JPH04295559A - Absorption refrigerator - Google Patents

Absorption refrigerator

Info

Publication number
JPH04295559A
JPH04295559A JP6036591A JP6036591A JPH04295559A JP H04295559 A JPH04295559 A JP H04295559A JP 6036591 A JP6036591 A JP 6036591A JP 6036591 A JP6036591 A JP 6036591A JP H04295559 A JPH04295559 A JP H04295559A
Authority
JP
Japan
Prior art keywords
regenerator
solution
absorber
refrigerant
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6036591A
Other languages
Japanese (ja)
Other versions
JP2867725B2 (en
Inventor
Masayuki Fujimoto
正之 藤本
Nobuyuki Arinaga
有永 信幸
Shozo Kato
加藤 昇三
Tetsuo Miyamoto
哲雄 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Tokyo Gas Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Tokyo Gas Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6036591A priority Critical patent/JP2867725B2/en
Publication of JPH04295559A publication Critical patent/JPH04295559A/en
Application granted granted Critical
Publication of JP2867725B2 publication Critical patent/JP2867725B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To provide an absorption refrigerator of a small capacity for domestic use or the like in which operation is stable. CONSTITUTION:In a diluted solution tube running from an absorber 21 to a regenerator 1, a solution pump 12 to increase or decrease flow volume of diluted solution within the tube corresponding to a liquid level of condensed solution in the regenerator 1. On the other hand, in a condensed solution tube running from the regenerator 1 to the absorber 21, a flow volume controller 17 is provided to increase or decrease flow volume of the condensed solution within the tube corresponding to a quantity of pressure in the regenerator 1. Thus, the flow volume at each element is so controlled that no superfluence or shortage will occur, and thereby, a stable operation can be maintained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は家庭用若しくはその近
辺の小容量の吸収式冷凍機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a small-capacity absorption refrigerating machine for domestic or nearby use.

【0002】0002

【従来の技術】従来用いられている単効用自然循環式の
吸収式冷凍機にあっては、高低差を利用しているため、
吸収液の循環制御は不要である(例えば、特公昭45−
1032号公報参照)。しかし、家庭用などの小容量機
でコンパクト化が要求される吸収式冷凍機にあっては、
高さが充分に取れないため自然循環式を採用することは
不可能である。
[Prior Art] Conventionally used single-effect natural circulation type absorption refrigerators utilize height differences.
Circulation control of the absorption liquid is not necessary (for example,
(See Publication No. 1032). However, for absorption chillers that require compactness for small capacity machines such as those for home use,
Since the height is not sufficient, it is impossible to adopt a natural circulation system.

【0003】0003

【発明が解決しようとする課題】即ち、単効用吸収式冷
凍機では、吸収液の流れ系統が稀溶液系統と濃溶液系統
との2系統である。この稀溶液管路は吸収器から稀溶液
タンク,溶液ポンプを経て溶液熱交換器を通って再生器
までと、濃溶液管路は再生器を出て溶液熱交換器を経て
吸収器までであり、この両管路の循環液量がマッチング
しないと各要素での液量に過不足が生じ安定した運転を
維持できない。
That is, in a single-effect absorption refrigerator, there are two absorption liquid flow systems: a dilute solution system and a concentrated solution system. This dilute solution pipeline runs from the absorber, through the dilute solution tank, through the solution pump, through the solution heat exchanger, to the regenerator, and the concentrated solution pipeline exits the regenerator, passes through the solution heat exchanger, and ends up with the absorber. If the amounts of circulating fluid in both pipes do not match, there will be excess or deficiency in the amount of fluid in each element, making it impossible to maintain stable operation.

【0004】本発明は上記実情に鑑み、再生器内の濃液
側液面検知のフロートセンサーで液面高さを検知し、こ
の液面に応じ稀溶液の流量を増減させ、且つ再生器内の
圧力大きさに応じ濃溶液の流量を増減させ、前記課題を
解決する吸収式冷凍機を提供することを目的としたもの
である。
In view of the above circumstances, the present invention detects the liquid level height with a float sensor for detecting the liquid level on the concentrated liquid side in the regenerator, increases or decreases the flow rate of the dilute solution according to this liquid level, and increases or decreases the flow rate of the dilute solution in the regenerator. The object of the present invention is to provide an absorption refrigerator that solves the above problem by increasing or decreasing the flow rate of a concentrated solution depending on the pressure level of the liquid.

【0005】[0005]

【課題を解決するための手段】本発明は、吸収器と再生
器と凝縮器と蒸発器とから成る吸収式冷凍機において、
吸収器から再生器に至る稀溶液管路にはこの管路内の稀
溶液の流量を再生器内の濃溶液の液面高さに応じて増減
させる溶液ポンプを設け、再生器から吸収器に至る濃溶
液管路にはこの管路内の濃溶液の流量を再生器内の圧力
の大きさに応じて増減させる流量制御装置を設けたもの
である。
[Means for Solving the Problems] The present invention provides an absorption refrigerator comprising an absorber, a regenerator, a condenser, and an evaporator.
The dilute solution pipeline from the absorber to the regenerator is equipped with a solution pump that increases or decreases the flow rate of the dilute solution in this pipeline depending on the liquid level of the concentrated solution in the regenerator. The concentrated solution conduit leading to the regenerator is equipped with a flow rate control device that increases or decreases the flow rate of the concentrated solution in this conduit in accordance with the magnitude of the pressure within the regenerator.

【0006】[0006]

【作用】上記のような構成のため、再生器で発生した冷
媒蒸気を凝縮器に導き冷媒液とし、この冷媒液を蒸発器
で散布しこの蒸発潜熱で冷房作用を行うと共に、この溶
液を吸収器で吸収して稀溶液とし、溶液タンクから再生
器へ戻る。
[Operation] Due to the above structure, the refrigerant vapor generated in the regenerator is led to the condenser to become a refrigerant liquid, and this refrigerant liquid is dispersed in the evaporator to perform cooling action using the latent heat of vaporization, and at the same time absorb this solution. It is absorbed into a diluted solution and returned to the regenerator from the solution tank.

【0007】この場合、再生器圧力0〜hmmHgの時
(hは再生器の液面と吸収器の最高所の位置差に相当す
る圧力)に、再生器フロートセンサーがHi信号を発す
ると稀溶液弁を開き、Loを発すると稀溶液弁が開く。 この時には、濃溶液弁は開いたままであり、溶液循環ポ
ンプはHi運転を持続する。
In this case, when the regenerator pressure is 0 to hmmHg (h is the pressure corresponding to the difference in position between the liquid level of the regenerator and the highest point of the absorber), when the regenerator float sensor emits a Hi signal, the dilute solution When the valve is opened and Lo is emitted, the dilute solution valve opens. At this time, the concentrated solution valve remains open and the solution circulation pump maintains Hi operation.

【0008】再生器圧力h〜HmmHgの時(Hは濃液
系統の最高所と最低所の位置差に相当する圧力)に、再
生器フロートセンサーがHi信号を発すると溶液ポンプ
がLo運転をする。この時には濃溶液弁と稀溶液弁とは
開いたままである。
When the regenerator pressure is h~HmmHg (H is the pressure corresponding to the difference in position between the highest and lowest points of the concentrated liquid system), when the regenerator float sensor issues a Hi signal, the solution pump operates in Lo mode. . At this time, the concentrated solution valve and the dilute solution valve remain open.

【0009】再生圧力HmmHg以上の時に、再生器フ
ロートセンサーがHi信号を発すると溶液ポンプがLo
運転し、再生器フロートセンサーがLo信号を発すると
溶液ポンプがHi運転する。この時には、流量制御装置
の濃溶液弁は閉じたままで、オリフィスにより流量が絞
られ、且つ稀溶液弁は開いたままである。
When the regeneration pressure is HmmHg or more, if the regenerator float sensor issues a Hi signal, the solution pump goes to Lo.
When the regenerator float sensor issues a Lo signal, the solution pump operates at Hi mode. At this time, the concentrated solution valve of the flow controller remains closed, the orifice throttles the flow rate, and the lean solution valve remains open.

【0010】0010

【実施例】以下、本発明を実施例の図面に基づい説明す
れば、次の通りである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below based on drawings of embodiments.

【0011】図1は吸収式冷凍機の概略図を示し、1は
燃焼装置2を備えた再生器で,該再生器1に冷媒蒸気を
冷媒液とする凝縮器3を配管4を介して連通し、該凝縮
器3より導出した冷媒液の配管5の先端を蒸発器6の下
部に設けた冷媒タンク7に接続し、冷媒タンク7の下端
出口側に設けた冷媒循環ポンプ8を冷媒循環系統の配管
9にて溶液タンク10に接続し、該溶液タンク10に導
出の稀溶液配管11に溶液ポンプ12とON−OFF制
御の稀溶液弁13及び溶液熱交換器14を順次接続し、
この先端を再生器1に連絡する。再生器1の側部には再
生器フロートセンサー15を設け、且つ再生器1の濃液
系統となる濃溶液配管16には並列接続された濃溶液弁
17aとオリフィス17bとからなる流量制御装置17
を設けている。18は冷媒タンク7内に設けた冷媒フロ
ートセンサー、19は凝縮器3に臨む配管4に取付けた
サーミスタタイプの凝縮器温度センサーである。
FIG. 1 shows a schematic diagram of an absorption chiller, in which 1 is a regenerator equipped with a combustion device 2, and a condenser 3 that uses refrigerant vapor as a refrigerant liquid is connected to the regenerator 1 via a pipe 4. The tip of the refrigerant pipe 5 led out from the condenser 3 is connected to a refrigerant tank 7 provided at the bottom of the evaporator 6, and a refrigerant circulation pump 8 provided at the lower end outlet side of the refrigerant tank 7 is connected to the refrigerant circulation system. A solution tank 10 is connected to a solution tank 10 through a pipe 9, and a solution pump 12, an ON-OFF controlled dilute solution valve 13, and a solution heat exchanger 14 are sequentially connected to a dilute solution pipe 11 led out from the solution tank 10,
This tip is connected to the regenerator 1. A regenerator float sensor 15 is provided on the side of the regenerator 1, and a flow rate control device 17 consisting of a concentrated solution valve 17a and an orifice 17b connected in parallel is connected to the concentrated solution piping 16 that serves as the concentrated solution system of the regenerator 1.
has been established. 18 is a refrigerant float sensor provided in the refrigerant tank 7, and 19 is a thermistor type condenser temperature sensor attached to the pipe 4 facing the condenser 3.

【0012】次にこの作用を説明すると、再生器1にて
、冷媒を吸収し稀薄になった稀溶液は燃焼装置2により
加熱されて沸騰し濃溶液と冷媒蒸気を生じる。濃溶液は
濃溶液配管16と同配管中に並列配置の濃溶液弁17a
とオリフィス17bを通って溶液熱交換器14に入る。 更に、濃溶液配管16を通って濃溶液分配装置20によ
り吸収器21の伝熱管内に分配される。吸収器21内で
濃溶液は蒸発器6で蒸発し、配管22を通って導入され
た冷媒蒸気を吸収し、稀溶液となって配管23を通って
稀溶液溜りである溶液タンク10に入る。稀溶液は稀溶
液配管11とその途中に設置された溶液ポンプ12,稀
溶液弁13,溶液熱交換器14を通って再び再生器1に
戻る。
Next, to explain this operation, in the regenerator 1, the diluted solution that absorbs the refrigerant is heated and boiled by the combustion device 2, producing a concentrated solution and refrigerant vapor. A concentrated solution valve 17a is arranged in parallel with the concentrated solution piping 16 in the same piping.
and enters the solution heat exchanger 14 through the orifice 17b. Further, the concentrated solution is distributed through the concentrated solution pipe 16 into the heat exchanger tube of the absorber 21 by the concentrated solution distribution device 20 . In the absorber 21, the concentrated solution is evaporated in the evaporator 6, absorbs the refrigerant vapor introduced through the pipe 22, becomes a dilute solution, and enters the solution tank 10, which is a dilute solution reservoir, through the pipe 23. The dilute solution returns to the regenerator 1 again through the dilute solution piping 11, a solution pump 12, a dilute solution valve 13, and a solution heat exchanger 14 installed in the middle.

【0013】一方、冷媒は再生器1で蒸発し配管4を通
って凝縮器3にて冷却され液化して冷媒液となる。冷媒
液は配管5により冷媒液溜りである冷媒タンク7に入る
。冷媒タンク7内の冷媒液は配管9を通って冷媒循環ポ
ンプ8により冷媒散布装置24から蒸発器6の伝熱管上
に分散される。冷媒液はこの伝熱管上で蒸発して冷水入
口管25より入ってくる冷水を冷やし冷水出口管26よ
り送り出す。この冷水を室内冷房に用いる。蒸発した冷
媒蒸気は配管22を通って吸収器21に入り吸収される
On the other hand, the refrigerant is evaporated in the regenerator 1, passes through the pipe 4, is cooled in the condenser 3, and is liquefied to become a refrigerant liquid. The refrigerant liquid enters a refrigerant tank 7 which is a refrigerant liquid reservoir through a pipe 5. The refrigerant liquid in the refrigerant tank 7 passes through the pipe 9 and is dispersed onto the heat transfer tubes of the evaporator 6 from the refrigerant distribution device 24 by the refrigerant circulation pump 8 . The refrigerant liquid evaporates on this heat transfer tube, cools the cold water coming in from the cold water inlet pipe 25, and sends it out from the cold water outlet pipe 26. This cold water is used for indoor cooling. The evaporated refrigerant vapor passes through the pipe 22 and enters the absorber 21 where it is absorbed.

【0014】吸収器21と凝縮器3の冷却は空冷若しく
は水空冷方式にて行う。冷却ファン27により吸収器2
1,凝縮器3を冷却する。水空冷方式の場合は、冷却水
タンク28内の冷却水を冷却水ポンプ29により冷却水
配管30を通って冷却水散布装置31から吸収器21或
いは凝縮器3に散布し冷却を行う。
The absorber 21 and the condenser 3 are cooled by air cooling or water/air cooling. Absorber 2 by cooling fan 27
1. Cool the condenser 3. In the case of the water-air cooling system, the cooling water in the cooling water tank 28 is sprayed by the cooling water pump 29 through the cooling water piping 30 from the cooling water distribution device 31 to the absorber 21 or the condenser 3 for cooling.

【0015】この場合、吸収器21から再生器1に至る
稀溶液配管11にはこの管路内の稀溶液の流量を再生器
1内の濃溶液の液面高さに応じて増減させ、再生器1か
ら吸収器21に至る濃溶液配管16にはこの管路内の濃
溶液の流量を再生器1内の圧力の大きさに応じて増減さ
せる。先ず凝縮器温度センサー19により再生器内圧力
を想定する。
In this case, in the dilute solution piping 11 leading from the absorber 21 to the regenerator 1, the flow rate of the dilute solution in this piping is increased or decreased depending on the level of the concentrated solution in the regenerator 1. The flow rate of the concentrated solution in the concentrated solution piping 16 extending from the vessel 1 to the absorber 21 is increased or decreased in accordance with the magnitude of the pressure within the regenerator 1. First, the pressure inside the regenerator is estimated using the condenser temperature sensor 19.

【0016】ここで、■再生圧力0〜hmmHgの時は
、濃液系統は再生器1から吸収器3への流れは望めない
。このため、溶液ポンプ12により稀溶液が再生器1に
送り込めないように稀溶液弁13を閉じる(但し、再生
器1の液面が吸収器21側の最高所より高い場合は除く
)。即ち、再生器フロートセンサー9がHi信号を発す
ると稀溶液弁13を閉とし、Lo信号を発すると稀溶液
弁13を開とする。溶液ポンプ12はHi運転を継続す
る。濃溶液弁17aは開となり抵抗がないようにしてい
る。
Here, (1) When the regeneration pressure is 0 to hmmHg, the concentrated liquid system cannot expect to flow from the regenerator 1 to the absorber 3. Therefore, the dilute solution valve 13 is closed so that the dilute solution cannot be sent to the regenerator 1 by the solution pump 12 (except when the liquid level in the regenerator 1 is higher than the highest point on the absorber 21 side). That is, when the regenerator float sensor 9 issues a Hi signal, the dilute solution valve 13 is closed, and when it issues a Lo signal, the dilute solution valve 13 is opened. Solution pump 12 continues Hi operation. The concentrated solution valve 17a is open so that there is no resistance.

【0017】■再生圧力h〜HmmHgの時は、濃液系
統は再生器1から吸収器21へ流れだす。再生圧力が高
くなるに従って再生器1から溶液熱交換器14間の吸収
液液面は下がって行くが、HmmHg未満では液面が必
ず存在するので冷媒蒸気が吸収器21側に抜けることは
ない。それ故、稀溶液を再生器1に送り過ぎることを防
止すれば安定した運転となる。即ち、再生器フロートセ
ンサー15がHi信号を発すると溶液ポンプ12がLo
運転し、再生器1への送り込みを減じる。稀溶液弁13
は開として再生器1への送り込み量を0とはしない(停
止すると結晶しやすくなる)。また、濃溶液弁17aは
抵抗を少なくするため開とする。
(2) When the regeneration pressure is between h and HmmHg, the concentrated liquid system flows from the regenerator 1 to the absorber 21. As the regeneration pressure increases, the liquid level of the absorption liquid between the regenerator 1 and the solution heat exchanger 14 decreases, but since the liquid level always exists below HmmHg, refrigerant vapor does not escape to the absorber 21 side. Therefore, if too much of the dilute solution is prevented from being sent to the regenerator 1, stable operation will be achieved. That is, when the regenerator float sensor 15 issues a Hi signal, the solution pump 12 goes Lo.
and reduce the feed to regenerator 1. Dilute solution valve 13
The amount fed to the regenerator 1 is not set to 0 by opening the pump (if it is stopped, crystallization is likely to occur). Further, the concentrated solution valve 17a is left open to reduce resistance.

【0018】■再生圧力HmmHg以上の時は、濃液系
統の吸収液液面が低下し再生器1から溶液熱交換器14
間の高さでは冷媒の蒸気が吸収器21の方へ抜けてしま
って安定運転不能となる。このため、濃溶液弁10aを
閉として流路抵抗をつける(オリフィス17bのみを吸
収液が流れる)。再生器フロートセンサー15がHi信
号を発すると溶液ポンプ12がLo運転をし、再生器フ
ロートセンサー15がLo信号を発すると溶液ポンプ1
2がHi運転をして冷媒蒸気の吹き抜けを防止し、安定
運転を継続する。
■When the regeneration pressure is HmmHg or more, the liquid level of the absorbing liquid in the concentrated liquid system decreases, and the liquid level from the regenerator 1 to the solution heat exchanger 14 decreases.
At a height between the two, refrigerant vapor escapes toward the absorber 21, making stable operation impossible. For this reason, the concentrated solution valve 10a is closed to provide flow path resistance (the absorption liquid flows only through the orifice 17b). When the regenerator float sensor 15 issues a Hi signal, the solution pump 12 operates in a Lo mode, and when the regenerator float sensor 15 issues a Lo signal, the solution pump 1 operates in a Lo mode.
2 performs Hi operation to prevent refrigerant vapor from blowing through and continue stable operation.

【0019】[0019]

【発明の効果】上記のように稀溶液の流量を再生器内の
濃溶液の液面高さに応じて増減させ、濃溶液の流量を再
生器内の圧力の大きさに応じて増減させるようにしたた
め、各要素での流量に過不足を招かず安定した運転が維
持でき、延いては吸収液充填量を減少させ、コストダウ
ンに寄与できる。
[Effects of the Invention] As described above, the flow rate of the dilute solution can be increased or decreased in accordance with the level of the concentrated solution in the regenerator, and the flow rate of the concentrated solution can be increased or decreased in accordance with the magnitude of the pressure in the regenerator. As a result, stable operation can be maintained without causing excess or deficiency in the flow rate in each element, which in turn can reduce the amount of absorption liquid filled, contributing to cost reduction.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例を示す概略図。FIG. 1 is a schematic diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1    再生器 3    凝縮器 6    蒸発器 7    冷媒タンク 8    冷媒循環ポンプ 10    溶液タンク 12    溶液ポンプ 13    稀溶液弁 14    溶液熱交換器 15    再生器フロートセンサー 17    流量制御装置 17a  濃溶液弁 17b  オリフィス 1 Regenerator 3. Condenser 6 Evaporator 7 Refrigerant tank 8 Refrigerant circulation pump 10 Solution tank 12 Solution pump 13 Dilute solution valve 14 Solution heat exchanger 15 Regenerator float sensor 17 Flow rate control device 17a Concentrated solution valve 17b Orifice

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  吸収器と再生器と凝縮器と蒸発器とか
ら成る吸収式冷凍機において、吸収器から再生器に至る
稀溶液管路にはこの管路内の稀溶液の流量を再生器内の
濃溶液の液面高さに応じて増減させる溶液ポンプを設け
、再生器から吸収器に至る濃溶液管路にはこの管路内の
濃溶液の流量を再生器内の圧力の大きさに応じて増減さ
せる流量制御装置を設けたことを特徴とする吸収式冷凍
機。
Claim 1: In an absorption refrigerator consisting of an absorber, a regenerator, a condenser, and an evaporator, a dilute solution pipe line leading from the absorber to the regenerator has a regenerator that controls the flow rate of the dilute solution in the pipe line. A solution pump is installed that increases or decreases the concentration depending on the level of the concentrated solution in the regenerator. An absorption refrigerating machine characterized by being equipped with a flow control device that increases or decreases the flow rate according to the flow rate.
JP6036591A 1991-03-25 1991-03-25 Absorption refrigerator Expired - Lifetime JP2867725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6036591A JP2867725B2 (en) 1991-03-25 1991-03-25 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6036591A JP2867725B2 (en) 1991-03-25 1991-03-25 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH04295559A true JPH04295559A (en) 1992-10-20
JP2867725B2 JP2867725B2 (en) 1999-03-10

Family

ID=13140045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6036591A Expired - Lifetime JP2867725B2 (en) 1991-03-25 1991-03-25 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP2867725B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8847581B2 (en) 2011-06-07 2014-09-30 Mitsumi Electric Co., Ltd. Operation input apparatus and operating apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8847581B2 (en) 2011-06-07 2014-09-30 Mitsumi Electric Co., Ltd. Operation input apparatus and operating apparatus

Also Published As

Publication number Publication date
JP2867725B2 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
US6122930A (en) Absorption refrigerating machine
KR20000057878A (en) Absorptive refrigerator and method for manufacturing the same
JP2000230757A (en) Refrigerant control device
JPH04295559A (en) Absorption refrigerator
JP3603006B2 (en) Absorption refrigerator and control method of absorption refrigerator
JP3813348B2 (en) Absorption refrigerator
JP2005291576A (en) Absorption refrigerator
JP7372197B2 (en) Absorption heat source device
CN212457500U (en) Absorption type refrigerating unit
JPH04295560A (en) Absorption refrigerator
JP2883372B2 (en) Absorption chiller / heater
JP3484142B2 (en) 2-stage double-effect absorption refrigerator
JP3241498B2 (en) Absorption refrigerator
JP2001147053A (en) Two-stage double-effect absorption refrigerating machine
JPH07218026A (en) Absorption type cooling and heating machine
JPH04295558A (en) Absorption refrigerator
JPS6215736Y2 (en)
JPH0379631B2 (en)
JPH05312429A (en) Absorption water cooling/heating apparatus
JPH11211262A (en) Absorption type refrigerating machine system
JPS586229Y2 (en) absorption refrigerator
JPH0634229A (en) Absorption type refrigerator
JPS6134058B2 (en)
JP2011033261A (en) Absorption type refrigerating machine
JPS62138663A (en) Absorption refrigerator