グリーンシート3aの表面には、ジルコニアを含む白金
からなる厚さ10μmの基準電極端子14,第1〜第3
測定電極5a〜5c,電極線8及び測定電極端子15が
、厚膜印刷される。次に、白金を含むアルミナからなる
厚さ20μmの保護層22a〜22cが、第1〜第3測
定電極5a〜5cの表面に厚膜印刷される。
On the other hand, on the surface of the green sheet 3a, which is the outer peripheral surface of the solid electrolyte layer 3, there are reference electrode terminals 14, first to third reference electrode terminals 14 made of platinum containing zirconia and having a thickness of 10 μm.
The measurement electrodes 5a to 5c, the electrode wire 8, and the measurement electrode terminal 15 are printed in a thick film. Next, protective layers 22a to 22c made of alumina containing platinum and having a thickness of 20 μm are thickly printed on the surfaces of the first to third measurement electrodes 5a to 5c.

【0024】次に、アルミナからなる厚さ30μmの絶
縁層24が、上述した基準電極端子14及び測定電極端
子14の上面25と、第1〜第3測定電極5a〜5cの
窓部26a〜26cとを除いて、グリーンシート3aの
表面上に厚膜印刷される。
Next, an insulating layer 24 made of alumina and having a thickness of 30 μm is applied to the upper surfaces 25 of the reference electrode terminal 14 and measurement electrode terminal 14, and the windows 26a to 26c of the first to third measurement electrodes 5a to 5c. A thick film is printed on the surface of the green sheet 3a except for.

【0025】この様に、厚膜印刷されたグリーンシート
3aの裏面にジルコニアペーストを塗布し、上記第1〜
第3基準電極4a〜4cの中心が、中空筒状体2の第1
〜第3貫通孔6a〜6cと各々対応する位置となる様に
、中空筒状体2の外周にグリーンシート3aを被覆する
。更に、真空引きをしながらラバープレスを行うことに
より、グリーンシート3aを巻き付け圧着固定し、その
後大気圧で焼成することによって、図1に示す酸素セン
サ1を得る。
[0025] Zirconia paste is applied to the back side of the thick-film printed green sheet 3a in this way, and the above-mentioned first to
The center of the third reference electrodes 4a to 4c is located at the first point of the hollow cylindrical body 2.
- Cover the outer periphery of the hollow cylindrical body 2 with the green sheet 3a so as to correspond to the third through holes 6a to 6c, respectively. Furthermore, a green sheet 3a is wrapped and crimped and fixed by performing a rubber press while vacuuming, and then the oxygen sensor 1 shown in FIG. 1 is obtained by firing at atmospheric pressure.

【0026】上記の様にして得られた酸素センサ1を、
図5に示す様に、ホルダ32に、カーボングラファイト
や滑石等の充填粉末33,パッキン34及びかしめリン
グ35により固定する。また、既述した各端子14,1
5に圧着端子金具36をろう付けし、更にリード線37
を圧着する。その後、主体金具38,保護外筒39,グ
ロメット40及びプロテクタ41を取り付けることによ
り、酸素検出プローブ42が形成される。
[0026] The oxygen sensor 1 obtained as described above is
As shown in FIG. 5, it is fixed to the holder 32 with a filling powder 33 such as carbon graphite or talcum, a packing 34, and a caulking ring 35. In addition, each terminal 14, 1 described above
5, the crimp terminal fitting 36 is brazed to the lead wire 37.
Crimp. Thereafter, the oxygen detection probe 42 is formed by attaching the metal shell 38, the protective outer cylinder 39, the grommet 40, and the protector 41.

【0027】この様にして構成した酸素センサ1によっ
て、次に示す効果が得られる。まず、上記第1〜第3基
準電極4a〜4c及び第1〜第3測定電極5a〜5cが
円形であるので、有効電極面積が最大であり、電極間の
電位差により生じ電極面積に比例する損失電流が小さく
なることによって酸素の移動効率が高くなり、内部抵抗
が小さくなる。従って、測定環境の温度が低い場合でも
ヒータによる加熱を行わなくても、精度良く酸素濃度を
検出できるという特長がある。
The oxygen sensor 1 constructed in this manner provides the following effects. First, since the first to third reference electrodes 4a to 4c and the first to third measurement electrodes 5a to 5c are circular, the effective electrode area is maximum, and the loss caused by the potential difference between the electrodes is proportional to the electrode area. As the current becomes smaller, the oxygen transfer efficiency becomes higher and the internal resistance becomes smaller. Therefore, even when the temperature of the measurement environment is low, the oxygen concentration can be detected with high accuracy without heating with a heater.

【0028】また、上記第1〜第3基準電極4a〜4c
及び第1〜第3測定電極5a〜5cが、120度の間隔
で配置されているので、測定ガスの流れの方向が、電極
面に対して垂直な場合以外でも、精度良く酸素分圧を測
定することができ、その上、酸素センサ1の方向性が少
ないという利点がある。
[0028] Furthermore, the first to third reference electrodes 4a to 4c
Since the first to third measurement electrodes 5a to 5c are arranged at intervals of 120 degrees, oxygen partial pressure can be measured with high accuracy even when the flow direction of the measurement gas is not perpendicular to the electrode surface. Moreover, there is an advantage that the oxygen sensor 1 has less directionality.

【0029】次に、本実施例の効果を確認するために行
った実験例について説明する。 (実験例)実験装置は、2000ccの自動車用エンジ
ンを用い、ガソリンと空気とを、理論空燃比(空気過剰
率λ=1)、即ち空燃比(A/F)=14.4で混合し
燃焼させるように、酸素センサの出力を用いて、空燃比
フィードバック制御を行なった。そして、本実施例の酸
素センサと比較例の酸素センサを用い、排ガス温度を変
化させた場合の制御空燃比の変化を観察した。
Next, an experimental example conducted to confirm the effects of this embodiment will be explained. (Experiment example) The experimental device uses a 2000cc automobile engine to mix and combust gasoline and air at a stoichiometric air-fuel ratio (excess air ratio λ = 1), that is, air-fuel ratio (A/F) = 14.4. Air-fuel ratio feedback control was performed using the output of the oxygen sensor so as to Then, using the oxygen sensor of this example and the oxygen sensor of the comparative example, changes in the controlled air-fuel ratio were observed when the exhaust gas temperature was changed.

【0030】この実験の結果を図6に示す。図から明ら
かな様に、本実施例では、排ガス温度が低い場合でも、
制御空燃比の理論空燃比からのずれは小さく好適であっ
たが、比較例では、排ガス温度が低くなると制御空燃比
のずれが大きくなり不適であった。
The results of this experiment are shown in FIG. As is clear from the figure, in this example, even when the exhaust gas temperature is low,
Although the deviation of the controlled air-fuel ratio from the stoichiometric air-fuel ratio was small and suitable, in the comparative example, the deviation of the controlled air-fuel ratio increased as the exhaust gas temperature became lower, which was unsuitable.

【0031】次に、第2実施例を図7に基づいて、その
製造手順とともに説明する。第2実施例は、第1実施例
と比べて、形成される貫通孔の数が多く、しかも電極が
離れているのではなく互いに接触して一体となっている
点が特徴である。
Next, a second embodiment will be explained with reference to FIG. 7 along with its manufacturing procedure. The second embodiment is characterized in that a larger number of through holes are formed than in the first embodiment, and that the electrodes are not separate but in contact with each other and are integrated.

【0032】図7に示す様に、固体電解質層50となる
グリーンシート50aの裏面には、花弁状の基準電極5
2、即ち5個の円の端部同士が重なり合った形状の基準
電極52が厚膜印刷される。一方、固体電解質層50の
表面には、基準電極52と同様な形状の測定電極54が
厚膜印刷され、更に測定電極54の表面には、同様な花
弁状の形状の保護層56と窓部58を備えた絶縁層60
とが、この順番で厚膜印刷される。
As shown in FIG. 7, a petal-shaped reference electrode 5 is provided on the back side of the green sheet 50a which becomes the solid electrolyte layer 50.
A reference electrode 52 having a shape in which the ends of two or five circles overlap each other is printed as a thick film. On the other hand, on the surface of the solid electrolyte layer 50, a measuring electrode 54 having the same shape as the reference electrode 52 is printed as a thick film, and on the surface of the measuring electrode 54, a protective layer 56 having a similar petal shape and a window portion are formed. Insulating layer 60 with 58
are printed in this order.

【0033】そして、上記グリーンシート52aで中空
筒状体62を被覆する際には、基準電極52の5個の円
の中心が中空筒状体62の5個の貫通孔64と各々対応
する位置となる様に配置し、既述した第1実施例と同様
な方法で焼成して、酸素センサを形成する。尚、各部材
の成分は第1実施例と同様である。
When covering the hollow cylindrical body 62 with the green sheet 52a, the centers of the five circles of the reference electrode 52 correspond to the five through holes 64 of the hollow cylindrical body 62, respectively. The oxygen sensor is formed by arranging the oxygen sensor so that Note that the components of each member are the same as in the first embodiment.

【0034】この第2実施例は、上記第1実施例と同様
な効果を奏するとともに、5個の円が一体に形成されて
いるので内部抵抗が少なく、低温でも十分なセンサ出力
が得られるので好適である、しかも、構造が単純である
ので断線等の故障が発生しにくいという利点がある。
This second embodiment has the same effects as the first embodiment, and since the five circles are integrally formed, the internal resistance is small and sufficient sensor output can be obtained even at low temperatures. It is suitable and has the advantage that failures such as disconnection are less likely to occur because the structure is simple.

【0035】以上本発明の実施例について説明したが、
本発明はこの様な実施例に何等限定されるものではなく
、この要旨を逸脱しない範囲内に於て種々なる態様で実
施し得ることは勿論である。
Although the embodiments of the present invention have been described above,
It goes without saying that the present invention is not limited to these embodiments in any way, and can be implemented in various forms without departing from the scope of the invention.

【0036】例えば、組み合わせる電極の形状は、円形
以外にも円形に近い多角形の形状を採用できる。また、
組み合わせる電極の個数や、形成する貫通孔の数にも特
に限定はない。更に、上記実施例の構成にヒータを取り
付けてもよい。
For example, the shape of the electrodes to be combined may be a polygonal shape close to a circle instead of a circle. Also,
There are no particular limitations on the number of electrodes to be combined or the number of through holes to be formed. Furthermore, a heater may be attached to the configuration of the above embodiment.

【0037】[0037]

【発明の効果】以上説明したように、本発明では、固体
電解質層の表面に形成する電極の形状を、貫通孔から略
等距離にまで広げた形状、或はそれらの組み合せとして
いる。従って、有効電極面積が大きいので内部抵抗が小
さく、それによって、測定環境が低温であっても、精度
よくかつ安定して酸素濃度を検出できるという効果があ
る。
As explained above, in the present invention, the shape of the electrode formed on the surface of the solid electrolyte layer is expanded to approximately the same distance from the through hole, or a combination thereof. Therefore, since the effective electrode area is large, the internal resistance is small, so that even if the measurement environment is low temperature, the oxygen concentration can be detected accurately and stably.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の第1実施例の酸素センサを一部破断し
て示す斜視図である。
FIG. 1 is a partially cutaway perspective view of an oxygen sensor according to a first embodiment of the present invention.

【図2】第1実施例の酸素センサのA−A端面図である
FIG. 2 is an AA end view of the oxygen sensor of the first embodiment.

【図3】中空筒状体の部分破断図である。FIG. 3 is a partially cutaway view of a hollow cylindrical body.

【図4】第1実施例を分解して示す説明図である。FIG. 4 is an explanatory diagram showing an exploded view of the first embodiment.

【図5】酸素検出プローブの部分破断図である。FIG. 5 is a partially cutaway view of the oxygen detection probe.

【図6】第1実施例の酸素センサの効果を示すグラフで
ある。
FIG. 6 is a graph showing the effect of the oxygen sensor of the first example.

【図7】第2実施例を分解して示す説明図である。FIG. 7 is an explanatory diagram showing an exploded view of the second embodiment.

【符号の説明】[Explanation of symbols]

1…酸素センサ 2,62…中空筒状体 3,50…固体電解質層 4a,4b,4c,52…基準電極 5a,5b,5c,54…測定電極 6a,6b,6c,64…貫通孔 1...Oxygen sensor 2,62...Hollow cylindrical body 3,50...Solid electrolyte layer 4a, 4b, 4c, 52...Reference electrode 5a, 5b, 5c, 54...Measuring electrodes 6a, 6b, 6c, 64...through hole

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  一端側を開口し他端側に閉鎖壁を設け
た中空筒状体と、該中空筒状体の内面側と外面側とを連
通する複数の貫通孔と、該貫通孔を覆って上記中空筒状
体を包む酸素イオン伝導性の固体電解質層と、を備えた
酸素センサにおいて、上記貫通孔に対応して上記固体電
解質層の内側面及び外側面に各々電極を形成するととも
に、該電極の形状を上記貫通孔から略等距離にまで広げ
た形状としたことを特徴とする酸素センサ。
Claim 1: A hollow cylindrical body having one end open and a closed wall provided on the other end, a plurality of through holes communicating the inner and outer sides of the hollow cylindrical body, and a plurality of through holes. an oxygen ion conductive solid electrolyte layer that covers and envelops the hollow cylindrical body, and electrodes are formed on the inner and outer surfaces of the solid electrolyte layer corresponding to the through holes, and . An oxygen sensor characterized in that the shape of the electrode is expanded to approximately the same distance from the through hole.
【請求項2】  上記請求項1の酸素センサであって、
上記電極のうち少なくとも2個の電極が、内側面及び外
側面の各々で互いに接続して一体とされたことを特徴と
する酸素センサ。
2. The oxygen sensor according to claim 1, comprising:
An oxygen sensor characterized in that at least two of the electrodes are integrally connected to each other on each of the inner and outer surfaces.
JP3060465A 1991-03-25 1991-03-25 Oxygen sensor Expired - Fee Related JP3003957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3060465A JP3003957B2 (en) 1991-03-25 1991-03-25 Oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3060465A JP3003957B2 (en) 1991-03-25 1991-03-25 Oxygen sensor

Publications (2)

Publication Number Publication Date
JPH04295756A true JPH04295756A (en) 1992-10-20
JP3003957B2 JP3003957B2 (en) 2000-01-31

Family

ID=13143043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3060465A Expired - Fee Related JP3003957B2 (en) 1991-03-25 1991-03-25 Oxygen sensor

Country Status (1)

Country Link
JP (1) JP3003957B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038061A (en) * 2012-08-20 2014-02-27 Ngk Spark Plug Co Ltd Gas sensor element, gas sensor, and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038061A (en) * 2012-08-20 2014-02-27 Ngk Spark Plug Co Ltd Gas sensor element, gas sensor, and manufacturing method thereof

Also Published As

Publication number Publication date
JP3003957B2 (en) 2000-01-31

Similar Documents

Publication Publication Date Title
US4264425A (en) Device for detection of air/fuel ratio from oxygen partial pressure in exhaust gas
US4126532A (en) Oxygen sensor
JP3175890B2 (en) Temperature sensor
JPH0546498B2 (en)
US4413502A (en) Gas detecting sensor
US9494548B2 (en) Gas sensor
US4897174A (en) Gas sensing apparatus
GB2031156A (en) Solid electrolyte sensors for determining the oxygen content of gases
EP0896219B1 (en) Improved structure of oxygen sensing element
JPH0617891B2 (en) Oxygen concentration detector
US4450428A (en) Gas detecting sensor
US4980042A (en) Oxygen sensor and method of making it
JPS62222159A (en) Oxygen sensor
EP0343533B1 (en) Gas sensing element
US4900412A (en) Heated solid electrolyte oxygen sensor having unique heater element
US4313810A (en) Oxygen concentration sensing apparatus
JPH0623723B2 (en) Oxygen sensor
JP2514664B2 (en) Oxygen sensor
JP2009036754A (en) Ammonia gas sensor
JPH04295756A (en) Oxygen sensor
US4105524A (en) Oxygen concentration sensor for heated gaseous mixture
JPH087179B2 (en) Gas sensor
JPS6361160A (en) Oxygen concentration detector
JPS636677Y2 (en)
JPH09264872A (en) Gas sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees