JPH04295614A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH04295614A
JPH04295614A JP5886591A JP5886591A JPH04295614A JP H04295614 A JPH04295614 A JP H04295614A JP 5886591 A JP5886591 A JP 5886591A JP 5886591 A JP5886591 A JP 5886591A JP H04295614 A JPH04295614 A JP H04295614A
Authority
JP
Japan
Prior art keywords
layer
magnetic
recording medium
magnetic recording
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5886591A
Other languages
Japanese (ja)
Inventor
Fumiaki Yokoyama
横山 文明
Mamoru Kaneko
金子 衛
Yukihiro Miyamoto
幸博 宮元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP5886591A priority Critical patent/JPH04295614A/en
Publication of JPH04295614A publication Critical patent/JPH04295614A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a practically very excellent magnetic recording medium which is extremely excellent in weather resistance, durability, and magnetic characteristic and uses a glass substrate. CONSTITUTION:This magnetic recording medium is formed by providing a magnetic layer 5 on a glass substrate 1 on which an electroless plated layer 2 having a thickness of >=1000Angstrom and metallic layers having large numbers of small projections on the surfaces are successively formed and the surface roughness of the recording medium is adjusted to <=400Angstrom in crest height.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、耐候性、耐久性及び磁
気特性が著しく優れた、ガラス基板を用いた磁気記録媒
体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium using a glass substrate, which has excellent weather resistance, durability, and magnetic properties.

【0002】0002

【従来の技術】磁気ディスク装置は高密度化が非常に早
い速度で進んでいる。高密度化の一方策として、磁気デ
ィスク媒体とヘッドの浮上距離を小さくすることがあり
、最近では、浮上距離を0.1μm以下にすることが要
求されている。このためには、磁気ディスク基板が、よ
り平滑であることが望ましく、ガラス基板がその優れた
平滑性、硬さ、及び表面欠陥が少ないこと等の理由から
、注目されている。例えば、特公昭43−4621号で
は、ガラス基板にメッキ法にて磁性膜を形成すること、
また、特開昭59−171031号では、スパッタ法に
てガラス基板にCo−Pt磁性膜を形成した磁気記録媒
体が提案されている。
2. Description of the Related Art The density of magnetic disk drives is increasing at a very rapid rate. One way to increase the density is to reduce the flying distance between the magnetic disk medium and the head, and recently it has been required to reduce the flying distance to 0.1 μm or less. For this purpose, it is desirable that the magnetic disk substrate be smoother, and glass substrates are attracting attention because of their excellent smoothness, hardness, and fewer surface defects. For example, in Japanese Patent Publication No. 43-4621, a magnetic film is formed on a glass substrate by a plating method,
Furthermore, Japanese Patent Laid-Open No. 171031/1983 proposes a magnetic recording medium in which a Co--Pt magnetic film is formed on a glass substrate by sputtering.

【0003】しかし、実用的には幾つかの問題があり、
汎用的に用いられていない。その一つの問題として、高
湿下での耐候性の問題がある。つまり、ガラス基板は通
常のアルミニウム基板にNi−P無電解メッキを施した
基板と異なり、耐水性が劣り、水により侵食され易く、
かつ、ガラス基板のアルカリ成分が表面に溶出して来る
ことが例えば成書「ガラス表面設計」(近代編集社)P
.43及びP.156に記載されている。実用面での対
策として液晶用のガラス基板にはアルカリ成分の溶出防
止のため、有機シリコン溶液を塗布してシリコン酸化膜
の薄膜層を形成することを工業的に実施したり、アルカ
リ成分の溶出量がソーダライムシリケートガラスに比べ
少ないホウケイ酸ガラスが使用されている。但し、これ
らはコスト的に不利であり、ホウケイ酸ガラスの価格は
高い。
[0003] However, there are some practical problems.
Not commonly used. One of the problems is the problem of weather resistance under high humidity. In other words, glass substrates have poor water resistance and are easily eroded by water, unlike ordinary aluminum substrates with Ni-P electroless plating.
In addition, the alkali components of the glass substrate may be eluted to the surface, for example, in the book "Glass Surface Design" (Kindai Editing Co., Ltd.) P.
.. 43 and P. 156. As a practical countermeasure, in order to prevent the elution of alkaline components from liquid crystal glass substrates, it is industrially implemented to form a thin layer of silicon oxide film by applying an organic silicon solution, and to prevent the elution of alkaline components. A smaller amount of borosilicate glass is used than soda-lime silicate glass. However, these are disadvantageous in terms of cost, and borosilicate glass is expensive.

【0004】ガラス基板を磁気記録媒体用基板として用
いた場合も例外でなく、多湿環境下で磁気ディスクの内
外周等に腐食が発生し、その改善のために多くの提案が
されている。例えば、特開昭63−269319号では
、磁気ディスク周縁部の磁気記録層とガラス露出部分に
エポキシ樹脂等を塗布することが提案され、また、特開
昭64−42025号では、ガラス基板の組成を特定の
組成に変更することが提案されている。しかし、組成変
更は製造条件の変更であり、溶解温度が高くなる等製造
上の問題が発生すると共に、コスト的にも高く成る。 また、樹脂や有機シリコン溶液の塗布は磁気ディスクの
平坦度に悪影響を与える。最近は磁気ディスクの高容量
化のためヘッドが低浮上で、かつ、磁気ディスクの最外
周まで飛行するため、ヘッドクラッシュの原因ともなり
、好ましくない。
[0004] When a glass substrate is used as a substrate for a magnetic recording medium, corrosion occurs on the inner and outer peripheries of the magnetic disk in a humid environment, and many proposals have been made to improve this problem. For example, JP-A No. 63-269319 proposes applying epoxy resin or the like to the magnetic recording layer and the exposed portion of the glass at the periphery of the magnetic disk, and JP-A No. 64-42025 proposes the composition of the glass substrate. It has been proposed to change the composition of However, changing the composition is a change in manufacturing conditions, which causes manufacturing problems such as an increase in melting temperature, and also increases costs. Furthermore, the application of resin or organic silicon solution adversely affects the flatness of the magnetic disk. Recently, due to the increase in the capacity of magnetic disks, the head flies at a low level and flies to the outermost periphery of the magnetic disk, which is undesirable because it may cause a head crash.

【0005】また、大きな問題として、耐久性の問題が
ある。磁気ディスク装置は非記録再生時には、ヘッドは
浮上していず媒体と接触している。ガラス基板は平滑性
が良く、基板表面の鏡面性が優れている故に、逆に、鏡
面仕上げしたガラス基板を、そのまま用いた磁気記録媒
体は、ヘッドと媒体との接触面積が増大するため、装置
の駆動時、停止時にディスク媒体との摩擦力や吸着力の
増大を招き、ディスク媒体とヘッドがスティッキングを
生じたり、ヘッドクラッシュを生じ易い問題がある。特
に、最近小型磁気ディスク装置の普及により、モーター
のトルクが小さくなり、また、消費電力の低減化から、
静止摩擦力の低減が要求されている。
Another major problem is durability. When a magnetic disk device is not recording or reproducing, the head does not fly but is in contact with the medium. Glass substrates have good smoothness and excellent specularity on the substrate surface. On the other hand, magnetic recording media that use mirror-finished glass substrates as they are have an increased contact area between the head and the medium, making it difficult for the device to use. When the disk is driven or stopped, the frictional force and attraction force between the disk medium and the disk medium increase, which causes sticking between the disk medium and the head, or a head crash. In particular, with the recent spread of small magnetic disk drives, motor torque has become smaller and power consumption has been reduced.
Reduction of static friction force is required.

【0006】この問題を解決するため、特開昭60−1
36035号では、ガラス基板をエッチングにより、あ
る周期で連続した凹凸を形成することが提案され、また
、特開昭62−256214号、特開昭62−2562
15号、特開昭62−256216号では、スパッタ法
により連続したアルミニウム凹凸層を形成させることが
提案されている。しかしながら、特開昭62−2562
14号、特開昭62−256215号、特開昭62−2
56216号では、いわゆるスティッキングによるディ
スク媒体の回転不良は解決されたが、静止摩擦係数は3
倍以上に増加しており、前述したモーターのトルク値の
低減、消費電力値の低減化からは、まだ、不十分である
。更に、磁気特性面の問題として、J.Appl.Ph
ys.67(9),1,1990,P4701等に記載
されている如く、ガラス基板の上に直接スパッタ法にて
下地Cr層、磁性層を成膜すると、ガラス基板の水分の
影響で保磁力が低下する問題がある。
[0006] In order to solve this problem,
No. 36035 proposes etching a glass substrate to form continuous irregularities at a certain period, and Japanese Patent Application Laid-Open Nos. 62-256214 and 62-2562 also propose
No. 15 and Japanese Unexamined Patent Publication No. 62-256216 propose forming a continuous aluminum uneven layer by sputtering. However, JP-A-62-2562
No. 14, JP-A-62-256215, JP-A-62-2
No. 56216 solved the problem of disk media rotation failure due to so-called sticking, but the static friction coefficient was 3.
This has more than doubled, and the reduction in motor torque and power consumption described above is still insufficient. Furthermore, as a problem in terms of magnetic properties, J. Appl. Ph
ys. 67(9), 1, 1990, P4701, etc., when a base Cr layer and a magnetic layer are formed directly on a glass substrate by sputtering, the coercive force decreases due to the influence of moisture on the glass substrate. There is a problem.

【0007】[0007]

【発明が解決しようとする課題】本発明は、通常のガラ
ス基板、ソーダライムガラス、アルミノシリケートガラ
ス等の基板から溶出するアルカリ成分による、磁性膜の
腐食問題、及び、ガラス基板の水分の影響による磁気特
性の低下問題、更に、ヘッドとの摩擦力、吸着力の増加
による耐久性問題を解決せんとするものである。
[Problems to be Solved by the Invention] The present invention solves the problem of corrosion of magnetic films due to alkaline components eluted from substrates such as ordinary glass substrates, soda lime glass, aluminosilicate glass, etc., and the problem of corrosion of magnetic films due to the influence of moisture on glass substrates. This is intended to solve the problem of deterioration of magnetic properties as well as the durability problem caused by increased frictional force and adsorption force with the head.

【0008】[0008]

【課題を解決するための手段】本発明の要旨は、100
0Å以上の厚さの無電解メッキ層及び多数の微細突起を
有する金属層を順次形成したガラス基板上に、磁性層を
設けてなり、山高さ400Å以下の媒体表面粗度を有す
る磁気記録媒体に存する。
[Means for Solving the Problems] The gist of the present invention is as follows:
A magnetic recording medium has a magnetic layer formed on a glass substrate on which an electroless plating layer with a thickness of 0 Å or more and a metal layer having a large number of microscopic protrusions are sequentially formed, and has a medium surface roughness with a peak height of 400 Å or less. Exists.

【0009】以下に本発明について詳細に説明する。本
発明の磁気記録媒体は、1000Å以上の厚さの無電解
メッキ層及び多数の微細突起を有する金属層を順次形成
したガラス基板上に、磁性層を設けてなり、山高さ40
0Å以下の媒体表面粗度を有するものである。ガラス基
板の種類としては、特に制限はないが、通常のソーダラ
イムガラス、アルミノシリケートガラス、また、結晶化
ガラスとしてリチウム系ガラス(例えば日本電気硝子社
製「ML−5」)等を用いることが出来る。通常はコス
トの面から化学強化した安価なソーダライムガラス、ア
ルミノシリケートガラスを鏡面研磨して用いる。鏡面研
磨したガラス基板の表面粗さは、接触式粗さ計の測定で
中心線平均粗さRa10Å、最大高さRmax150Å
以下に仕上げられているものが好ましい。
The present invention will be explained in detail below. The magnetic recording medium of the present invention has a magnetic layer provided on a glass substrate on which an electroless plating layer with a thickness of 1000 Å or more and a metal layer having a large number of fine protrusions are sequentially formed, and the peak height is 40 Å.
It has a medium surface roughness of 0 Å or less. There are no particular restrictions on the type of glass substrate, but ordinary soda lime glass, aluminosilicate glass, and lithium-based glass (for example, "ML-5" manufactured by Nippon Electric Glass Co., Ltd.) as crystallized glass can be used. I can do it. Usually, from a cost perspective, inexpensive chemically strengthened soda lime glass or aluminosilicate glass is mirror-polished. The surface roughness of the mirror-polished glass substrate was measured using a contact roughness meter, with a center line average roughness of Ra 10 Å and a maximum height Rmax of 150 Å.
It is preferable to have the following finish.

【0010】この様に基板表面が平滑であるため、基板
と無電解メッキ層との密着性が悪く、通常の無電解メッ
キ法では、無電解メッキの膜厚が300Åぐらいしか形
成できず、無電解メッキ膜を基板からのアルカリ成分溶
出の防止膜として用いるには、膜厚及び被覆性から不十
分である。アルカリ成分の溶出を防止し、磁性膜層の腐
食を防止するためには、1000Å以上の膜厚が必要で
ある。
[0010] Because the substrate surface is smooth as described above, the adhesion between the substrate and the electroless plating layer is poor, and the normal electroless plating method can only form an electroless plating film with a thickness of about 300 Å. The electrolytic plating film is not sufficient to be used as a film for preventing alkaline component elution from the substrate due to the film thickness and coverage. In order to prevent elution of alkali components and corrosion of the magnetic film layer, a film thickness of 1000 Å or more is required.

【0011】そこで、以下の様に、市販のメッキ浴を用
いても密着性が良好で、1000Å以上の膜厚の無電解
メッキ層が得られる方法として以下の好ましい方法が例
示される。まず、鏡面研磨したガラス基板を、通常の中
性洗剤で脱脂洗浄を行ない、次に定法のSnCl2 浴
、PdCl2 浴にて、活性化処理を行なった後で、通
常の無電解メッキ浴にて厚さ300Å以下の第一層目の
無電解メッキ膜を形成後、クリーンな乾燥器にて150
〜400℃の温度にて熱処理を行なう。熱処理後再度、
中性洗剤で洗浄後無電解メッキ浴にて、第二層目の無電
解メッキ膜を総膜厚1000Å以上の膜厚まで形成し、
また、150〜400℃の温度にて熱処理を行なう。な
お、上記第二層目の無電解メッキ膜の形成においては、
これを中断して上記した150〜400℃での熱処理を
適宜行なってもよい。
Therefore, the following preferred method is exemplified as a method for obtaining an electroless plating layer with good adhesion and a thickness of 1000 Å or more even when a commercially available plating bath is used. First, a mirror-polished glass substrate is degreased and cleaned with a normal neutral detergent, then activated with a standard SnCl2 bath and PdCl2 bath, and then thickened with a normal electroless plating bath. After forming the first electroless plating film with a thickness of 300 Å or less, it was heated to 150 Å in a clean dryer.
Heat treatment is carried out at a temperature of ~400°C. After heat treatment again,
After washing with a neutral detergent, a second layer of electroless plating film is formed in an electroless plating bath to a total film thickness of 1000 Å or more,
Further, heat treatment is performed at a temperature of 150 to 400°C. In addition, in the formation of the second layer electroless plating film,
This may be interrupted and the heat treatment described above at 150 to 400°C may be performed as appropriate.

【0012】無電解メッキ浴は従来のアルミニウム基板
と同様な非磁性のNi−Pメッキでも良いし、銅メッキ
等でもよい。また、各メッキ層の種類を変えてもよい。 但し、非磁性膜がよい。一層目の膜厚が300Åを越え
るとメッキ途中や水洗中に、部分的に膜はく離が生じて
くる。一層目の膜厚は約200〜300Åとすることが
好ましい。総メッキ膜厚としては、耐候性上1000Å
以上が必要である。膜厚の上限は特にないが1μm以下
が、密着性の点から好ましい。中でも1500Å以上5
000Å以下がより好ましい。
The electroless plating bath may be non-magnetic Ni--P plating similar to conventional aluminum substrates, or may be copper plating. Further, the type of each plating layer may be changed. However, a non-magnetic film is preferable. If the thickness of the first layer exceeds 300 Å, partial peeling will occur during plating or washing with water. The thickness of the first layer is preferably about 200 to 300 Å. The total plating film thickness is 1000 Å for weather resistance.
The above is necessary. Although there is no particular upper limit to the film thickness, it is preferably 1 μm or less from the viewpoint of adhesion. Above all, 1500Å or more5
000 Å or less is more preferable.

【0013】好ましい熱処理温度は150℃から400
℃の範囲である。150℃未満では効果が少なく、40
0℃を越えるとガラス基板の化学強化層のカリウムイオ
ンの拡散が生じて強度低下が起こる。熱処理時間は30
分以上、中でも30分〜60分が好ましい。なお、無電
解メッキは、例えば、ディスク内周等で保持し、回転さ
せながら無電解メッキ浴に浸漬させること等によって基
板全面に均一に無電解メッキ膜が形成されるようにする
のが好ましい。
[0013] The preferred heat treatment temperature is 150°C to 400°C.
℃ range. Below 150℃, there is little effect, and 40℃
When the temperature exceeds 0° C., diffusion of potassium ions in the chemically strengthened layer of the glass substrate occurs, resulting in a decrease in strength. Heat treatment time is 30
Minutes or more, preferably 30 minutes to 60 minutes. It is preferable to perform electroless plating by, for example, holding the disk at the inner periphery of the disk and immersing it in an electroless plating bath while rotating, so that an electroless plating film is uniformly formed over the entire surface of the substrate.

【0014】また、ガラス基板として鏡面研磨した基板
でなく、例えば化学エッチングあるいは結晶化処理等に
より基板表面を粗くした場合は、無電解メッキ層の密着
性が向上することから一段目の無電解メッキにより、1
000Å以上の膜厚が得られる。また、これに上記した
熱処理を施すことにより密着性を更に向上させることが
できる。この様にして、密着性が高く、所定膜厚の非磁
性無電解メッキ層を設けることにより、ガラス基板から
高湿下でのアルカリ成分の溶出だけでなく、後述するス
パッタ成膜時の基板からの水分の影響も遮蔽でき、良好
な磁気特性の記録媒体が得られる。
In addition, if the glass substrate is not a mirror-polished substrate but has a roughened substrate surface, for example by chemical etching or crystallization treatment, the adhesion of the electroless plating layer will improve, so the first step electroless plating will improve the adhesion of the electroless plating layer. Accordingly, 1
A film thickness of 000 Å or more can be obtained. Furthermore, by subjecting this to the above-described heat treatment, the adhesion can be further improved. In this way, by providing a non-magnetic electroless plating layer with high adhesion and a predetermined film thickness, it is possible to not only elute alkaline components from the glass substrate under high humidity, but also to prevent the elution of alkaline components from the substrate during sputtering film formation, which will be described later. The influence of moisture can also be shielded, and a recording medium with good magnetic properties can be obtained.

【0015】次に、前述の如く処理した基板をスパッタ
装置に入れ、スパッタ法にて多数の微細な突起を有する
金属層を設ける。この突起の形状は以後の下地層、磁性
層、保護層及び潤滑膜層の形成後も引き継がれることか
ら、突起形状の山高さを制御し、最終的な媒体表面を山
高さRmax400Å以下とすることにより耐久性に優
れた磁気記録媒体となる。多数の微細な突起を有する金
属層の組成としては、Agあるいは、Al、Pb、Sn
、Sb等の低融点金属が突起状を形成し易いほか、また
、それらの合金、例えばAl−Cu合金等でもよい。
Next, the substrate treated as described above is placed in a sputtering apparatus, and a metal layer having a large number of fine protrusions is formed by sputtering. Since the shape of this protrusion is carried over even after the formation of the underlying layer, magnetic layer, protective layer, and lubricant film layer, the peak height of the protrusion shape should be controlled so that the final media surface has a peak height Rmax of 400 Å or less. This results in a magnetic recording medium with excellent durability. The composition of the metal layer having many fine protrusions is Ag, Al, Pb, Sn.
, Sb, and other low-melting point metals tend to form protrusions, and alloys thereof, such as Al-Cu alloys, may also be used.

【0016】突起形状の形成され易さは、基板の表面エ
ネルギー、スパッタされた物質の表面エネルギー、及び
スパッタされた物質と基板との界面エネルギーの三者の
釣り合いによるものと推定されるが、定量的な詳細は不
明である。一般に磁性層の下地として用いられるCr,
Tiは数百Åの膜厚でもほぼ平滑な連続膜となり突起形
状は形成されない。突起形状の形成されやすさは成膜方
法、スパッタ時の条件、特に基板温度、膜厚に強く影響
を受ける。各突起の大きさ(径)は2000Å以下がよ
く好ましくは200〜1000Å、更に好ましくは30
0〜600Åである。2000Åより大きくなると、粗
面化した場合と同様で媒体の再生ノイズが低下したりす
る。
The ease with which protrusions are formed is estimated to be due to the balance between the surface energy of the substrate, the surface energy of the sputtered material, and the interfacial energy between the sputtered material and the substrate, but it is not possible to quantify it. The details are unknown. Cr, which is generally used as an underlayer for magnetic layers,
Even if the Ti film is several hundred Å thick, it becomes a substantially smooth continuous film and no protrusions are formed. The ease with which protrusions are formed is strongly influenced by the film formation method, sputtering conditions, especially substrate temperature, and film thickness. The size (diameter) of each protrusion is preferably 2000 Å or less, preferably 200 to 1000 Å, and more preferably 30 Å or less.
It is 0 to 600 Å. If the thickness exceeds 2000 Å, the reproduction noise of the medium may decrease, similar to when the surface is roughened.

【0017】更に、耐久性上、各突起が互いに密接する
ことなく島状に分布して存在し、ヘッドとの接触面積を
必要最低限に減らすことが好ましい。成膜初期には島状
の構造が形成されやすいが、別な方法として、核生成密
度を減らすために、無電解メッキ層と、多数の微細突起
を有する金属層との間にCr及びTi等のスパッタ層を
設けてやると、該金属層の生成が制御され、島状に突起
が形成されて好ましい。突起と突起との間隔は突起形状
の大きさ(径)の半分以上あることが望ましい。
Furthermore, from the viewpoint of durability, it is preferable that the protrusions are distributed in an island-like manner without being in close contact with each other, and that the area of contact with the head is reduced to the necessary minimum. An island-like structure is likely to be formed in the initial stage of film formation, but as another method, in order to reduce the nucleation density, Cr, Ti, etc. It is preferable to provide a sputtered layer of 1, because the formation of the metal layer is controlled and island-shaped protrusions are formed. It is desirable that the distance between the protrusions be at least half the size (diameter) of the protrusion shapes.

【0018】スパッタ雰囲気は通常の条件でよくアルゴ
ン分圧1〜10mTorrの範囲から選べばよい。突起
形状は基板温度が高いほど山高さが大きくなり粗れてく
るので、基板温度としては300℃以下、100〜20
0℃が好ましい。また、膜厚は厚い方が山高さが大きく
なり粗れてくる。
The sputtering atmosphere may be under normal conditions and may be selected from a range of argon partial pressure of 1 to 10 mTorr. The higher the substrate temperature, the rougher the protrusion shape becomes.
0°C is preferred. Further, the thicker the film, the larger the height of the peaks and the rougher the film becomes.

【0019】突起を有する形状のため、膜厚の定義が難
しいが、室温でのスパッタ成膜時の膜厚換算で言うなら
、膜厚300Å以下、好ましくは30〜200Åである
。媒体表面の山高さは、Rmaxとして400Å以下、
中でも70〜300Åが好ましい。50Åより小さいと
耐久性改善効果が少ない。また、400Åを越えるとヘ
ッドと媒体の浮上距離が小さく成らず、しかも媒体の再
生ノイズが高くなり好ましくない。なお、山高さは基板
の全面にわたって、全ての山が400Å以下であること
が望ましいが、本発明の目的を達成するのに支障がない
範囲で単位長さ当りで測定した突起形状のうちの10%
程度であれば400Åを越える山高さが多少存在しても
構わない。
Although it is difficult to define the film thickness due to the shape having protrusions, in terms of film thickness during sputtering film formation at room temperature, the film thickness is 300 Å or less, preferably 30 to 200 Å. The height of the peaks on the medium surface is 400 Å or less as Rmax,
Among these, 70 to 300 Å is preferable. If it is smaller than 50 Å, the effect of improving durability will be small. On the other hand, if it exceeds 400 Å, the flying distance between the head and the medium will not become small, and the reproduction noise of the medium will increase, which is not preferable. It is desirable that all the peaks have a height of 400 Å or less over the entire surface of the substrate, but 10 of the protrusion shapes measured per unit length are within the range that does not interfere with achieving the purpose of the present invention. %
As long as the height of the peak exceeds 400 Å, it is acceptable.

【0020】このようにして、多数の微細突起を有する
金属層を設けたガラス基板を、スパッタ装置に入れ、必
要に応じて下引き層をスパッタ成膜した後磁性層を設け
る。また、磁性層の上に、更に必要に応じて、保護層及
び/又は潤滑層を設けることができる。スパッタ成膜さ
れる下引き層は、Cr層、Ti層等で、磁性層の磁気特
性を良好にするために用いる。下引き層の膜厚は通常、
500〜3000Å程度とする。磁性層組成としてはス
パッタ法によるCo−Cr、Co−Cr−X、Co−N
i−X、Co−W−X等で表わされるCoを主成分とす
るCo系合金磁性膜が使用できる。ここでXとしてはL
i、Si、B、Ca、Ti、V、Cr、Ni、As、Y
、Zr、Nb、Mo、Ru、Rh、Ag、Sb、Hf、
Ta、W、Re、Os、Ir、Pt、Au、La、Ce
、Pr、Nd、Pm、Sm及びEuよりなる群から選ば
れる1種又は2種以上の元素が用いられる。磁性層の膜
厚は通常300〜1000Å程度である。なお、Co−
Ni−Pt合金、Co−PT合金等を用いる場合はCr
等の下引き層を設けなくても構わない。保護膜としては
スパッタ法による炭素質膜、ジルコニア膜等や有機シリ
コン膜の塗布でもよい。潤滑層としては弗素系のパーフ
ロロポリエーテル等の液体潤滑膜や脂肪酸などの固体潤
滑膜が用いられる。
The glass substrate provided with the metal layer having a large number of fine protrusions in this manner is placed in a sputtering apparatus, and if necessary, an undercoat layer is formed by sputtering, and then a magnetic layer is provided. Moreover, a protective layer and/or a lubricating layer can be provided on the magnetic layer, if necessary. The undercoat layer formed by sputtering is a Cr layer, a Ti layer, or the like, and is used to improve the magnetic properties of the magnetic layer. The thickness of the undercoat layer is usually
The thickness is approximately 500 to 3000 Å. The magnetic layer composition is Co-Cr, Co-Cr-X, Co-N by sputtering method.
A Co-based alloy magnetic film containing Co as a main component represented by i-X, Co-W-X, etc. can be used. Here, X is L
i, Si, B, Ca, Ti, V, Cr, Ni, As, Y
, Zr, Nb, Mo, Ru, Rh, Ag, Sb, Hf,
Ta, W, Re, Os, Ir, Pt, Au, La, Ce
, Pr, Nd, Pm, Sm, and Eu. The thickness of the magnetic layer is usually about 300 to 1000 Å. In addition, Co-
When using Ni-Pt alloy, Co-PT alloy, etc., Cr
There is no need to provide a subbing layer such as. As the protective film, a carbonaceous film, a zirconia film, etc., or an organic silicon film may be applied by sputtering. As the lubricant layer, a liquid lubricant film such as fluorine-based perfluoropolyether or a solid lubricant film such as fatty acid is used.

【0021】また、ガラス基板に導電性の無電解メッキ
膜を形成することにより、続くスパッタ成膜時に基板と
基板ホルダーとの電気抵抗が約10Ω以下とほぼ同様と
なることから、通常のスパッタ条件での成膜だけではな
く従来のNi−P無電解メッキ膜を被覆したアルミニウ
ム基板と同様に、基板に負のバイアス電位を印加するこ
とが可能で、負のバイアス電位を印加した状態で下引き
層及び/又は磁性層がスパッタ成膜でき高保磁力が得ら
れる。バイアスの印加法としては、この基板バイアス法
だけでなく、ターゲットと基板との間に中間電極を設け
、該電極に基板に対し正の電位を印加した状態とするこ
ともできる。
Furthermore, by forming a conductive electroless plating film on the glass substrate, the electrical resistance between the substrate and the substrate holder becomes approximately 10Ω or less during the subsequent sputtering film formation, so that normal sputtering conditions can be avoided. In addition to film formation, it is possible to apply a negative bias potential to the substrate in the same way as with conventional aluminum substrates coated with Ni-P electroless plating films, and undercoat while applying a negative bias potential. The layer and/or the magnetic layer can be deposited by sputtering and a high coercive force can be obtained. As a bias application method, in addition to this substrate bias method, it is also possible to provide an intermediate electrode between the target and the substrate, and apply a positive potential to the substrate with respect to the electrode.

【0022】[0022]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明するが、本発明は、その要旨を越えない限り、以下
の実施例に限定されるものではない。 実施例1 化学強化した後、その表面を中心線平均粗さRa8Å、
最大高さRmax100Åに鏡面加工した、外径95φ
mm、内径25φmm、板厚1.27mmのソーダライ
ムガラス基板を、中性洗剤で脱脂、イオン交換水で水洗
後、0.3g/lのSnCl2 水溶液(浴温50℃)
に1分浸漬し、水洗後、0.1g/lのPdCl2 水
溶液(浴温50℃)に1分浸漬し活性化処理を行ない水
洗後、市販の無電解Ni−Pメッキ浴(メルテックス(
株)、エンプレートNI−4828)にて、pH4.5
、浴温77℃で無電解Ni−Pメッキ膜を300Å形成
した(第一段無電解メッキ)。水洗後、クリーン乾燥器
で200℃、1時間熱処理を実施した。その後、再び中
性洗剤で脱脂を行ない、イオン交換水で水洗後、再度上
記無電解Ni−Pメッキ浴に浸漬し、総膜厚1500Å
の無電解Ni−Pメッキ膜を形成した(第二段無電解メ
ッキ)。水洗後、クリーン乾燥器で200℃、1時間熱
処理を実施した。無電解メッキ処理は基板を回転しなが
ら行ない、基板全面にメッキ層が形成されるようにした
[Examples] The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to the following Examples unless it exceeds the gist thereof. Example 1 After chemically strengthening, the surface had a center line average roughness of Ra8 Å,
Mirror-finished to maximum height Rmax 100Å, outer diameter 95φ
After degreasing a soda lime glass substrate with a diameter of 25 mm and a thickness of 1.27 mm using a neutral detergent and washing it with ion-exchanged water, a 0.3 g/l SnCl2 aqueous solution (bath temperature 50°C) was prepared.
After rinsing with water, immersing in a 0.1 g/l PdCl2 aqueous solution (bath temperature 50°C) for 1 minute to perform activation treatment, and rinsing with water.
Co., Ltd., Enplate NI-4828), pH 4.5
An electroless Ni-P plating film was formed to a thickness of 300 Å at a bath temperature of 77° C. (first stage electroless plating). After washing with water, heat treatment was performed at 200° C. for 1 hour in a clean dryer. After that, it was degreased again with a neutral detergent, washed with ion-exchanged water, and then immersed in the electroless Ni-P plating bath again to obtain a total film thickness of 1500 Å.
An electroless Ni-P plating film was formed (second stage electroless plating). After washing with water, heat treatment was performed at 200° C. for 1 hour in a clean dryer. The electroless plating process was performed while rotating the substrate so that a plating layer was formed on the entire surface of the substrate.

【0023】この基板をDCマグネトロンスパッタ装置
に装入し、1×10−6Torrまで真空排気した後、
基板温度を150℃に昇温しアルゴン分圧5×10−3
Torrにて室温でのスパッタ成膜時の膜厚換算で約1
50Åの膜厚の、Alの多数の微細突起を有する層をス
パッタ成膜した。続いて基板を200℃に昇温し、アル
ゴン分圧5×10−3TorrにてCr下地層を170
0Å、CoNi30Cr7 at%の磁性層を600Å
、カーボン保護層を300Å連続してスパッタ成膜した
。更に、この上に潤滑層としてパーフルオロポリエーテ
ルを20Å塗布し磁気記録媒体を作製した。この時の媒
体表面の山高さRmaxは300Åであり、走査型電子
顕微鏡による観察で突起はほぼ互いに密接していた.図
1にその模式図を示す。
[0023] After loading this substrate into a DC magnetron sputtering device and evacuation to 1 x 10-6 Torr,
The substrate temperature was raised to 150℃ and the argon partial pressure was increased to 5×10−3.
Approximately 1 in terms of film thickness during sputtering film formation at room temperature under Torr
A layer of Al having a large number of fine protrusions with a thickness of 50 Å was deposited by sputtering. Subsequently, the temperature of the substrate was raised to 200°C, and a Cr underlayer was formed at a temperature of 170°C under an argon partial pressure of 5 x 10-3 Torr.
0 Å, CoNi30Cr7 at% magnetic layer of 600 Å
A carbon protective layer of 300 Å was continuously formed by sputtering. Furthermore, a 20 Å perfluoropolyether was applied as a lubricating layer on top of this to produce a magnetic recording medium. The peak height Rmax on the medium surface at this time was 300 Å, and observation using a scanning electron microscope showed that the protrusions were almost close to each other. Figure 1 shows a schematic diagram.

【0024】得られた磁気記録媒体を評価するため、3
.5インチ磁気ディスク装置による耐久性試験(CSS
試験(磁気ヘッドを磁気記録媒体の表面に当接し、静止
された状態で磁気記録媒体の回転開始・回転停止を行な
う試験)の初期及び2万回後にヘッドと媒体の静止摩擦
係数を測定)、クリーンな恒温恒湿槽での、85℃、相
対湿度80%で504時間保持する耐候性試験及び試料
振動式磁力計(VSM)による媒体の保磁力の測定を行
なった。結果を表1に示す。
In order to evaluate the obtained magnetic recording medium, 3
.. Durability test (CSS) using a 5-inch magnetic disk drive
Measure the coefficient of static friction between the head and the medium at the beginning and after 20,000 times of the test (a test in which the magnetic head is brought into contact with the surface of the magnetic recording medium and the magnetic recording medium is started and stopped rotating in a stationary state); A weather resistance test was carried out in a clean constant temperature and humidity chamber at 85° C. and a relative humidity of 80% for 504 hours, and the coercive force of the medium was measured using a sample vibrating magnetometer (VSM). The results are shown in Table 1.

【0025】比較例1 実施例1において、無電解Ni−Pメッキ層を形成しな
かった以外は、同様にして磁気記録媒体を作製した後、
評価を行なった。結果を表1に示す。 比較例2 実施例1において、Alの多数の微細突起を有する層を
設けなかった以外は、同様にして磁気記録媒体を作製し
た後、評価を行なった。結果を表1に示す。
Comparative Example 1 A magnetic recording medium was produced in the same manner as in Example 1 except that the electroless Ni--P plating layer was not formed.
We conducted an evaluation. The results are shown in Table 1. Comparative Example 2 A magnetic recording medium was fabricated in the same manner as in Example 1, except that the layer having many fine Al projections was not provided, and then evaluated. The results are shown in Table 1.

【0026】実施例2 実施例1におけるのと同様な処理をして無電解Ni−P
メッキ層を設けた上に、DCマグネトロンスパッタ装置
にて初めに基板温度150℃にて、アルゴン分圧3×1
0−3TorrでCr層を約1000Å成膜し、その上
にAlの多数の微細突起を有する層を室温換算で約80
Å厚成膜した以外は実施例1と同様にして磁気記録媒体
を作製した後、評価を行なった。結果を表1に示す。な
お、この時のAlの多数の微細突起を有する層は突起が
密接していず、突起の間隔は約700〜1400Åあり
島状に分布形成されていた。図2にその模式図を示す。 なお、媒体表面の山高さRmaxは300Åであった。
Example 2 Electroless Ni--P was treated in the same manner as in Example 1.
On top of the plating layer, a DC magnetron sputtering device was used to initially apply an argon partial pressure of 3×1 at a substrate temperature of 150°C.
A Cr layer with a thickness of about 1000 Å was formed at 0-3 Torr, and a layer of Al having a large number of fine protrusions was formed on it at a thickness of about 80 Å in terms of room temperature.
A magnetic recording medium was prepared in the same manner as in Example 1 except that the film was formed to a thickness of Å, and then evaluated. The results are shown in Table 1. It should be noted that in this layer of Al having a large number of fine protrusions, the protrusions were not closely spaced, and the protrusions were distributed in an island-like manner with an interval of about 700 to 1400 Å. Figure 2 shows a schematic diagram. Note that the peak height Rmax on the medium surface was 300 Å.

【0027】実施例3 実施例2において、Alの多数の微細突起を有する層の
上の、磁性層の下地層であるCr下地層形成時及び磁性
層形成時に基板に−200Vの負のバイアス電位を印加
しながらスパッタ成膜した以外は、同様にして磁気記録
媒体を作製した後、評価を行なった。結果を表1に示す
。媒体表面の山高さはRmax300Åであった。
Example 3 In Example 2, a negative bias potential of -200 V was applied to the substrate during the formation of the Cr underlayer, which is the underlayer of the magnetic layer, on the Al layer having many fine protrusions, and during the formation of the magnetic layer. A magnetic recording medium was fabricated in the same manner except that the film was formed by sputtering while applying . The results are shown in Table 1. The height of the peaks on the medium surface was Rmax 300 Å.

【0028】実施例4 実施例3において、磁性層の組成をCoCr12Ta2
 at%とした以外は、同様にして磁気記録媒体を作製
した後、評価を行なった。結果を表1に示す。この時の
媒体表面の山高さはRmax300Åであった。
Example 4 In Example 3, the composition of the magnetic layer was changed to CoCr12Ta2.
A magnetic recording medium was fabricated in the same manner except that it was set to at%, and then evaluated. The results are shown in Table 1. The height of the peaks on the medium surface at this time was Rmax 300 Å.

【0029】実施例5 実施例2において、微細突起を有する層をAgで作製し
た以外は、同様にして磁気記録媒体を作製した後、評価
を行なった。結果を表1に示す。Agの多数の微細突起
を有する層は実施例2におけるのと同様に島状に分布形
成されており、また、この時の媒体表面の山高さはRm
ax350Åであった。
Example 5 A magnetic recording medium was prepared in the same manner as in Example 2, except that the layer having minute protrusions was made of Ag, and then evaluated. The results are shown in Table 1. The layer having many fine projections of Ag is distributed in an island-like manner as in Example 2, and the height of the peaks on the medium surface at this time is Rm.
ax was 350 Å.

【0030】[0030]

【表1】[Table 1]

【0031】[0031]

【発明の効果】本発明によれば、耐久性、耐候性及び磁
気特性に優れた実用的に非常に優れたガラス基板を用い
た磁気記録媒体を提供できるものである。
According to the present invention, it is possible to provide a magnetic recording medium using a glass substrate which is excellent in durability, weather resistance, and magnetic properties and is practically excellent.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例1で得られた磁気記録媒体の断面を模式
的に示した図である。
FIG. 1 is a diagram schematically showing a cross section of a magnetic recording medium obtained in Example 1.

【図2】実施例2で得られた磁気記録媒体の断面を模式
的に示した図である。
FIG. 2 is a diagram schematically showing a cross section of a magnetic recording medium obtained in Example 2.

【符号の説明】[Explanation of symbols]

1      ソーダライムガラス基板2      
無電解メッキ層 3      多数の微細突起を有する金属層4   
   磁性層の下地層 5      磁性層 6      保護層 7      潤滑層 8      ソーダライムガラス基板9      
無電解メッキ層 10    多数の微細突起を有する金属層を制御する
下地層 11    島状に突起が点在した形態の多数の微細突
起を有する金属層 12    磁性層の下地層 13    磁性層 14    保護層 15    潤滑層
1 Soda lime glass substrate 2
Electroless plating layer 3 Metal layer 4 having many fine protrusions
Base layer for magnetic layer 5 Magnetic layer 6 Protective layer 7 Lubricating layer 8 Soda lime glass substrate 9
Electroless plating layer 10 Underlayer 11 for controlling a metal layer having a large number of fine protrusions Metal layer 12 having a large number of fine protrusions in the form of scattered islands 12 Underlying layer for magnetic layer 13 Magnetic layer 14 Protective layer 15 Lubricant layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  1000Å以上の厚さの無電解メッキ
層及び多数の微細突起を有する金属層を順次形成したガ
ラス基板上に、磁性層を設けてなり、山高さ400Å以
下の媒体表面粗度を有する磁気記録媒体。
Claim 1: A magnetic layer is provided on a glass substrate on which an electroless plating layer with a thickness of 1000 Å or more and a metal layer having a large number of fine protrusions are sequentially formed, and the medium surface roughness has a peak height of 400 Å or less. A magnetic recording medium with
【請求項2】  請求項1に記載の磁気記録媒体におい
て、多数の微細突起を有する金属層が、島状に分布して
存在することを特徴とする磁気記録媒体。
2. The magnetic recording medium according to claim 1, wherein the metal layer having a large number of fine protrusions is distributed in an island shape.
【請求項3】  請求項2に記載の磁気記録媒体におい
て、無電解メッキ層と多数の微細突起を有する金属層と
の間に該金属層の生成を制御する下地層を設けたことを
特徴とする磁気記録媒体。
3. The magnetic recording medium according to claim 2, characterized in that an underlayer for controlling the formation of the metal layer is provided between the electroless plating layer and the metal layer having a large number of fine protrusions. magnetic recording media.
JP5886591A 1991-03-22 1991-03-22 Magnetic recording medium Pending JPH04295614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5886591A JPH04295614A (en) 1991-03-22 1991-03-22 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5886591A JPH04295614A (en) 1991-03-22 1991-03-22 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH04295614A true JPH04295614A (en) 1992-10-20

Family

ID=13096623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5886591A Pending JPH04295614A (en) 1991-03-22 1991-03-22 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH04295614A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6378338B1 (en) * 1998-08-31 2002-04-30 Showa Denko K.K. Method for producing magnetic disk substrates
US6804822B2 (en) * 2001-04-27 2004-10-12 Sharp Kabushiki Kaisha Magnetic recording medium and magnetic recording apparatus using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6378338B1 (en) * 1998-08-31 2002-04-30 Showa Denko K.K. Method for producing magnetic disk substrates
US6804822B2 (en) * 2001-04-27 2004-10-12 Sharp Kabushiki Kaisha Magnetic recording medium and magnetic recording apparatus using same

Similar Documents

Publication Publication Date Title
JP4479528B2 (en) Method of plating on glass substrate, method of manufacturing disk substrate for magnetic recording medium using the plating method, and method of manufacturing perpendicular magnetic recording medium
JPH02289919A (en) Magnetic recording medium and magnetic recording and reproducing method
JPH1074318A (en) Production of support for magnetic disk
US6316097B1 (en) Electroless plating process for alternative memory disk substrates
EP0421120B1 (en) Thin film magnetic storage medium and method for the manufacture thereof
JPH08102033A (en) Thin-film magnetic recording disk and manufacture thereof
JPH08180407A (en) Manufacture of textured magnetic storage disk
US6986956B2 (en) Method of coating smooth electroless nickel on magnetic memory disks and related memory devices
JP2547651B2 (en) Magnetic recording media
JPH02285508A (en) Magnetic recording medium
JPH04295614A (en) Magnetic recording medium
JPH04255908A (en) Substrate for magnetic disk
JP2819839B2 (en) Magnetic disk substrate and magnetic recording medium using the same
JPH05314471A (en) Substrate for magnetic recording medium and manufacture of the same and magnetic recording medium
JP2811167B2 (en) Substrate for magnetic disk
JPH04291018A (en) Magnetic recording medium and production thereof
JP3310563B2 (en) Magnetic recording medium and method of manufacturing the same
JPH11161933A (en) Plated substrate, magnetic recording medium and their production
JPH04255909A (en) Substrate for magnetic disk and magnetic recording medium using the same
JPH0451885B2 (en)
JPH07272263A (en) Magnetic disk
JP2615804B2 (en) Manufacturing method of magnetic recording medium
US6203672B1 (en) Control of the surface roughness of magnetic disk
JP3492908B2 (en) Magnetic recording / reproducing method
JPH11154319A (en) Substrate for magnetic recording medium, magnetic recording medium and its production