JPH04293770A - Ti-w target material and its manufacture - Google Patents

Ti-w target material and its manufacture

Info

Publication number
JPH04293770A
JPH04293770A JP8164391A JP8164391A JPH04293770A JP H04293770 A JPH04293770 A JP H04293770A JP 8164391 A JP8164391 A JP 8164391A JP 8164391 A JP8164391 A JP 8164391A JP H04293770 A JPH04293770 A JP H04293770A
Authority
JP
Japan
Prior art keywords
powder
target
melting
target material
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8164391A
Other languages
Japanese (ja)
Other versions
JP3037772B2 (en
Inventor
Akitoshi Hiraki
平木 明敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP3081643A priority Critical patent/JP3037772B2/en
Priority to US07/914,544 priority patent/US5306569A/en
Publication of JPH04293770A publication Critical patent/JPH04293770A/en
Application granted granted Critical
Publication of JP3037772B2 publication Critical patent/JP3037772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide the title material hardly developing particles at the time of sputtering. CONSTITUTION:This Ti-W target material is possessed with >=98% area of alloy phase composed of Ti and W at the time of observing the micro structure. Further, this manufacturing method has the feature, in which powder obtd. by executing pluverizing treatment to an ingot obtd. with melting of W and Ti subjected to solution treatment as it is or after executing the solution treatment is sintered. In this case, the melting is desirably executed by electron beam melting under reduced pressure atmosphere. Further, the other manufacturing method has the feature, in which molten metal prepared by melting W and Ti, is made to powder with atomizing method and the sintering process of the obtd. powder is added. Further, in the manufacturing method, in the case of sintering the powder, it is desirable to apply hot isostatic press or hot press.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は半導体デバイスに使用さ
れるバリアメタル層の形成等に用いられるTi−Wター
ゲット材およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Ti--W target material used for forming barrier metal layers used in semiconductor devices and a method for manufacturing the same.

【0002】0002

【従来の技術】近年のLSIの高集積化に伴い、Al配
線と半導体基板Siのコンタクト部における拡散析出物
によるコンタクトマイグレーションなどのAl配線のマ
イグレーションが問題となってきた。その対策として近
年バリアメタル層が検討されてきた。バリアメタル層と
しては、Ti−W薄膜(代表的にはTi:10wt%、
残部Wの組成を有する。)が多く使用され、その形成法
としてはターゲットをスパッタリングする方法が採用さ
れている。
2. Description of the Related Art With the recent increase in the degree of integration of LSIs, migration of Al interconnects, such as contact migration due to diffused precipitates at contact portions between Al interconnects and Si semiconductor substrates, has become a problem. As a countermeasure against this problem, barrier metal layers have been studied in recent years. As the barrier metal layer, a Ti-W thin film (typically Ti: 10 wt%,
The remainder has a composition of W. ) are often used, and the method for forming them is to sputter a target.

【0003】この薄膜用Ti−Wターゲット材は、一般
にW粉末とTi粉末とを混合し、ホットプレスすること
により製造されている。しかしながら、従来のTi−W
ターゲットの原料となるTi粉末は酸素含有量が高く、
酸素含有量の多いターゲットしか得られていなかった。 このような酸素含有量の多いターゲットでは、スパッタ
リング中の酸素の放離により、ターゲットの割れ、生成
皮膜の酸化、皮膜品質のばらつき等が生じて好ましくな
い。
[0003] This Ti-W target material for thin films is generally manufactured by mixing W powder and Ti powder and hot pressing the mixture. However, conventional Ti-W
Ti powder, which is the raw material for the target, has a high oxygen content.
Only targets with high oxygen content were obtained. Such a target with a high oxygen content is undesirable because the release of oxygen during sputtering causes cracks in the target, oxidation of the formed film, variations in film quality, and the like.

【0004】最近、このようなTi−Wターゲットの酸
素含有量を減らす方法として、米国特許4,838,9
35号公報にTi粉末の少なくとも一部を水素化したT
iと置き換えること、あるいはバイノーダル(bino
dal)な粒径分布を有するW粉末と水素化したTi粉
もしくは水素化したTi粉とTi粉の混合物を用いるこ
とにより、高密度で低気孔率のターゲット材が得られる
こと、およびカーボンおよび酸素の含有量を低減できる
ことが開示された。また、同様にTi−Wターゲットの
酸素含有量を低減する方法として、特開昭63−303
017号には、W粉末と水素化したTi粉を混合し、脱
水素後あるいは脱水素しながらホットプレスを行なう方
法が開示されている。この水素化したTi粉末の使用は
、それ自体酸化防止に有効であるとともに、Ti粉末に
比べ破砕性が良好であるため、粉砕時の酸素ピックアッ
プ量を減ずることができるものである。このようにして
、900ppm以下という低酸素濃度のTi−Wターゲ
ットが得られるようになった。このようにTi−Wター
ゲット材においては、酸素の含有量を低減するための研
究が盛んに行なわれている。しかし、上述した公報には
、ターゲットを構成するTiとWの組織がスパッタリン
グにどのような影響をもたらすかを示唆する記載はなく
、合金組織、特にTi相の存在がスパッタにおけるパー
ティクルの発生と関係するということについては全く開
示されていないものである。
Recently, US Pat. No. 4,838,9 has been proposed as a method for reducing the oxygen content of such a Ti-W target.
No. 35 discloses that Ti powder is hydrogenated at least in part.
i can be replaced with i, or binodal (bino
By using a mixture of W powder and hydrogenated Ti powder or hydrogenated Ti powder and Ti powder, which have a particle size distribution of It was disclosed that the content of can be reduced. Similarly, as a method for reducing the oxygen content of a Ti-W target, Japanese Patent Application Laid-Open No. 63-303
No. 017 discloses a method in which W powder and hydrogenated Ti powder are mixed and hot pressed after or while dehydrogenating. The use of this hydrogenated Ti powder is itself effective in preventing oxidation, and since it has better crushability than Ti powder, it is possible to reduce the amount of oxygen picked up during pulverization. In this way, a Ti-W target with a low oxygen concentration of 900 ppm or less can be obtained. As described above, research is being actively conducted to reduce the oxygen content in Ti--W target materials. However, the above-mentioned publication does not contain any information suggesting how the structure of Ti and W that constitutes the target affects sputtering, and the alloy structure, especially the presence of the Ti phase, is related to the generation of particles during sputtering. It is not disclosed at all that this is the case.

【0005】[0005]

【発明が解決しようとする課題】最近の半導体製品の電
極パターンの高密度・細線化に伴い、前述の低酸素濃度
のTi−Wターゲットを用いてスパッタリングしても、
スパッタリングにより成膜した薄膜に巨大粒子、いわゆ
るパーティクルが付着し、電極配線を断線させるという
新たな問題が生じてきた。このパーティクルの発生はT
i−Wターゲットの酸素含有量を減ずるだけでは解決で
きなかった。
[Problem to be Solved by the Invention] With the recent trend toward higher density and thinner electrode patterns in semiconductor products, even when sputtering is performed using the Ti-W target with a low oxygen concentration,
A new problem has arisen in that giant particles, so-called particles, adhere to thin films formed by sputtering, causing disconnections in electrode wiring. The generation of this particle is T
The problem could not be solved simply by reducing the oxygen content of the i-W target.

【0006】本発明者は、上述の問題点を解決するため
にターゲット組織とパーティクル発生との関係を詳細に
検討したところ、粗大Ti粒子がパーティクル発生に関
係することを見出した。すなわち、TiとWの共存下で
は原子量の軽いTiが選択的にスパッタリングされ、粗
大Ti粒子に内包されるW粒子あるいはその近傍のW粒
子が巨大粒子のままターゲット材から飛散することがパ
ーティクル発生の原因の一つであることを見出した。本
発明は、パーティクル発生の極めて少ない組織を制御し
たTi−Wターゲット材およびその製造方法を提供する
ことを目的とする。
[0006] In order to solve the above-mentioned problems, the inventors of the present invention investigated in detail the relationship between the target structure and particle generation, and found that coarse Ti particles are related to particle generation. In other words, under the coexistence of Ti and W, Ti with a light atomic weight is selectively sputtered, and the W particles contained in coarse Ti particles or the W particles near them are scattered from the target material as giant particles, which causes particle generation. I found out that this is one of the causes. An object of the present invention is to provide a Ti-W target material with a controlled structure that generates very few particles, and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】本発明者は、TiとWの
スパッタリング速度の差によるW粒子の飛散のないター
ゲット材として、Ti−W合金相が有効であることを見
出した。すなわち本発明はミクロ組織的に観察してTi
とWからなる合金相の面積が98%以上を占めることを
特徴とするTi−Wターゲット材である。本発明のTi
−Wターゲット材は実質的にTiとWからなる合金相の
みからなり、TiとWの合金であればその組成は問わな
い。ただし、冷却過程で析出する微細なαTiの微少量
を含むことは特に問題とならないのでミクロ組織的に観
察して前記Ti−Wの合金相が面積で98%以上を占め
ていることが必要である。この組織の条件を本発明では
「実質的にTiとWからなる合金相のみからなる」と表
現している。本発明のターゲット材はαTiの微少量(
面積割合で2%未満)を含むことはあるものの、実質的
にTi−W合金相のみからなり、従来のような遊離した
W相やTi相を含むことがないので、WとTiのスパッ
タリング速度の差に起因する生成膜上のパーティクルの
発生を無くすことができる。
[Means for Solving the Problems] The present inventors have found that a Ti--W alloy phase is effective as a target material that does not cause scattering of W particles due to the difference in sputtering speed between Ti and W. That is, in the present invention, Ti
This is a Ti-W target material characterized in that the area of the alloy phase consisting of and W occupies 98% or more. Ti of the present invention
-W target material consists essentially only of an alloy phase consisting of Ti and W, and its composition does not matter as long as it is an alloy of Ti and W. However, since the presence of a small amount of fine αTi that precipitates during the cooling process is not a particular problem, it is necessary that the Ti-W alloy phase occupies 98% or more of the area by microstructural observation. be. In the present invention, the condition of this structure is expressed as "substantially consisting only of an alloy phase consisting of Ti and W." The target material of the present invention contains a very small amount of αTi (
Although it may contain less than 2% (area ratio), it consists essentially only of Ti-W alloy phase and does not contain free W phase or Ti phase as in the conventional case, so the sputtering rate of W and Ti can be reduced. It is possible to eliminate the generation of particles on the produced film due to the difference in .

【0008】また、本発明の製造方法の1つは、WとT
iを溶解して得たインゴットを溶体化処理して得ること
を特徴とするTi−Wターゲットの製造方法である。タ
ーゲットの形状にはインゴットを切断加工して作ればよ
い。また、本発明の他の製造方法はWとTiを溶解して
得たインゴットを溶体化処理した後、粉体化処理し、得
られた粉末を焼結して得ることを特徴とするTi−Wタ
ーゲットの製造方法である。また、本発明のさらに他の
製造方法はWとTiを溶解してなる溶湯をアトマイズ法
により粉末とし、得られた粉末を焼結して得ることを特
徴とするTi−Wターゲットの製造方法である。
[0008] Also, one of the manufacturing methods of the present invention is that W and T
This is a method for producing a Ti-W target, characterized in that it is obtained by solution treatment of an ingot obtained by melting i. The shape of the target can be made by cutting an ingot. In addition, another manufacturing method of the present invention is characterized in that an ingot obtained by melting W and Ti is subjected to solution treatment, then powdered, and the obtained powder is sintered to obtain Ti- This is a method for manufacturing a W target. Still another manufacturing method of the present invention is a method for manufacturing a Ti-W target, characterized in that a molten metal made by melting W and Ti is made into powder by an atomization method, and the resulting powder is obtained by sintering. be.

【0009】本発明においてWとTiとを溶解したイン
ゴットを溶体化処理することにより、偏析の少ない組織
で、実質的にTiとWとからなる合金相のみからなる組
織とすることができる。たとえ、溶体化処理などの冷却
過程でαTiが析出したとしてもミクロ組織による面積
率で2%未満しか生じない。また、本発明において溶体
化処理は1250℃〜1650℃の温度で行うことが好
ましい。TiとWは全率固溶が可能な合金であるが、1
250℃以下では、十分な固溶せず、1650℃以上で
は一部溶解する可能性があり偏析の原因となるため好ま
しくない。この溶体化処理は減圧雰囲気中または不活性
ガス中で行うことが不純物の混入を避ける意味で好まし
い。
[0009] In the present invention, by solution-treating an ingot in which W and Ti are dissolved, it is possible to obtain a structure with little segregation and consisting essentially only of an alloy phase consisting of Ti and W. Even if αTi precipitates during a cooling process such as solution treatment, the area ratio due to the microstructure is less than 2%. Further, in the present invention, the solution treatment is preferably performed at a temperature of 1250°C to 1650°C. Ti and W are alloys that can form a complete solid solution, but 1
If it is below 250°C, it will not form a sufficient solid solution, and if it is above 1650°C, it may partially dissolve, causing segregation, which is not preferable. This solution treatment is preferably carried out in a reduced pressure atmosphere or in an inert gas in order to avoid contamination with impurities.

【0010】本発明において溶体化処理した後、粉体化
処理し、これを焼結することにより、ターゲットの組織
の偏析をより少なくすることができるとともに、その結
果パーティクルの発生をより少なくすることができる。 上述の粉体化処理はボールミル、アトライタ等の周知の
方法が使用できる。また、本発明において溶解は減圧雰
囲気下で電子ビーム溶解によって行うことが酸素等の不
純物の混入を避けるために好ましい。また、本発明でア
トマイズ法を使用する場合は、液体状態から急冷して粉
末になるので、個々の粉末での偏析は極めて少なく、溶
体化処理を必要とせず、粉砕工程もないことから酸素含
有量の低いものが得られるという利点がある。本発明で
は、ガスアトマイズ、水アトマイズ、回転電極法等の周
知の方法が使用できる。また、本発明において焼結は熱
間静水圧プレス(以下HIPと称する)またはホットプ
レスによって行うことにより高密度のターゲットを得る
ことができ、機械的強度の点から好ましいものとなる。
[0010] In the present invention, by performing solution treatment, powder treatment, and sintering, it is possible to further reduce the segregation of the structure of the target, and as a result, the generation of particles can be further reduced. Can be done. For the above-mentioned pulverization treatment, well-known methods such as a ball mill and an attritor can be used. Further, in the present invention, it is preferable to perform melting by electron beam melting under a reduced pressure atmosphere in order to avoid contamination with impurities such as oxygen. In addition, when using the atomization method in the present invention, since the liquid state is rapidly cooled to powder, there is extremely little segregation in individual powders, and there is no need for solution treatment and no pulverization process, so oxygen-containing It has the advantage of being obtained in low quantities. In the present invention, well-known methods such as gas atomization, water atomization, and rotating electrode methods can be used. Furthermore, in the present invention, sintering is performed by hot isostatic pressing (hereinafter referred to as HIP) or hot pressing, which makes it possible to obtain a high-density target, which is preferable from the viewpoint of mechanical strength.

【0011】[0011]

【実施例】(実施例1)高純度W粉末(純度99.99
9%以上、平均粒径5μm以下)と高純度Ti(純度9
9.99%以上、平均粒径150μm以下)とをTi1
0wt%になるように配合し、W内張りのブレンダで混
合した。得られた混合粉を2000kg/cm2の条件
で冷間静水圧プレス(CIP)で成形し、溶解原料とし
た。この溶解原料を電子ビーム溶解し高純度のインゴッ
トを得た。得られたインゴットを真空炉(真空度 5×
10マイナス5乗torrよりも減圧雰囲気)にて、1
400℃×10時間の条件で溶体化処理を行ないターゲ
ット材を得た。得られたターゲット材の酸素含有量は1
20ppmであった。得られたターゲット材の走査型電
子顕微鏡で600倍の金属組織を観察した。得られた組
織写真を図1に示す。
[Example] (Example 1) High purity W powder (purity 99.99
9% or more, average particle size 5 μm or less) and high purity Ti (purity 9%)
9.99% or more, average particle size 150 μm or less)
They were blended to have a concentration of 0 wt% and mixed using a W-lined blender. The obtained mixed powder was molded using a cold isostatic press (CIP) at 2000 kg/cm2 to form a melted raw material. This melted raw material was electron beam melted to obtain a highly pure ingot. The obtained ingot was placed in a vacuum furnace (degree of vacuum 5×
1 in a reduced pressure atmosphere (lower than 10 minus 5 torr)
A target material was obtained by solution treatment at 400° C. for 10 hours. The oxygen content of the obtained target material is 1
It was 20 ppm. The metal structure of the obtained target material was observed with a scanning electron microscope at a magnification of 600 times. A photograph of the obtained structure is shown in FIG.

【0012】図1に示すように大きな偏析はなく、実質
的にTiとWとからなる合金相のみで、TiやWの独立
した相は認められない。得られたターゲット材をφ30
0に加工してTi−Wターゲットとし、6インチウエハ
ーにスパッタリングし、0.3μm以上のパーティクル
発生数を観察したところ、22個と非常に少ないもので
あった。
As shown in FIG. 1, there is no large segregation, and there is only an alloy phase consisting essentially of Ti and W, and no independent phases of Ti or W are observed. The obtained target material is φ30
When the Ti--W target was processed into a Ti-W target and sputtered onto a 6-inch wafer, the number of particles of 0.3 μm or more generated was observed and was found to be 22, which was very small.

【0013】(実施例2)実施例1と同一の条件で得ら
れた溶解原料を、電子ビーム溶解し高純度のインゴット
を得た。得られたインゴットを真空炉(真空度 5×1
0マイナス5乗torrよりも減圧雰囲気)にて、14
00℃×10時間の条件で溶体化処理を行ない、さらに
W製ボートとW棒により粗粉砕した後、W内張りのポッ
トとW製ボールを使用した専用ボールミル内に投入し、
ポット内を真空排気した後、Arガスで置換し非酸化性
雰囲気とし、粉砕しつつ混合して150μm以下の粉末
を得た。得られた粉末を内径400φのHIP缶内に充
填し、5×10マイナス5乗torrに真空排気しなが
ら、400℃×5時間加熱し、表面吸着ガス等を除去後
封止し、1200℃×2時間、1000kg/cm2の
条件でHIP処理を行ないターゲット材とした。このタ
ーゲット材の酸素含有量は590ppmであった。得ら
れたターゲット材の金属組織は実施例1と同様のTiと
Wとからなる合金相のみの組織であった。このターゲッ
ト材をφ300に加工してターゲットとし、6インチウ
エハーにスパッタリングし、0.3μm以上のパーティ
クル発生数を観察したところ、8個と非常に少ないもの
であった。
(Example 2) A melted raw material obtained under the same conditions as in Example 1 was subjected to electron beam melting to obtain a highly pure ingot. The obtained ingot was placed in a vacuum furnace (degree of vacuum 5×1
14 in a reduced pressure atmosphere (lower than 0 minus 5 torr)
Solution treatment was carried out under the conditions of 00℃ x 10 hours, and after coarsely pulverizing with a W boat and W rod, it was placed in a special ball mill using a W-lined pot and W balls.
After evacuating the inside of the pot, the atmosphere was replaced with Ar gas to create a non-oxidizing atmosphere, and the mixture was ground and mixed to obtain a powder of 150 μm or less. The obtained powder was filled into a HIP can with an inner diameter of 400φ, heated at 400°C for 5 hours while evacuated to 5 x 10 minus 5 torr, and sealed after removing surface adsorbed gas, and heated at 1200°C. HIP treatment was performed for 2 hours at 1000 kg/cm2 to obtain a target material. The oxygen content of this target material was 590 ppm. The metal structure of the obtained target material was the same as in Example 1, consisting only of an alloy phase consisting of Ti and W. This target material was processed to a diameter of 300 mm and used as a target, and sputtered onto a 6-inch wafer. When the number of particles of 0.3 μm or more was observed, it was found to be 8 particles, which was very small.

【0014】(実施例3)実施例1と同様に溶解原料を
作成した。この溶解原料をガスアトマイズ装置にて溶解
出湯し、アトマイズ粉末を得る。得られたアトマイズ粉
末を100メッシュ以下に分級した後、内径400φの
HIP缶内に充填し、5×10マイナス5乗torrに
真空排気しながら、400℃×5時間加熱し、表面吸着
ガス等を除去後封止し、1200℃×2時間、1000
kg/cm2の条件でHIP処理を行ないターゲット材
とした。このターゲット材の酸素含有量は380ppm
であり、低酸素含有量のターゲット材であることが確認
できた。得られたターゲット材の金属組織は実施例1と
同様のTiとWとからなる合金相のみであった。このタ
ーゲット材をφ300に加工してターゲットとし、6イ
ンチウエハーにスパッタリングし、0.3μm以上のパ
ーティクル発生数を観察したところ、7個と非常に少な
いものであった。
(Example 3) A melted raw material was prepared in the same manner as in Example 1. This melted raw material is melted and tapped using a gas atomizer to obtain an atomized powder. After classifying the obtained atomized powder to 100 mesh or less, it was filled into a HIP can with an inner diameter of 400φ, and heated at 400°C for 5 hours while evacuated to 5 × 10 minus 5 torr to remove surface adsorbed gas, etc. After removal, seal and heat at 1200°C for 2 hours.
HIP treatment was performed under the condition of kg/cm2 to obtain a target material. The oxygen content of this target material is 380 ppm
It was confirmed that the target material had a low oxygen content. The metal structure of the obtained target material was the same as in Example 1, consisting only of an alloy phase consisting of Ti and W. This target material was processed to a diameter of 300 mm and used as a target, and sputtered onto a 6-inch wafer. When the number of particles of 0.3 μm or more was observed, it was found to be 7 particles, which was very small.

【0015】(実施例4)実施例1と同一の条件で得ら
れた溶解原料を、電子ビーム溶解し高純度のインゴット
を得た。得られたインゴットを真空炉(真空度 5×1
0マイナス5乗torrよりも減圧雰囲気)にて、14
00℃×10時間の条件で溶体化処理を行ない、さらに
W製ボートとW棒により粗粉砕した後、W内張りのポッ
トとW製ボールを使用した専用ボールミル内に投入し、
ポット内を真空排気した後、Arガスで置換し非酸化性
雰囲気とし、粉砕しつつ混合して150μm以下の粉末
を得た。得られた粉末を真空焼結法、ホットプレス法お
よびHIP法でそれぞれ焼結圧密化しターゲット材を得
た。各焼結法の条件と得られた焼結体密度、組織観察の
結果、6インチウエハーにスパッタリングした時の0.
3μm以上のパーティクル発生数を表1に示す。
(Example 4) A melted raw material obtained under the same conditions as in Example 1 was subjected to electron beam melting to obtain a highly pure ingot. The obtained ingot was placed in a vacuum furnace (degree of vacuum 5×1
14 in a reduced pressure atmosphere (lower than 0 minus 5 torr)
Solution treatment was carried out under the conditions of 00℃ x 10 hours, and after coarsely pulverizing with a W boat and W rod, it was placed in a special ball mill using a W-lined pot and W balls.
After evacuating the inside of the pot, the atmosphere was replaced with Ar gas to create a non-oxidizing atmosphere, and the mixture was ground and mixed to obtain a powder of 150 μm or less. The obtained powder was sintered and compacted using a vacuum sintering method, a hot press method, and a HIP method to obtain a target material. The conditions for each sintering method, the density of the sintered body obtained, and the results of microstructure observation show that 0.0% when sputtered onto a 6-inch wafer.
Table 1 shows the number of particles of 3 μm or more generated.

【0016】[0016]

【表1】[Table 1]

【0017】表1より、ホットプレス法およびHIP法
を用いれば、密度も高く、スパッタリングによって生ず
るパーティクルも少なくできることがわかる。なお、密
度が小さい場合、パーティクル数が上昇したのは、ター
ゲット中に存在する空孔に起因して、スパッタリング中
に異常放電が発生したためと考えられる。
From Table 1, it can be seen that by using the hot press method and the HIP method, the density can be increased and particles generated by sputtering can be reduced. Note that when the density is low, the increase in the number of particles is considered to be due to abnormal discharge occurring during sputtering due to holes existing in the target.

【0018】(比較例1)高純度W粉末(純度99.9
99%以上、平均粒径5μm以下)と水素化した高純度
Ti(純度99.99%以上、平均粒径75μm以下:
以下水素化チタンという)とを水素化チタンが10.3
6wt%になるように配合し、W内張りのポットとW製
ボールを使用した専用ボールミル内に投入した後、ポッ
ト内を真空排気した後、Arガスで置換し非酸化性雰囲
気とし、90分間粉砕しつつ混合した。得られた混合粉
は、20μm以上の水素化チタンは観察されず、平均粒
径は4μmであった。
(Comparative Example 1) High purity W powder (purity 99.9
99% or more, average particle size 5 μm or less) and hydrogenated high-purity Ti (purity 99.99% or more, average particle size 75 μm or less:
Hereinafter referred to as titanium hydride), titanium hydride is 10.3
The mixture was blended to 6 wt% and placed in a special ball mill using a W-lined pot and W balls. After evacuating the inside of the pot, the pot was replaced with Ar gas to create a non-oxidizing atmosphere and pulverized for 90 minutes. I mixed it while doing so. In the obtained mixed powder, no titanium hydride larger than 20 μm was observed, and the average particle size was 4 μm.

【0019】得られた混合粉を内径400φのHIP缶
内に充填し、5×10マイナス5乗torrに真空排気
しながら、700℃×24時間加熱し、脱水素処理を行
った。脱水素後HIP缶を封止し、1250℃×2時間
、1000atmの条件でHIP処理をおこなった。得
られた焼結材の600倍の組織写真を図2に示す。図2
において白色粒子はW粒子であり、W粒子間に存在する
灰色部はTi相である。この焼結体のWは微細な粒子の
まま分散しているが、部分的にTiの凝集が起こってい
ることがわかる。また、この段階では、Ti−W合金相
は確認できなかった。本焼結材をターゲット材とし、φ
300に加工してターゲットとした。このターゲットを
用いて6インチウエハーにスパッタリングを行い、0.
3μm以上のパーティクルの発生数を観測したところ、
パーティクル数は140個であり、本発明のターゲット
材に比べて、著しく多いことが確認された。
The obtained mixed powder was filled into a HIP can with an inner diameter of 400φ, and heated at 700° C. for 24 hours while evacuated to 5×10 minus 5 torr to perform dehydrogenation treatment. After dehydrogenation, the HIP can was sealed, and HIP treatment was performed at 1250° C. for 2 hours and 1000 atm. A photograph of the structure of the obtained sintered material at a magnification of 600 times is shown in FIG. Figure 2
In the figure, the white particles are W particles, and the gray areas between the W particles are the Ti phase. It can be seen that although the W in this sintered body is dispersed as fine particles, Ti agglomeration occurs partially. Further, at this stage, no Ti-W alloy phase could be confirmed. This sintered material is used as the target material, and φ
It was processed to a size of 300 and used as a target. Sputtering was performed on a 6-inch wafer using this target.
When we observed the number of particles larger than 3 μm,
The number of particles was 140, which was confirmed to be significantly larger than that of the target material of the present invention.

【0020】(実施例5)比較例1と同様に得られた焼
結材を溶解原料とし、実施例1と同様にこの溶解原料を
電子ビーム溶解し高純度のインゴットを得た。得られた
インゴットを真空炉(真空度 5×10マイナス5乗t
orrよりも減圧雰囲気)にて、1400℃×10時間
の条件で溶体化処理を行ないターゲット材を得た。得ら
れたターゲット材の組織は実施例1と同様の実質的にT
iとWとからなる合金相のみであることが確認された。 得られたターゲット材をφ300に加工してTi−Wタ
ーゲットとし、6インチウエハーにスパッタリングし、
0.3μm以上のパーティクル発生数を観察したところ
、16個と非常に少ないものであった。
(Example 5) A sintered material obtained in the same manner as in Comparative Example 1 was used as a melted raw material, and this melted raw material was subjected to electron beam melting in the same manner as in Example 1 to obtain a high purity ingot. The obtained ingot was placed in a vacuum furnace (degree of vacuum: 5×10 minus 5 t
A target material was obtained by solution treatment under the conditions of 1400° C. x 10 hours in an atmosphere with a reduced pressure (at a pressure lower than that of the target material). The structure of the target material obtained was substantially the same as in Example 1.
It was confirmed that there was only an alloy phase consisting of i and W. The obtained target material was processed into a diameter of φ300 to obtain a Ti-W target, and sputtered onto a 6-inch wafer.
When the number of particles of 0.3 μm or more was observed, it was found to be 16, which was very small.

【0021】[0021]

【発明の効果】本発明のターゲット材およびその製造方
法によれば、実質的にTiとWとからなる合金相のみと
することができるため、パーティクル発生の極めて少な
いスパッタリングが実施できるので、半導体デバイスの
品質向上に非常に有効なターゲットおよび薄膜を提供で
きる。
Effects of the Invention According to the target material and the method for producing the same of the present invention, since it is possible to use only an alloy phase consisting essentially of Ti and W, sputtering can be performed with extremely low particle generation. can provide very effective targets and thin films for improving the quality of

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明のターゲット材の合金金属組織写真であ
る。
FIG. 1 is a photograph of the alloy metallographic structure of the target material of the present invention.

【図2】比較例のターゲット材の合金金属組織写真であ
る。
FIG. 2 is a photograph of the alloy metallographic structure of a target material of a comparative example.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】  ミクロ組織的に観察してTiとWから
なる合金相の面積が98%以上を占めることを特徴とす
るTi−Wターゲット材。
1. A Ti-W target material characterized in that the area of an alloy phase consisting of Ti and W occupies 98% or more when observed microstructurally.
【請求項2】  WとTiを溶解して得たインゴットを
溶体化処理する工程を含むことを特徴とするTi−Wタ
ーゲットの製造方法。
2. A method for producing a Ti-W target, comprising the step of solution-treating an ingot obtained by melting W and Ti.
【請求項3】  WとTiを溶解して得たインゴットを
溶体化処理した後、粉体化処理し、得られた粉末を焼結
する工程を含むことを特徴とするTi−Wターゲットの
製造方法
3. Production of a Ti-W target, comprising the steps of solution-treating an ingot obtained by melting W and Ti, then pulverizing the ingot, and sintering the obtained powder. Method
【請求項4】  溶解は減圧雰囲気下で電子ビーム溶解
によって行うことを特徴とする請求項2ないし請求項3
に記載のTi−Wターゲットの製造方法
4. Claims 2 and 3, wherein the melting is performed by electron beam melting in a reduced pressure atmosphere.
The method for manufacturing a Ti-W target described in
【請求項5】  WとTiを溶解してなる溶湯をアトマ
イズ法により粉末とし、得られた粉末を焼結する工程を
含むことを特徴とするTi−Wターゲットの製造方法。
5. A method for producing a Ti-W target, comprising the steps of: turning a molten metal made by melting W and Ti into powder by an atomizing method, and sintering the obtained powder.
【請求項6】  焼結は熱間静水圧プレスによって行う
ことを特徴とする請求項3ないし5に記載のTi−Wタ
ーゲットの製造方法。
6. The method for producing a Ti-W target according to claim 3, wherein the sintering is performed by hot isostatic pressing.
【請求項7】  焼結はホットプレスによって行うこと
を特徴とする請求項3ないし5に記載のTi−Wターゲ
ットの製造方法。
7. The method for manufacturing a Ti--W target according to claim 3, wherein the sintering is performed by hot pressing.
JP3081643A 1990-06-15 1991-03-20 Ti-W target material and method of manufacturing the same Expired - Fee Related JP3037772B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3081643A JP3037772B2 (en) 1991-03-20 1991-03-20 Ti-W target material and method of manufacturing the same
US07/914,544 US5306569A (en) 1990-06-15 1992-07-16 Titanium-tungsten target material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3081643A JP3037772B2 (en) 1991-03-20 1991-03-20 Ti-W target material and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04293770A true JPH04293770A (en) 1992-10-19
JP3037772B2 JP3037772B2 (en) 2000-05-08

Family

ID=13752024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3081643A Expired - Fee Related JP3037772B2 (en) 1990-06-15 1991-03-20 Ti-W target material and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3037772B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100603079B1 (en) * 2003-05-16 2006-07-20 가부시키가이샤 고베 세이코쇼 Ag-Bi-BASE ALLOY SPUTTERING TARGET, AND METHOD FOR PRODUCING THE SAME
JP2007131941A (en) * 2006-05-26 2007-05-31 Mitsubishi Materials Corp Method for producing sputtering target for forming phase change film having reduced generation of particle
CN102423802A (en) * 2011-12-20 2012-04-25 宁波江丰电子材料有限公司 Preparation method of highly-pure cobalt target
JP2013513026A (en) * 2009-12-07 2013-04-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ An alloy comprising two refractory metals, in particular tungsten and tantalum, and an X-ray anode comprising said alloy, and a method for fabricating said alloy and X-ray anode
CN107904562A (en) * 2017-10-27 2018-04-13 包头稀土研究院 The manufacture method of alumal target material assembly
CN110177898A (en) * 2017-11-01 2019-08-27 株式会社爱发科 Sputtering equipment and film build method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110295301A (en) * 2019-07-09 2019-10-01 中国兵器科学研究院宁波分院 A kind of preparation method of tungsten-titanium alloy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100603079B1 (en) * 2003-05-16 2006-07-20 가부시키가이샤 고베 세이코쇼 Ag-Bi-BASE ALLOY SPUTTERING TARGET, AND METHOD FOR PRODUCING THE SAME
JP2007131941A (en) * 2006-05-26 2007-05-31 Mitsubishi Materials Corp Method for producing sputtering target for forming phase change film having reduced generation of particle
JP2013513026A (en) * 2009-12-07 2013-04-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ An alloy comprising two refractory metals, in particular tungsten and tantalum, and an X-ray anode comprising said alloy, and a method for fabricating said alloy and X-ray anode
CN102423802A (en) * 2011-12-20 2012-04-25 宁波江丰电子材料有限公司 Preparation method of highly-pure cobalt target
CN107904562A (en) * 2017-10-27 2018-04-13 包头稀土研究院 The manufacture method of alumal target material assembly
CN110177898A (en) * 2017-11-01 2019-08-27 株式会社爱发科 Sputtering equipment and film build method
CN110177898B (en) * 2017-11-01 2021-01-01 株式会社爱发科 Sputtering apparatus and film forming method

Also Published As

Publication number Publication date
JP3037772B2 (en) 2000-05-08

Similar Documents

Publication Publication Date Title
US5306569A (en) Titanium-tungsten target material and manufacturing method thereof
US5618397A (en) Silicide targets for sputtering
JP2004100000A (en) Iron silicate sputtering target and production method therefor
US5160534A (en) Titanium-tungsten target material for sputtering and manufacturing method therefor
WO1992018657A1 (en) Method of producing tungsten-titanium sputter targets and targets produced thereby
JP2005533182A (en) Method for producing sputtering target doped with boron / carbon / nitrogen / oxygen / silicon
EP0616045B1 (en) Silicide targets for sputtering and method of manufacturing the same
JP2008179892A (en) METHOD FOR PREPARING ALRu SPUTTERING TARGET
JPH05295531A (en) Ti-w based sputtering target and its production
KR101469873B1 (en) Manufacturing method of a high purity and refining Ru alloy powder
JPH04293770A (en) Ti-w target material and its manufacture
JP2606946B2 (en) Ti-W target material and method of manufacturing the same
US5298338A (en) Titanium-tungsten target material and manufacturing method thereof
JPH03107453A (en) Ti-w target and production thereof
JP2954711B2 (en) W-Ti alloy target and manufacturing method
KR960011928B1 (en) Ti-w target meterial and manufacturing method thereof
JP2859466B2 (en) Ti-W target material and method of manufacturing the same
JPH04193947A (en) Ti-w target material and its production
JPH04362105A (en) Production of fine intermetallic compound powder
KR960001594B1 (en) Ti-w sputtering target materials and the method for making
JPH0551732A (en) Target for sputtering and production thereof
JPH0565629A (en) Production of sputtering target
JPH0598435A (en) Ti-w target material and its manufacture
JPH02247379A (en) Production of silicide target
JPH05156384A (en) Manufacture of titanium-tungsten target material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees