JPH042954A - Apparatus for material evaluation - Google Patents

Apparatus for material evaluation

Info

Publication number
JPH042954A
JPH042954A JP2104893A JP10489390A JPH042954A JP H042954 A JPH042954 A JP H042954A JP 2104893 A JP2104893 A JP 2104893A JP 10489390 A JP10489390 A JP 10489390A JP H042954 A JPH042954 A JP H042954A
Authority
JP
Japan
Prior art keywords
ray
load
test piece
testing device
control section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2104893A
Other languages
Japanese (ja)
Other versions
JPH07104294B2 (en
Inventor
Tsugio Ishida
石田 次雄
Kazuo Hayashi
林 一雄
Toshiji Kikuchi
菊池 利治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2104893A priority Critical patent/JPH07104294B2/en
Publication of JPH042954A publication Critical patent/JPH042954A/en
Publication of JPH07104294B2 publication Critical patent/JPH07104294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To three-dimensionally observe a destructed state inside a material by means of X-ray CT technology by providing a load testing device, an X-ray detector, an X-ray controller, a load testing device controller, a data processor and an image display unit. CONSTITUTION:A load testing device 11 comprises rotating motors which are respectively connected to upper and lower test piece holding parts so as to apply rotation to a test piece 12 around a loading axis, a load applying motor for applying load to the test piece 12 and a load cell for measuring the load functioning to the test piece 12. An X-ray source 14 and an X-ray detector 17 are placed oppositely on a line with the testing device 11 interposed, while an X-ray controller 15 controls operation of the X-ray source 14. A load testing device controller 13 controls driving of the testing device 11. A data processor 19 sends instructions to the X-ray controller 15 and the testing device controller 13 as well as records data from the X-ray detector 17 via a data acquisition unit 18 to reconstruct and calculate an X-ray CT image. An image display unit 20 outputs the results of the data processing.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、各種材料の荷重負荷状態における材料内部の
変形状況を、X線CT法(X線断層撮影法)によって観
察・評価する装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus for observing and evaluating the internal deformation of various materials under load conditions using X-ray CT (X-ray tomography). .

[従来の技術] セラミックスや複合材料等の新素材では、材料内部の破
壊過程を知ることが、材料開発や品質保証上特に重要で
ある。そこで破壊過程を唯−動的に検出しつるアコース
ティックエミッション(AE)法を適用した研究が盛ん
に行われており、例えば、既刊什物である第6回アコー
スティックエミッション総合コンファレンス論文集p2
43〜p248には、繊維強化金属(FRM)の引張試
験にAE法を適用し、検出されたAE波形の振幅や立ち
上がり時間の大きさがら、強化繊維の破断開始時期を推
定している例が紹介されている。
[Prior Art] For new materials such as ceramics and composite materials, knowing the internal fracture process of the material is particularly important for material development and quality assurance. Therefore, research using the acoustic emission (AE) method, which only dynamically detects the destruction process, is being actively conducted.
43 to 248 introduce an example in which the AE method is applied to a tensile test of fiber reinforced metal (FRM), and the timing of the start of fracture of reinforcing fibers is estimated based on the amplitude and rise time of the detected AE waveform. has been done.

ところで、上述したAE波形の特徴と複合材料等におけ
る種々の破壊(繊維破断、繊維とマトリックスの解離、
マトリックス割れ、層間剥離等)との対応(t iツを
行う方法として、試料の破面観察や応力−歪曲線の変化
から、材料内部で各種の破壊がどのような順序で起こっ
たかを推定し、その時々で発生した八Eの特徴を個々の
破壊と対応イ」けることが行われている。
By the way, the above-mentioned characteristics of the AE waveform and various types of fractures in composite materials (fiber breakage, dissociation of fibers and matrix, etc.)
Matrix cracking, delamination, etc.) can be detected by estimating the order in which various types of fracture occurred inside the material from observation of the fracture surface of the sample and changes in the stress-strain curve. , the characteristics of the 8Es that occurred from time to time are compared with individual destructions.

しかしこの方法は、破壊力学的に高度な知識を要求され
るほか、間接的であるため信頼性に欠ける問題がある。
However, this method requires advanced knowledge of fracture mechanics and is indirect, so it lacks reliability.

従って多くの研究者は、AE計測と同時に他の非破壊的
検査方法を適用し、この問題の解決を試みている。
Therefore, many researchers are trying to solve this problem by applying other nondestructive inspection methods simultaneously with AE measurement.

例えばAwerbuch等は、GFRI)(グラファイ
ト繊維強化プラスチック)の引張試験にAE法を適用す
る際、テlノビカメラによって試験片表面における損傷
の進展状況を観察するとともに、試験前後の試験片内部
を超音波深型法とX線深傷法で調べ、得られたAEの結
果と破壊の種類との対応付けを行っている(Mater
ial Evaluation / 43/強化プラス
デック)の疲労試験にAE法を適用すると同時に、試験
を中断してX線1最影を行い、層間剥離と八Eの結果と
を対応させている(Del、eminat+on  a
nd  Debonding  of  Materi
al、s 顯此thビー―、ASTM  5TP876
.1985、 p448 −p464)。
For example, when applying the AE method to the tensile test of GFRI (graphite fiber reinforced plastic), Awerbuch et al. used a Telnovi camera to observe the progress of damage on the surface of the test piece, and also used ultrasonic waves to inspect the inside of the test piece before and after the test. We investigate using the deep method and X-ray deep wound method, and correlate the obtained AE results with the type of fracture (Mater
At the same time, the AE method is applied to the fatigue test of ial evaluation/43/reinforced plus deck), and at the same time, the test is interrupted and X-ray 1 shadow is performed to correlate the delamination and the results of 8E (Del, eminat+on). a
nd Debonding of Materi
al, s 顯此thbee, ASTM 5TP876
.. 1985, p448-p464).

その他負荷中のCF RPについて、電気抵抗を測定し
て電気抵抗の変化がらカーボン繊組の破断を検知し、ハ
Eの結果を解釈している例も報告されている。
Other examples have been reported in which the electrical resistance of CF RP under load is measured and fractures of the carbon fibers are detected from changes in electrical resistance, and the results of HaE are interpreted.

[課題を解決するための手段] 以十種々の試みがなされているが、テレビカメるが、平
面的な情報であり、破壊の大きさ、形状、厚さ方向の位
置等の三次元的な状況がわからないこと、そして電気抵
抗は導電性繊維の破断のみが検出てきるにすきず、いず
れの方法も十分てはない。
[Means for solving the problem] Various attempts have been made since then, but TV cameras provide only two-dimensional information and three-dimensional information such as the size, shape, and position of the fracture in the thickness direction. Neither method is sufficient because the situation is unknown, and electrical resistance can only detect breaks in conductive fibers.

方、材料内部を三次元的に検査する方法として、近年広
く用いられているものにX線断層撮影法があり、X線C
T装置としてはX線管とX線検出器とが同時に回転する
いわゆる第3世代のX線CT装置が多く用いられている
On the other hand, X-ray tomography is a method that has been widely used in recent years to inspect the interior of materials three-dimensionally.
As the T device, a so-called third generation X-ray CT device in which an X-ray tube and an X-ray detector rotate at the same time is often used.

この第3世代のX線C′F装置には、特公昭57468
53号公報及び実公平1−84609号公報等に示され
ているように、[イ)X線源と、被検体が置かれる空間
を隔てて該X線源に対向配置した円弧方向に多数のチャ
ンネルを有する円弧状のX線検出器を、−F記の被検体
を中心に一体に回転させる方法、あるいは(ロ)X線源
とX線検出器を固定し被彊 検体を回転させる方法がある(鉄と銅、第14号、19
85、 p]24〜p13]、)  。
This third generation X-ray C'F device is
As shown in Publication No. 53 and Japanese Utility Model Publication No. 1-84609, etc., [a) an X-ray source and a large number of arcuate arrays arranged opposite to the X-ray source across the space in which the subject is placed; A method in which an arc-shaped X-ray detector having a channel is rotated integrally around the subject described in -F, or (b) a method in which the X-ray source and X-ray detector are fixed and the subject is rotated. Yes (Iron and Copper, No. 14, 19
85, p]24-p13],).

主として(イ)は医療用、(ロ)は産業用に用いられて
いるが、いずれの場合でも細部にわたって分解能の高い
断層像を得るためには、 180°以上の回転角にわた
って各角度でのX線投影データを収集することが必要で
ある。
Mainly (a) is used for medical purposes, and (b) is used for industrial purposes, but in either case, in order to obtain a tomographic image with high resolution in detail, it is necessary to It is necessary to collect line projection data.

しかし引張試験中の試験片にX線CT法を適用する場合
、上記(イ)の方法では試験機の磯枠の内側にX線源と
X線検出器を配置して試験片を中心に回転さセることか
必要となるため、構造が複雑となる十にスペース的にか
なり大きな引張試験機を必要とし、従って費用も膨大と
なる。
However, when applying the X-ray CT method to a specimen undergoing a tensile test, method (a) above places the X-ray source and X-ray detector inside the rock frame of the testing machine and rotates around the specimen. This requires a tensile testing machine with a complicated structure and a considerably large space, and the cost is therefore enormous.

方、」二記(ロ)の方法で(JX線源とX線検出器を固
定したままでよく、構造止簡単であるが引張中の試験片
を引張応カ一定で且つ試験片に捩じり応力を加えないよ
うにして]80°以」一回転させることが必要となる。
Alternatively, the method described in section 2 (b) (the JX-ray source and the It is necessary to make one rotation of 80° or more without applying stress.

本発明は以上の点を考慮してなされたものであり、引張
試験中の材料内部の破壊状況をX線CT法によって三次
元的に観察する材料評価装置を提供するものである。
The present invention has been made in consideration of the above points, and provides a material evaluation device that three-dimensionally observes the fracture state inside a material during a tensile test using an X-ray CT method.

[課題を解決するだめの手段] 動を付与するように上下の試験片掴み部にそれぞれ接続
した2台の回転用モータ、試験片に荷重を負荷する荷重
負荷用モータ、試験片に作用する荷重を計測するロード
セルを備えた荷重試験装置と、前記荷重試験装置を挟ん
で対向し直線上に配設したX線源J3よびX線検出器と
、前記X線源の作動を制御するX線制御部と、前記荷重
試験装置の駆動を制御する試験装置制御部と、X線制御
部と試験装置制御部への指示を出すとともに前記X線検
出器からのデータをデータ収集部を介して収録しX線C
T像を再構成計算するデータ処理部と、データ処理の結
果を出力する画像表示装置とで構成されたことを特徴と
するものである。
[Means to solve the problem] Two rotating motors connected to the upper and lower specimen gripping parts to impart motion, a load-bearing motor that applies a load to the specimen, and a load that acts on the specimen. a load test device equipped with a load cell that measures the load, an X-ray source J3 and an X-ray detector arranged in a straight line facing each other across the load test device, and an X-ray control that controls the operation of the X-ray source. a test equipment control unit that controls the driving of the load testing equipment, an X-ray control unit, and a test equipment control unit that issues instructions to the X-ray detector and records data from the X-ray detector via a data collection unit. X-ray C
The present invention is characterized in that it is comprised of a data processing section that performs reconstruction calculations on a T image, and an image display device that outputs the results of the data processing.

[作用] 以下図面を参照しながら、本発明の詳細について説明す
る。
[Operation] The details of the present invention will be described below with reference to the drawings.

第1図は本発明を構成する 荷重試験装置の断面図で、
1は荷重負荷用モータ、2は該モータ軸と接続されたネ
ジ軸、3は上部にネジ軸2と甥合する雌ねじが切られた
部材で、同部材にはそれが回転ぜずに上下移動するよう
に案内する軸受4a、4bが固定されている。また5a
、5bは試験片回転用モータで、上部回転用モータ5a
の軸には試験片掴み部6aが接続されており、そして下
部回転用モータ5bの軸にはロードセル7を介して試験
片掴み部6bが接続されている。8a。
FIG. 1 is a sectional view of the load testing device that constitutes the present invention.
1 is a motor for applying a load, 2 is a screw shaft connected to the motor shaft, and 3 is a member having a female thread cut on the upper part to fit with the screw shaft 2, and the member has a mechanism that allows it to move up and down without rotating. Bearings 4a and 4b are fixed to guide the movement. Also 5a
, 5b is a motor for rotating the test piece, and the motor 5a for rotating the upper part is
A test piece gripping section 6a is connected to the shaft of the lower rotating motor 5b, and a test piece gripping section 6b is connected via a load cell 7 to the shaft of the lower rotation motor 5b. 8a.

8bは部材3を引張方向に摺動させるための案内軸、9
は試験片である。
8b is a guide shaft for sliding the member 3 in the tensile direction; 9
is the test piece.

第2図は本発明の全体を示す構成図で、11は第1図に
示した荷重試験装置、12は前記試験片9の断面を示す
。13は荷重試験装置の制御部、14はX線源、15は
X線制御部、16は扇状X線ビーム、17はX線検出器
、18はデータ収集部、19は上記18によって収集さ
れたX線投影データを記憶しCT両画像再構成計算を行
うとともに、上記制御部13および15の制御を行うた
めのデータ処理部、20は画像表示装置である。
FIG. 2 is a block diagram showing the entire structure of the present invention, in which reference numeral 11 shows the load test device shown in FIG. 1, and 12 shows a cross section of the test piece 9. 13 is the control unit of the load test device, 14 is the X-ray source, 15 is the X-ray control unit, 16 is the fan-shaped X-ray beam, 17 is the X-ray detector, 18 is the data collection unit, and 19 is the data collected by the above 18. A data processing unit 20 is an image display device that stores X-ray projection data and performs CT image reconstruction calculations, as well as controls the control units 13 and 15.

次に本装置による測定方法について説明する。Next, a measurement method using this device will be explained.

まず第1図において、試験片9を試験片掴み部6a、6
bにセットした後、荷重負荷用モータ1とネジ軸2を回
転させることによって部材3を弓張方向に動かし、試験
片9に張力を加える。張力はロードセル7によって計測
され、予め設定した値に達すると該モータlが停止する
。そして張カ一定の状態で試験片9のX線断層撮影を行
うためX線源14を作動させ、まずステップ角θ=0°
におけるX線投影データを収集する。続いて上部および
下部回転用モータ5a、5bにより、試験片を引張方向
の軸を中心として所定のステップ角△θ(例えば1°)
だけ回転させた後、該モータ5a、5bを停止してθ−
△θてのX線投影データを収集する。
First, in FIG. 1, the test piece 9 is held at the test piece gripping portions 6a, 6.
After setting the test specimen 9 to the position b, the member 3 is moved in the bowing direction by rotating the load applying motor 1 and the screw shaft 2, and tension is applied to the test piece 9. The tension is measured by a load cell 7, and when the tension reaches a preset value, the motor 1 is stopped. Then, in order to perform X-ray tomography of the test piece 9 with the tension constant, the X-ray source 14 is activated, and the step angle θ=0°.
Collect X-ray projection data at. Next, the upper and lower rotating motors 5a and 5b rotate the test piece at a predetermined step angle Δθ (for example, 1°) about the axis in the tensile direction.
After rotating the motors 5a and 5b, the motors 5a and 5b are stopped and
Collect X-ray projection data at Δθ.

このようにして、△θおきに試験片の回転角が画像再構
成に必要な角度に達するまで、各角度におけるX線投影
データを収集し、その後は、該モタ5a、、5bを逆転
さぜ、θ−0°まて試験片を戻す。なお回転用モータ5
a、5bは、それぞれ高分解能のエンコーダーを内蔵し
ており、エンコーダーからのパルス数を比較することに
よって、両モータを同期して回転させ、試験片には回転
による捩り応力が加わらない方法を採用している。
In this way, X-ray projection data at each angle is collected every Δθ until the rotation angle of the test piece reaches the angle required for image reconstruction, and then the motors 5a, 5b are reversed. , θ-0° and return the test piece. Note that the rotation motor 5
A and 5b each have a built-in high-resolution encoder, and by comparing the number of pulses from the encoder, both motors are rotated synchronously, using a method that does not apply torsional stress due to rotation to the test piece. are doing.

第2図のデータ処理部19は、X線制御部15.荷重試
験装置制御部13等の制御を行うとともに、データ収集
部18からX線投影データを収録してCT両画像再構成
計算を行い、その結果を画像表示装置20に出力する。
The data processing section 19 in FIG. 2 includes the X-ray control section 15. It controls the load test device control section 13 and the like, records X-ray projection data from the data collection section 18, performs CT and CT image reconstruction calculations, and outputs the results to the image display device 20.

以上のようにして、ある一定張力のもとで特定断面の断
層像が得られるが、張力を増やした場合の断層像をとる
とすれば、ステップ角θ=0°の状態で負荷用モータ1
を再度動かして、所望の張力下における断層像を上述の
手段で測定すればよい。また異った位置例えば試験片長
手方向の断層像を得る場合は、試験片12とX線源14
及びX線検出器17との相対的位置を変える必要がある
が、そのためには荷重試験装置11をZ軸ステージ(図
示なし)にのせて該試験装置を上下し、所定の位置にお
ける断層像を同様の手段で測定すればよい。
As described above, a tomographic image of a specific cross section can be obtained under a certain tension, but if we take a tomographic image when the tension is increased, the load motor 1 is
may be moved again, and a tomographic image under the desired tension may be measured by the above-mentioned means. In addition, when obtaining a tomographic image at a different position, for example in the longitudinal direction of the test piece, the test piece 12 and the X-ray source 14 are
It is necessary to change the relative position of the load test device 11 and the X-ray detector 17. To do this, place the load test device 11 on a Z-axis stage (not shown), move the test device up and down, and obtain a tomographic image at a predetermined position. It can be measured using a similar method.

[実施例] 以下に、本発明の一実施例について説明する。[Example] An embodiment of the present invention will be described below.

試験片としては、平行部の長さが20mm、幅3mm、
板厚1.5mmで、材質は炭化珪素を強化繊維としたア
ルミマトリックスの複合材料を用いた。本試験片を掴み
部にセットした後、荷重0の状態で予めX線断層撮影を
行った結果、試験片中心部に試験片幅方向に伸びた約長
さ50LLm、幅2011mのマトリックス割れが見つ
かった。この試験片にっいて、引張応力を段陽的に変え
ながら断層撮影を行ったところ、クラックが進展拡大す
る状況や、クラックの先端が強化繊維に到達して48 
iffが破断する様子がX線CT断層像から観測された
As a test piece, the length of the parallel part is 20 mm, the width is 3 mm,
The plate thickness was 1.5 mm, and the material used was an aluminum matrix composite material with silicon carbide as reinforcing fibers. After setting this test piece in the grip part, we performed X-ray tomography in advance with no load. As a result, a matrix crack with a length of approximately 50LLm and a width of 2011m extending in the width direction of the test piece was found in the center of the test piece. Ta. When we performed tomography of this test piece while changing the tensile stress in a step-by-step manner, we found that the crack progressed and expanded, and that the tip of the crack reached the reinforcing fibers.
IF fracture was observed from the X-ray CT tomogram.

またAE変換子を試験片に取りイ」けて同時にAE計測
を行うことにより、マトリックス割れの進展や繊維破断
にともなって特徴のある八Eが放出されることがわかっ
た。
Furthermore, by attaching an AE transducer to a test piece and performing AE measurements at the same time, it was found that characteristic 8E was released as matrix cracks progressed and fibers broke.

[発明の効果] 以」二説明したように本発明によれば、荷重負荷状態で
試験片を]80°以上回転可能な荷重試験装置と、該試
験片をはさんでX線源及びX線検出器を配置し、X線断
層撮影を行うことによって、弓弦試験中の材料内部の破
壊状況を高分解能て観察することがてきる。なお以上の
説明は全て試験片の負荷は引張荷重としてきたが、荷重
負荷用モクの回転方向を反対にすれば圧縮荷重状態での
観察や、さらには上部と下部回転用モータの回転角を変
えることによって、試験片に捩り荷重を加えた後捩り荷
重一定の状態を保つように上部と下部回転用モータを同
期して回転させることによって、捩り状態での破壊状況
も観察することが−Cきる。
[Effects of the Invention] As explained below, according to the present invention, there is provided a load testing device capable of rotating a test piece by 80 degrees or more in a loaded state, and an X-ray source and an By arranging a detector and performing X-ray tomography, it is possible to observe with high resolution the state of destruction inside the material during the bow string test. In all of the above explanations, the load on the test piece was assumed to be a tensile load, but by reversing the rotation direction of the load-bearing mok, it is possible to observe a compressive load state, and even change the rotation angle of the upper and lower rotation motors. By rotating the upper and lower rotation motors synchronously to maintain a constant torsional load after applying a torsional load to the test piece, it is also possible to observe the failure state in a torsional state. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を構成する荷重試験装置の構造を示す模
式断面図、第2図は本発明の全体を示す構成図である。 ]・・荷重負荷用モータ、2・・・ネジ軸、3・・・構
造部イA、4a、4b−軸受1rf 、  5 a、 
、 5 b −J:、部および下部回転用モータ、6a
、6b・・・上部および下部掴み部、7・・ローミルセ
ル、8a、8b・・案内軸、9・・試験片、11・荷重
試験装置、12  試験片(断面のみを示す)、13・
荷重試験装置制御部、]4・・X線源、15・X線制御
部、16・扇状X線ヒム、17・・X線検出器、18・
・データ収集部、19・・デク処理部、20・・画像表
示装置。 代理人 弁理士 秋 沢 政 光 他1名
FIG. 1 is a schematic sectional view showing the structure of a load testing device constituting the present invention, and FIG. 2 is a configuration diagram showing the entirety of the present invention. ]... Load loading motor, 2... Screw shaft, 3... Structure part A, 4a, 4b-bearing 1rf, 5 a,
, 5b-J: part and lower part rotation motor, 6a
, 6b... Upper and lower gripping parts, 7... Low mill cell, 8a, 8b... Guide shaft, 9... Test piece, 11. Load test device, 12. Test piece (only cross section shown), 13.
Load test device control section,] 4.. X-ray source, 15. X-ray control section, 16. Fan-shaped X-ray beam, 17..
- Data collection unit, 19... Deku processing unit, 20... Image display device. Agent: Patent attorney Masamitsu Akizawa and 1 other person

Claims (1)

【特許請求の範囲】[Claims]  試験片の荷重方向軸回りに180°以上の回動を付与
するように上下の試験片掴み部にそれぞれ接続した2台
の回転用モータ、試験片に荷重を負荷する荷重負荷用モ
ータ、試験片に作用する荷重を計測するロードセルを備
えた荷重試験装置と前記荷重試験装置を挟んで対向し直
線上に配設したX線源およびX線検出器と、前記X線源
の作動を制御するX線制御部と、前記荷重試験装置の駆
動を制御する試験装置制御部と、X線制御部と試験装置
制御部への指示を出すとともに前記X線検出器からのデ
ータをデータ収集部を介して収録しX線CT像を再構成
計算するデータ処理部と、データ処理の結果を出力する
画像表示装置とで構成されたことを特徴とする材料評価
装置。
Two rotating motors connected to the upper and lower specimen gripping parts to rotate the specimen by more than 180° around the axis in the loading direction, a load motor that applies the load to the specimen, and the specimen. a load test device equipped with a load cell that measures the load acting on the load test device; an X-ray source and an X-ray detector arranged in a straight line facing each other across the load test device; and an X-ray detector that controls the operation of the X-ray source. A ray control section, a test device control section that controls the drive of the load testing device, an X-ray control section, a test device control section that issues instructions to the X-ray control section, and a test device control section that sends data from the X-ray detector through a data collection section. A material evaluation device comprising: a data processing unit that performs reconstruction calculations on recorded X-ray CT images; and an image display device that outputs the results of data processing.
JP2104893A 1990-04-20 1990-04-20 Material evaluation device Expired - Fee Related JPH07104294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2104893A JPH07104294B2 (en) 1990-04-20 1990-04-20 Material evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2104893A JPH07104294B2 (en) 1990-04-20 1990-04-20 Material evaluation device

Publications (2)

Publication Number Publication Date
JPH042954A true JPH042954A (en) 1992-01-07
JPH07104294B2 JPH07104294B2 (en) 1995-11-13

Family

ID=14392841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2104893A Expired - Fee Related JPH07104294B2 (en) 1990-04-20 1990-04-20 Material evaluation device

Country Status (1)

Country Link
JP (1) JPH07104294B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3007522A1 (en) * 2013-06-20 2014-12-26 Ecole Nationale Superieure De Mecanique Et D Aerotechnique MECHANICAL TENSION / COMPRESSION AND / OR TORSION MECHANICAL SOLICITATION DEVICE
CN107014841A (en) * 2017-05-25 2017-08-04 中国科学技术大学 A kind of SR CT mechanical test systems and SR CT mechanical test methods

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4493102B2 (en) * 2006-05-24 2010-06-30 国立大学法人 千葉大学 Dynamic shooting system
JP5220581B2 (en) * 2008-12-24 2013-06-26 本田技研工業株式会社 X-ray analyzer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4550255A (en) * 1983-07-05 1985-10-29 The United States Of America As Represented By The Secretary Of The Air Force Void detection and composition measurements in composite wires
US4710946A (en) * 1985-08-06 1987-12-01 Amoco Corporation Method and apparatus for X-ray video fluoroscopic analysis of rock samples

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4550255A (en) * 1983-07-05 1985-10-29 The United States Of America As Represented By The Secretary Of The Air Force Void detection and composition measurements in composite wires
US4710946A (en) * 1985-08-06 1987-12-01 Amoco Corporation Method and apparatus for X-ray video fluoroscopic analysis of rock samples

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3007522A1 (en) * 2013-06-20 2014-12-26 Ecole Nationale Superieure De Mecanique Et D Aerotechnique MECHANICAL TENSION / COMPRESSION AND / OR TORSION MECHANICAL SOLICITATION DEVICE
CN107014841A (en) * 2017-05-25 2017-08-04 中国科学技术大学 A kind of SR CT mechanical test systems and SR CT mechanical test methods

Also Published As

Publication number Publication date
JPH07104294B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
Tsao et al. Computerized tomography and C-Scan for measuring delamination in the drilling of composite materials using various drills
CN106053213A (en) Manual loading device for in-situ tensile test by industrial CT (computed tomography)
CN106018089B (en) 3 D defects reconstruct in-situ test device
CN111948050A (en) Carbon fiber/epoxy resin three-dimensional woven composite material pulling-pulling fatigue damage evolution research test method based on synchrotron radiation CT
JP2020046217A (en) Material testing machine and radiation CT device
Kim et al. The nondestructive evaluation of advanced ceramics and ceramic-matrix composites
JPH042954A (en) Apparatus for material evaluation
JP6424763B2 (en) Bending tester for X-ray observation
Chang et al. Real-time characterization of damage growth in graphite/epoxy laminates
Hall et al. Strain localisation in sand under triaxial loading: characterisation by x-ray micro tomography and 3D digital image correlation
JPH05223756A (en) Material evaluation device
Bache et al. In-situ assessment of fracture in SiCf/SiC under computed X-ray tomography
CN107677545A (en) It is a kind of to be used for industry CT original position stretching or the manual loading device of compression test
JP4493102B2 (en) Dynamic shooting system
CN208239215U (en) A kind of drill bit bond strength test device
Nayak et al. Small delamination detection in carbon fibre reinforced polymer composite beam by NDT and vibration analysis
JPH05223713A (en) Material testing device
CN112557176A (en) Buckling-restrained device suitable for plate-shaped composite material tension-compression fatigue damage evolution test
Ullah et al. Damage in woven CFRP laminates subjected to low velocity impacts
Lisztwan et al. Mechanical fracture parameters of concrete drill-core specimens supported by a slenderness ratio study
Chen et al. Acoustography as a means of monitoring damage in composites during static or fatigue loading
CN212845113U (en) Nondestructive testing X ray normal position on-line measuring device
Sipaun et al. Examination of void and rebar in concrete structures using portable gamma ray tomography scanner
Panella et al. Thermal and ultrasonic analysis of fatigue damaged CFRP samples under traction and bending load
Ravikiran et al. Detection and evaluation of impact damage in CFRP laminates using ultrasound c-scan and IR thermography