JPH0429377B2 - - Google Patents

Info

Publication number
JPH0429377B2
JPH0429377B2 JP58102598A JP10259883A JPH0429377B2 JP H0429377 B2 JPH0429377 B2 JP H0429377B2 JP 58102598 A JP58102598 A JP 58102598A JP 10259883 A JP10259883 A JP 10259883A JP H0429377 B2 JPH0429377 B2 JP H0429377B2
Authority
JP
Japan
Prior art keywords
time
pulse
image
magnetic field
relaxation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58102598A
Other languages
Japanese (ja)
Other versions
JPS59228152A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58102598A priority Critical patent/JPS59228152A/en
Publication of JPS59228152A publication Critical patent/JPS59228152A/en
Publication of JPH0429377B2 publication Critical patent/JPH0429377B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/483NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy
    • G01R33/4833NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy using spatially selective excitation of the volume of interest, e.g. selecting non-orthogonal or inclined slices

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はNMRイメージング装置において、特
に緩和時間に由来する情報をイメージングする際
に、励起パルスの条件の変化を模擬することによ
り、各種のコントラスト比の像を容易に得る方法
に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is applicable to NMR imaging devices, in particular when imaging information derived from relaxation time, by simulating changes in excitation pulse conditions. The present invention relates to a method for easily obtaining an image of.

〔発明の背景〕[Background of the invention]

NMRイメージング装置では、磁界中に置かれ
た試料の原子核が才差運動をし、この角速度は、
磁場の強さに比例することと、勾配磁場を印加し
て、空間座標の各点で前記角周波数を少しずつず
らせることにより位置情報を知ることの2つを利
用して画像の再構成を行つている。さて、静磁場
H0の中に置かれた試料の原子核は第1図の実線
で示したようにH0の方向z軸の回りに才差運動
をする。この時の運動の角周波数ω0は静磁場H0
の強さに比例し、 ω0=γH0 ……(1) の関係がある。ここでγは磁気回転比と呼ばれ、
核固有の値である。この時x方向にω0と等しい
高周波磁場H1を印加するとこのエネルギーを受
けて、才差運動が急に激しくなり核磁気共鳴現象
を起す。この結果z軸の回りに回転していた磁化
Mはy軸方向に倒されることになる。この倒され
る角度θは受けたエネルギーに比例する。このよ
うにして励起された核は元の熱平衡状態に戻つて
行く。この時のエネルギー放出過程にスピン−ス
ピン間とスピン−格子間があり、その緩和の時定
数を各々横緩和時間T2と縦緩和時間T1と呼ぶ。
次に縦緩和T1の測定原理の一例を第2図を用い
て説明する。前述の如くH1により180°パルスを
印加しz方向を向いていた磁化は−z方向に倒さ
れる。その後はスピン−格子間の縦緩和過程によ
り元のz方向に緩和する。この時の磁化の様子を
第3図に示す。180°パルス後の任意の時間τ1後の
磁化Mは M=M0(1−2e-1/T1) ……(2) (2)式で表わされる。この結果、T1は2つの測定
点τ1とτ2よりM1とM2を測定し、 T1=−τ2/n(1+M2/M1)−n2……(3) (3)式により計算することが出来る。このT1の測
定精度を向上するため、さらに多数の測定点を利
用することも出来る。しかしながら第3図に示し
たような縦緩和の過程は直接情報として検知でき
ず、180°パルス印加後の任意の時刻τに90°パル
スによりY,Z面に倒しての自由誘導信号を検出
する必要がある。一回の測定後は十分な緩和を待
つて、次の測定に入る必要があり、このようなた
めτを変えた多数の測定点を得る為には相当な測
定時間を要することになる。
In an NMR imaging device, the atomic nuclei of a sample placed in a magnetic field precess, and this angular velocity is
Image reconstruction is performed using two factors: being proportional to the strength of the magnetic field, and obtaining positional information by applying a gradient magnetic field and gradually shifting the angular frequency at each point in the spatial coordinates. I'm going. Now, static magnetic field
The atomic nucleus of the sample placed in H 0 precesses around the z-axis in the direction of H 0 as shown by the solid line in Figure 1. The angular frequency ω 0 of the motion at this time is the static magnetic field H 0
is proportional to the strength of ω 0 = γH 0 ……(1). Here, γ is called the gyromagnetic ratio,
This value is unique to the nucleus. At this time, when a high frequency magnetic field H 1 equal to ω 0 is applied in the x direction, this energy is received, and the precession suddenly becomes intense, causing a nuclear magnetic resonance phenomenon. As a result, the magnetization M that was rotating around the z-axis is tilted in the y-axis direction. This tilt angle θ is proportional to the received energy. The excited nucleus returns to its original state of thermal equilibrium. The energy release process at this time includes spin-spin and spin-lattice relaxation, and the time constants of their relaxation are called the transverse relaxation time T 2 and the longitudinal relaxation time T 1 , respectively.
Next, an example of the principle of measuring longitudinal relaxation T 1 will be explained using FIG. 2. As mentioned above, a 180° pulse is applied by H1 , and the magnetization that was directed in the z direction is turned to the -z direction. Thereafter, it relaxes in the original z direction due to the spin-lattice longitudinal relaxation process. The state of magnetization at this time is shown in FIG. The magnetization M after an arbitrary time τ 1 after the 180° pulse is expressed by the following formula: M=M 0 (1−2e 1/T1 ) ……(2) (2). As a result, T 1 measures M 1 and M 2 from two measurement points τ 1 and τ 2 , T 1 = −τ 2 /n (1 + M 2 /M 1 ) − n2……(3) (3) It can be calculated using the formula. In order to improve the measurement accuracy of this T 1 , it is also possible to use a larger number of measurement points. However, the process of longitudinal relaxation shown in Figure 3 cannot be directly detected as information, and the free induction signal is detected by tilting it to the Y and Z planes with a 90° pulse at an arbitrary time τ after applying the 180° pulse. There is a need. After one measurement, it is necessary to wait for sufficient relaxation before starting the next measurement, and for this reason, it takes a considerable amount of measurement time to obtain a large number of measurement points with different τ.

さて、NMRイメージングでは、主に密度分布
を知る密度像、緩和時間により強調された密度像
そして純粋な緩和時間像などがあり、各々臨床的
にも意味を持つている。ここで緩和時間により強
調された像とは、前記の180°パルス後の90°パル
スまでの時間τを変化させて密度像を緩和による
効果で強調したものである。例えば人間の頭部の
白質と灰白質のT1の値は各々400ms、600msなど
の値であり、密度像では両者を区別しにくいが、
強調像ではコントラスト良く両者を区別すること
も可能である。このようなため密度像よりも強調
像が臨床的に重要な意味を持つ場合が多い。τ1
時、緩和時間によつて180°−τ−90°のを適当に
選択する必要がある。即ち、再構成画像上におい
てこのτを変えることによつて、同一部位を明か
るくも暗くも表示できることになる。このこと
は、あらかじめ予測のつきにくい緩和時間を持つ
組織或いは緩和時間のいろいろに異なつた組織の
混在するものの描写においては前記τをいろいろ
変えて試行錯誤する必要が生じる。一方NMRイ
メージングでは計測に要する時間が長い欠点があ
る。一回の励起後、次の励起をするまで少なくと
も緩和時間の3倍位の時間を待つ必要があり、1
回の測定において1秒から1.5秒位必要であり、
1画面を構成するのに通常の手段で最低100回以
上の励起が必要である。このため2分以上の長い
測定時間を要することになる。この時前記τを変
化させて、別の条件を設定すれば、更に何倍もの
時間を要することになる。このように従来の方式
では180°−τ−90°のパルスシーケンスにおいて、
最適なコントラストを持つ像の再生には、計測時
間が長大になり過ぎる欠点があり実用的では無か
つた。
Now, in NMR imaging, there are mainly density images that show density distribution, density images emphasized by relaxation time, and pure relaxation time images, each of which has clinical significance. Here, the image emphasized by the relaxation time is an image in which the density image is emphasized by the effect of relaxation by changing the time τ from the 180° pulse to the 90° pulse. For example, the T 1 values of white matter and gray matter in the human head are 400 ms and 600 ms, respectively, and it is difficult to distinguish between the two in density images.
It is also possible to distinguish between the two with good contrast in the enhanced image. For this reason, enhanced images often have more clinical significance than density images. When τ 1 , it is necessary to appropriately select 180°−τ−90° depending on the relaxation time. That is, by changing this τ on the reconstructed image, the same region can be displayed brightly or darkly. This means that when depicting a tissue with a relaxation time that is difficult to predict in advance or a mixture of tissues with various relaxation times, it is necessary to perform trial and error by varying the value of τ. On the other hand, NMR imaging has the disadvantage that measurement takes a long time. After one excitation, it is necessary to wait at least three times the relaxation time before the next excitation.
It takes about 1 to 1.5 seconds for each measurement.
It takes at least 100 excitations using normal means to construct one screen. Therefore, a long measurement time of 2 minutes or more is required. At this time, if the above-mentioned τ is changed and another condition is set, the time will be many times longer. In this way, in the conventional method, in the 180°−τ−90° pulse sequence,
Reproducing an image with optimal contrast has the disadvantage that measurement time is too long, making it impractical.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記欠点に鑑み、励起パルス条
件を模擬することにより、各種緩和時間の混在す
る画像のコントラストを任意に変化させて、最適
な画像を得る為のパルス条件を得ると同時に、診
断目的に応じた好適なコントラストを容易に得る
方法を提供することにある。
In view of the above drawbacks, the purpose of the present invention is to arbitrarily change the contrast of an image containing various relaxation times by simulating excitation pulse conditions, thereby obtaining pulse conditions for obtaining an optimal image, and at the same time making it possible to diagnose The object of the present invention is to provide a method for easily obtaining a suitable contrast depending on the purpose.

〔発明の概要〕[Summary of the invention]

緩和時間のイメージングは通常、励起パルスの
時間を変えた2つの像より時定数を計算し、これ
を緩和時間として像を再生しているが、本発明は
この際緩和時間そのものを計算せずに、前記τに
より緩和時間曲線にのつた値を内挿法又は外挿法
により求め、緩和時間で強調された密度分布が得
られることを特徴とする。
Normally, in relaxation time imaging, the time constant is calculated from two images with different excitation pulse times, and the image is reproduced using this as the relaxation time. However, the present invention does not calculate the relaxation time itself. The method is characterized in that the value of τ on the relaxation time curve is obtained by interpolation or extrapolation, and a density distribution emphasized by the relaxation time is obtained.

〔発明の実施例〕 以下第4図に示す実施例に従い本発明を詳細に
説明する。高周波パルスのシーケンスを作るシー
ケンサ1の指令に従いトランスミツタ2は駆動さ
れてNMR本体部3の送信コイルに高周波パルス
を印加する。これにより観測できる自由誘導信号
はNMR本体部3のレシーバコイルにより検知さ
れ、データ前処理器4に送られる。データ前処理
器4ではこれらの信号から2次元像を再構成す
る。この再構成法ではNMRイメージングにおい
て用いられる逆投影法、2−Dフーリエ変換法な
どあるがこの詳細は既に良く知られているので省
略する。ここで作成された像は2次元メモリ5に
送られる。2次元メモリ5は2面用意し5−1と
5−2にする。画面合成器6はメモリ5−1とメ
モリ5−2の2枚の画面から送られてくる信号よ
り後で詳しく説明する合成処理をして表示器7に
送り観察することができる。全体の制御はコント
ローラ8が受け持つて流れの制御を行つている。
[Embodiments of the Invention] The present invention will be described in detail below with reference to the embodiments shown in FIG. The transmitter 2 is driven in accordance with instructions from a sequencer 1 that generates a sequence of high-frequency pulses, and applies high-frequency pulses to the transmitting coil of the NMR main body 3. The free induction signal that can be observed thereby is detected by the receiver coil of the NMR main body 3 and sent to the data preprocessor 4. The data preprocessor 4 reconstructs a two-dimensional image from these signals. This reconstruction method includes a back projection method and a 2-D Fourier transform method used in NMR imaging, but the details are already well known and will therefore be omitted. The image created here is sent to the two-dimensional memory 5. The two-dimensional memory 5 has two sides 5-1 and 5-2. The screen synthesizer 6 can perform a synthesis process, which will be explained in detail later, on the signals sent from the two screens of the memory 5-1 and the memory 5-2, and send the signals to the display 7 for observation. The controller 8 is in charge of overall control and controls the flow.

先ずシーケンサ1により前述の180°−τ−90°
のパルス系列でτ=0について像を再構成しこれ
5−1に格納する。なおτ=0なる180°−τ−
90°のパルス系列とは文字通りには理解しにくい
が、縦緩和の時間を与えないで磁化を励起して核
磁気共鳴信号を計測すればよい。つまり、180°パ
ルスと90°パルスとを同時に重ねて印加するのと
等価なように−90°パルスを印加し、これにより
生じる核磁気共鳴信号を計測するパルスシーケン
スを用い、前述したように公知の逆投影法もしく
は2−Dフーリエ変換法にしたがつて複数回計測
のデータを2次元データに再構成し、2次元メモ
リ5−1に格納する。この時の任意の絵素上ijの
点での2次元メモリの内容をM1ijとすれば、その
値は(2)式にてτ=0とした値となり、つまりM1ij
=−M0ijである。
First, sequencer 1 calculates the aforementioned 180°−τ−90°.
An image is reconstructed for τ=0 using the pulse sequence 5-1 and stored in 5-1. Note that 180°−τ− where τ=0
A 90° pulse sequence is difficult to understand literally, but it is sufficient to excite magnetization without giving time for longitudinal relaxation and measure nuclear magnetic resonance signals. In other words, a pulse sequence is used in which a -90° pulse is applied, equivalent to applying a 180° pulse and a 90° pulse simultaneously, and the resulting nuclear magnetic resonance signal is measured. The data measured multiple times is reconstructed into two-dimensional data according to the back projection method or the 2-D Fourier transform method, and is stored in the two-dimensional memory 5-1. If the content of the two-dimensional memory at the point ij on any picture element at this time is M 1ij , its value will be the value where τ = 0 in equation (2), that is, M 1ij
= −M 0ij .

次に前記パルス系列のτ=τ1として同様測定し
これを5−2に格納する。つまり、180°パルスを
印加して対象の磁化を反磁場方向(第2図の−z
方向)に反転し、τ1の時間だけ各磁化の縦緩和を
待つて90°パルスを印加する(厳密に言えば、
180°パルスと90°パルスのパルス中心の時間差が
τ1)と言うパルスシーケンスで複数回の計測を行
い、2次元データに再構成してメモリ5−2に格
納する。この時の5−2の2次元メモリの内容
M2ijは(以下複雑となるのでijを省略) M2=−M1(1−2e-1/T1) ……(4) (4)式である。
Next, the pulse sequence is similarly measured with τ=τ 1 and stored in 5-2. In other words, a 180° pulse is applied to change the magnetization of the object in the direction of the demagnetizing field (-z in Figure 2).
direction), wait for longitudinal relaxation of each magnetization for a time of τ 1 , and then apply a 90° pulse (strictly speaking,
A plurality of measurements are performed using a pulse sequence in which the time difference between the pulse centers of the 180° pulse and the 90° pulse is τ 1 ), and the data is reconstructed into two-dimensional data and stored in the memory 5-2. Contents of 2D memory in 5-2 at this time
M 2ij is (hereinafter, ij is omitted as it becomes complicated) M 2 = −M 1 (1−2e 1/T1 ) ……(4) Equation (4).

即ちこれで各絵素位置の磁化の第3図の如き縦
緩和の過程のτ=0の点とτ=τ1の点での値が求
まつたのでこれら任意のパラメータτでの値を計
算できることが解る。今任意のτをτxとしてτx
α〓1とすればこの時のMの値Mx(5)式により求めることができる。これを全ての絵
素ijについて計算する。この結果を表示器7で表
示すれば、実際にパラメータτを変えて測定をす
ることなしに所望のτについての結果を容易に知
ることが可能である。つまり上述した2種類のパ
ルスシーケンスによる測定のみを行い、次に画面
合成器6にて(5)式のαの値のみ種々に変更して計
算を行つて目的の部分が最も良く強調された合成
画像を得れば良い。又画面合成器6は上述した計
算によらず、適当な近似関数により内挿法、或い
は外挿法により求めることも可能である。更に
は、M1とM2の比より時定数カーブを決めて、テ
ーブルを索引して利用することも考えられる。
That is, now that we have found the values of the magnetization at each pixel position at the point τ = 0 and the point τ = τ 1 of the longitudinal relaxation process as shown in Figure 3, we can calculate the value at these arbitrary parameters τ. Understand what you can do. Now let any τ be τ x and τ x =
If α = 1 , the value of M at this time M x is It can be obtained using equation (5). This is calculated for all picture elements ij. By displaying this result on the display 7, it is possible to easily know the result for a desired τ without actually changing the parameter τ and performing measurements. In other words, measurements are only made using the two types of pulse sequences described above, and then the screen synthesizer 6 performs calculations by varying the value of α in equation (5), resulting in a synthesis that best emphasizes the desired part. Just get the image. In addition, the screen synthesizer 6 can also be calculated by interpolation or extrapolation using an appropriate approximation function, instead of using the calculations described above. Furthermore, it is also possible to determine a time constant curve from the ratio of M 1 and M 2 and use it by indexing a table.

以上の説明では、縦緩和時間T1の強調像につ
いて述べたが、横緩和時間Tzについても同様の
手段を用いて同様の効果が得られることは明らか
である。横緩和時間Tzの強調像は90°−τ−180°
のパルス系列で共鳴のエコーを計測するパルスシ
ーケンスを用い、パルス間隔τをパラメータとし
て適切な値を選んで計測すれば得られるが、本発
明に従えば、パラメータτを種々に変更して計測
を試みるのでなく、2種類のτのみ採用して計測
を行い、上述したのと同様に得られた2枚の画像
から緩和過程の式に基く計算式により任意のτの
値の計測に対応した合成画像を得る。
In the above explanation, the enhanced image of the longitudinal relaxation time T 1 has been described, but it is clear that the same effect can be obtained using the same means for the transverse relaxation time T z as well. The enhanced image of transverse relaxation time T z is 90°−τ−180°
This can be obtained by selecting an appropriate value for the pulse interval τ as a parameter using a pulse sequence that measures resonance echoes using a pulse sequence of Instead of experimenting, measurements are taken using only two types of τ, and from the two images obtained in the same way as described above, a calculation formula based on the relaxation process formula is used to synthesize a composition that corresponds to the measurement of any value of τ. Get the image.

〔発明の効果〕〔Effect of the invention〕

以上詳しく説明した如く、本発明によれば、所
望のパルスシーケンスを用いて測定することな
く、密度像から緩和時間で強調された種々の時間
に対応する画像を容易に得ることができるため、
種々の緩和時間の混在する組織等を最良のコント
ラストで観察可能となつた。この結果病変部の診
断を容易ならしめ臨床上大いに有益である。なお
従来の方法ではひとつのτに対して1回の測定を
要するため2分から10分以上の時間を要し、この
結果、τの条件を変えて複数の画像を得ることは
殆んど不可能に近かつたが、本方法により、被検
者に余分な苦痛を与えずに容易に最良の画面が得
られる効果がある。
As explained in detail above, according to the present invention, images corresponding to various times emphasized by relaxation time can be easily obtained from a density image without performing measurements using a desired pulse sequence.
It is now possible to observe tissues with various relaxation times with the best contrast. As a result, the diagnosis of the lesion is facilitated, which is of great clinical benefit. In addition, the conventional method requires one measurement for one τ, which takes 2 minutes to more than 10 minutes, and as a result, it is almost impossible to obtain multiple images by changing the τ conditions. However, this method has the effect of easily obtaining the best screen without causing unnecessary pain to the subject.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は核磁気共鳴現象を説明するた
めの説明図、第3図は縦緩和を示す曲線、第4図
は本発明の一実施例である。
1 and 2 are explanatory diagrams for explaining the nuclear magnetic resonance phenomenon, FIG. 3 is a curve showing longitudinal relaxation, and FIG. 4 is an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 複数の高周波磁場パルスを含むパルスシーケ
ンスを用いて対象の核スピンを励起して核磁気共
鳴信号を順次計測し、これらの核磁気共鳴信号か
ら前記対象の画像を得るNMRイメージング方法
であり、前記パルスシーケンスはその高周波磁場
パルス間の時間間隔に依存して前記核磁気共鳴信
号に核スピンの緩和の効果を与えるものである
NMRイメージング方法において、核スピンの緩
和の効果を定める前記記高周波磁場パルス間の時
間間隔として複数の値を選択して定めた複数通り
のパルスシーケンスをそれぞれ実施し、それぞれ
のパルスシーケンスから得られる核磁気共鳴信号
のデータからそれぞれ前記対象の画像を再構成
し、これら複数の画像のデータから前記高周波磁
場パルス間の時間間隔が任意の値であつたときに
得られるべき強調画像を計算により合成すること
を特徴とするNMRイメージング方法。
1. An NMR imaging method that sequentially measures nuclear magnetic resonance signals by exciting nuclear spins of a target using a pulse sequence including a plurality of high-frequency magnetic field pulses, and obtains an image of the target from these nuclear magnetic resonance signals, The pulse sequence imparts a nuclear spin relaxation effect to the nuclear magnetic resonance signal depending on the time interval between the high-frequency magnetic field pulses.
In the NMR imaging method, a plurality of pulse sequences are performed, each of which is determined by selecting a plurality of values as the time interval between the high-frequency magnetic field pulses that determines the effect of nuclear spin relaxation, and the nuclei obtained from each pulse sequence are Images of the object are reconstructed from the data of the magnetic resonance signals, and an enhanced image that should be obtained when the time interval between the high-frequency magnetic field pulses is an arbitrary value is synthesized by calculation from the data of the plurality of images. An NMR imaging method characterized by:
JP58102598A 1983-06-10 1983-06-10 Nmr imaging apparatus Granted JPS59228152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58102598A JPS59228152A (en) 1983-06-10 1983-06-10 Nmr imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58102598A JPS59228152A (en) 1983-06-10 1983-06-10 Nmr imaging apparatus

Publications (2)

Publication Number Publication Date
JPS59228152A JPS59228152A (en) 1984-12-21
JPH0429377B2 true JPH0429377B2 (en) 1992-05-18

Family

ID=14331671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58102598A Granted JPS59228152A (en) 1983-06-10 1983-06-10 Nmr imaging apparatus

Country Status (1)

Country Link
JP (1) JPS59228152A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61249457A (en) * 1985-04-26 1986-11-06 デユ−ク・ユニバ−シテイ− Apparatus for automatic synthesis of nuclear magnetic resonance image
US10002423B2 (en) 2015-09-04 2018-06-19 Canon Kabushiki Kaisha Medical image processing apparatus, medical image processing method, and medical image processing system
JP6417303B2 (en) * 2015-09-04 2018-11-07 株式会社Aze Medical image processing apparatus, control method thereof, and program

Also Published As

Publication number Publication date
JPS59228152A (en) 1984-12-21

Similar Documents

Publication Publication Date Title
US7541809B2 (en) Magnetic resonance imaging apparatus
US8085040B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
US7952356B2 (en) System and method for reconstructing multi-spectral 3D MR images
JP2000135206A5 (en) A device for quantitative MR imaging of water and fat using a quadruple field echo sequence
JP2000135206A (en) Method and device for quantitative mr imaging of water and fat using quartet field echo sequence
US4620154A (en) Imaging method and apparatus for obtaining spin-lattice relaxation time image utilizing nuclear magnetic resonance
JPS60222043A (en) Diagnostic apparatus by nuclear magnetic resonance
JPH11322A (en) Measuring method for reversible contribution quantity to lateral directional relaxation speed in magnetic resonance imaging method (mri)
JP2769473B2 (en) A device that displays the movement of vowels in the body by NMR
JP4493763B2 (en) Magnetic resonance imaging apparatus and image size variable apparatus
JPH1066685A (en) Magnetic resonance imaging device and method therefor
US5241271A (en) Ultra-fast imaging method and apparatus
US7157909B1 (en) Driven equilibrium and fast-spin echo scanning
JPH0429377B2 (en)
JP2002253526A (en) Magnetic resonance imaging system
US7339375B1 (en) Driven equilibrium and fast-spin echo scanning
JP2607466B2 (en) Inspection equipment using nuclear magnetic resonance
JP2002306454A (en) Magnetic resonance imaging apparatus
JPH08103427A (en) Magnetic resonance imaging system
JP3680856B2 (en) Magnetic resonance imaging system
JPH11225995A (en) Magnetic resonance imaging device
JPS6266846A (en) Nmr examination apparatus using chemical shift value
JP2916929B2 (en) MRI equipment
JPH038214B2 (en)
JP2695594B2 (en) MRI equipment