JPH04292759A - Absorption refrigerating machine - Google Patents

Absorption refrigerating machine

Info

Publication number
JPH04292759A
JPH04292759A JP5236291A JP5236291A JPH04292759A JP H04292759 A JPH04292759 A JP H04292759A JP 5236291 A JP5236291 A JP 5236291A JP 5236291 A JP5236291 A JP 5236291A JP H04292759 A JPH04292759 A JP H04292759A
Authority
JP
Japan
Prior art keywords
absorption
refrigerant
absorber
refrigerant vapor
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5236291A
Other languages
Japanese (ja)
Other versions
JP2503315B2 (en
Inventor
Shinji Tonmiya
伸二 頓宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP5236291A priority Critical patent/JP2503315B2/en
Publication of JPH04292759A publication Critical patent/JPH04292759A/en
Application granted granted Critical
Publication of JP2503315B2 publication Critical patent/JP2503315B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To realize sufficiently an effect of absorption and make a compact structure by a method wherein an absorption type refrigerating machine comprises means for forming an absorption device together with a wall surface contacting with a space including an evaporator and supplying absorption liquid to a surface contacting with the space at the wall surface and means for supplying liquid refrigerant to its opposite surface, and the space with the opposite surface being a part of the wall surface is communicated with a condensor. CONSTITUTION:Liquid refrigerant is dispersed against an outer surface 7B of an absorbing device 7, i.e., an opposite surface of an inner wall surface where absorption heat is generated, and absorption heat generated at the inner wall surface is removed and evaporated. The evaporated refrigerant vapor flows into a condensor 6 and is condensed and liquefied together with refrigerant vapor generated at a low temperature regenerator 3 and refrigerant vapor not condensed and liquefied in the low temperature regenerating coil 3A but flowed into an evaporation/absorption device 16. The absorption heat is transmitted into the refrigerant vapor in a form of evaporating heat of the liquid refrigerant evaporated at the outer surface of the absorption device 7 and then condensed with the condensor 6 together with the refrigerant vapor generated at the low temperature regenerator 3. Due to this fact, the heat exchanger for radiating heat and the heat exchanger for condensing operation can be used together and an entire system can be simplified.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、吸収冷凍機に係り、特
に、凝縮器と吸収器の放熱部の一体化して構造の簡素化
を図った吸収冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerator, and more particularly to an absorption refrigerator whose structure is simplified by integrating a condenser and an absorber heat dissipation section.

【0002】0002

【従来の技術】従来、例えば、特開昭62−66068
号公報に記載された吸収冷凍機は、図2に示すように、
凝縮器の放熱部と吸収器の放熱部とは、各々分離されて
おり、二つの放熱用熱交換器を備えている。
[Prior Art] Conventionally, for example, Japanese Patent Application Laid-Open No. 62-66068
As shown in Figure 2, the absorption refrigerator described in the publication has the following features:
The heat dissipation section of the condenser and the heat dissipation section of the absorber are each separated, and are provided with two heat exchangers for heat dissipation.

【0003】0003

【発明が解決しようとする課題】上述のような従来技術
にあっては、各々の放熱用熱交換器を冷却する必要があ
り、次のような欠点があった。■二つの分離された熱交
換器を設置せねばならず、装置が大きくなる。■空冷の
縦型流下液膜式吸収器を、例えば図3の例のように、冷
却空気の流れに対してその軸心方向が交差するように、
かつ多段式に配置すると、冷却空気の温度は吸収器を通
過するにつれて上昇し、冷却空気の流れの下流側に位置
する吸収器の温度は上流側に位置する吸収器の温度に比
べて高くなる。このため、冷却空気の流れの下流側に位
置する吸収器を流れる吸収液の吸収能力は、吸収液濃度
がおなじでも冷却空気の流れの上流側に位置する吸収器
を流れる吸収液の吸収能力よりも低くなり、吸収液の吸
収能力が十分に発揮されない。本発明の課題は、吸収器
を均一に冷却して吸収液の吸収能力を十分に発揮し、か
つ装置を小型化するにある。
SUMMARY OF THE INVENTION In the prior art as described above, it is necessary to cool each heat exchanger for heat radiation, which has the following drawbacks. ■ Two separate heat exchangers must be installed, making the device larger. ■ An air-cooled vertical falling film absorber is installed so that its axial direction intersects the flow of cooling air, as in the example shown in Figure 3.
And when arranged in multiple stages, the temperature of the cooling air increases as it passes through the absorbers, and the temperature of the absorber located downstream of the cooling air flow is higher than the temperature of the absorber located upstream. . Therefore, the absorption capacity of the absorbent flowing through the absorber located downstream of the cooling air flow is higher than that of the absorbent flowing through the absorber located upstream of the cooling air flow, even if the concentration of the absorbent is the same. The absorption capacity of the absorbing liquid is not fully demonstrated. An object of the present invention is to uniformly cool an absorber to fully utilize its absorption capacity for absorbing liquid, and to downsize the apparatus.

【0004】0004

【課題を解決するための手段】上記の課題は、再生器で
発生した冷媒蒸気を冷却して液化する凝縮器と、該液化
された冷媒を蒸発させ冷却媒体から蒸発熱を奪って該冷
却媒体を冷却して冷凍作用を行う蒸発器と、該蒸発器で
蒸発した冷媒蒸気を吸収液に吸収させる吸収器とを備え
た吸収冷凍機において、前記吸収器を前記蒸発器を内包
する空間に接する壁面を含んで形成し、該壁面の前記空
間に接する面に吸収液を供給する手段と、その反対面に
液冷媒を供給する手段とを備え、該反対面を壁面の一部
とする空間を前記凝縮器に連通させることにより達成さ
れる。上記の課題はまた、吸収器が縦型流下液膜式吸収
器である請求項1に記載の吸収冷凍機によっても達成さ
れる。上記の課題はまた、凝縮器が空冷されるものであ
る請求項1または2に記載の吸収冷凍機によっても達成
される。上記の課題はさらに、凝縮器が水冷されるもの
である請求項1または2に記載の吸収冷凍機によっても
達成される。
[Means for Solving the Problem] The above problem is solved by a condenser that cools and liquefies the refrigerant vapor generated in the regenerator, and a condenser that evaporates the liquefied refrigerant and removes the heat of evaporation from the refrigerant. In an absorption refrigerator comprising an evaporator that performs a freezing action by cooling the refrigerant, and an absorber that absorbs the refrigerant vapor evaporated in the evaporator into an absorption liquid, the absorber is in contact with a space containing the evaporator. A space formed including a wall surface, comprising means for supplying an absorbing liquid to a surface of the wall surface in contact with the space, and means for supplying a liquid refrigerant to the opposite surface thereof, the opposite surface being a part of the wall surface. This is achieved by communicating with the condenser. The above object is also achieved by the absorption refrigerator according to claim 1, wherein the absorber is a vertical falling film type absorber. The above object is also achieved by the absorption refrigerator according to claim 1 or 2, wherein the condenser is air-cooled. The above object is further achieved by the absorption refrigerator according to claim 1 or 2, wherein the condenser is water-cooled.

【0005】[0005]

【作用】蒸発器で蒸発した冷媒蒸気は、吸収器の蒸発器
を内包する空間に接する面に供給される吸収液に吸収さ
れる。その際該面上に発生する吸収熱は、前記吸収液が
供給される面の反対側の面に供給される液冷媒が蒸発す
るときの蒸発熱として奪われ、吸収液は所定の温度に冷
却される。前記反対側の面で液冷媒が蒸発してできた冷
媒蒸気は、該反対側の面に接する空間が凝縮器に連通し
ているので該凝縮器に流れ込み、同じ凝縮器に流れ込む
再生器で生成された冷媒蒸気とともに、冷却されて液化
される。したがって、前記反対側の面で液冷媒が蒸発す
るときの蒸発温度は凝縮器の凝縮温度できまり、吸収器
すなわち吸収液の冷却温度も吸収器の配置や段数とは関
係なく前記凝縮温度で均一に決まる。また、吸収器で発
生する吸収熱の放出と、液冷媒生成のための冷媒蒸気凝
縮のための放熱は、同じ凝縮器で行われ、放熱用の熱交
換器を二重に設ける必要はない。
[Operation] Refrigerant vapor evaporated in the evaporator is absorbed by an absorption liquid supplied to the surface of the absorber that is in contact with the space containing the evaporator. At this time, the absorption heat generated on the surface is taken away as evaporation heat when the liquid refrigerant supplied to the surface opposite to the surface to which the absorption liquid is supplied evaporates, and the absorption liquid is cooled to a predetermined temperature. be done. The refrigerant vapor produced by evaporation of the liquid refrigerant on the opposite surface flows into the condenser since the space in contact with the opposite surface communicates with the condenser, and is generated in the regenerator flowing into the same condenser. The refrigerant vapor is cooled and liquefied. Therefore, the evaporation temperature when the liquid refrigerant evaporates on the opposite surface is determined by the condensation temperature of the condenser, and the cooling temperature of the absorber, that is, the absorption liquid, is also uniform at the condensation temperature regardless of the arrangement of the absorber or the number of stages. It is decided. Further, the release of the absorption heat generated in the absorber and the heat release for condensing the refrigerant vapor for producing liquid refrigerant are performed in the same condenser, and there is no need to provide a double heat exchanger for heat release.

【0006】[0006]

【実施例】以下、図面を参照して本発明の実施例を説明
する。図1は、本発明の実施例である吸収冷凍機の縦断
面図を示し、該吸収冷凍機は、同心状に配置された内筒
14、外筒15からなる二重円筒状の蒸発/吸収部16
と、該蒸発/吸収部16に同心状に内装された円筒状の
吸収器7と、該吸収器7の内部空間25に同心状に内装
された螺旋コイル状の蒸発器8と、前記吸収器7の上方
に円環状に配置された液冷媒散布管21と、前記吸収器
7に内装され前記蒸発器8の上方に円環状に配置された
液冷媒散布管13と、前記二重円筒状の蒸発/吸収部1
6の上端部外周に連通して鍔状に配置された冷媒蒸気通
路17と、前記二重円筒状の蒸発/吸収部16の下端部
外周に連通して鍔状に配置された液冷媒流路18と、該
液冷媒流路18と前記冷媒蒸気通路17を垂直方向に接
続して配置された複数の凝縮器6と、前記内筒14の内
周面上部に冷媒蒸気通路17に連通して同心状に配置さ
れた円筒状の低温再生器3と、該低温再生器3に同心状
に内装された螺旋コイル状の低温再生器コイル3Aと、
該低温再生コイル3Aの一端に冷媒蒸気管19を介して
接続され前記内筒14の中央空洞部に配置された円筒状
の分離器2と、該分離器2に同心状に嵌合して配置され
前記分離器2と配管20により連通された二重円筒状の
高温再生器1と、該高温再生器1に装着されたバーナ1
1と、吸入側を前記液冷媒流路18に接続し吐出側を液
冷媒管22により前記液冷媒散布管13,21に接続し
て配置された冷媒循環ポンプ10と、被加熱流体の入り
口を溶液循環ポンプ9を介して前記吸収器7の下端部に
接続され、加熱流体の入り口を前記低温再生器3の濃溶
液出口に接続された低温溶液熱交換器5と、被加熱流体
の入り口を前記低温溶液熱交換器5の被加熱流体出口に
、加熱流体の入り口を前記分離器2の中間濃溶液出口に
接続された高温溶液熱交換器4と、前記蒸発/吸収部1
6の上方に配置され冷却空気を前記凝縮器6に送風する
冷却ファン12と、を含んで構成されている。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a longitudinal cross-sectional view of an absorption refrigerator according to an embodiment of the present invention. Part 16
, a cylindrical absorber 7 concentrically installed in the evaporator/absorber 16, a spiral coil-shaped evaporator 8 concentrically installed in the internal space 25 of the absorber 7, and the absorber 7. a liquid refrigerant distribution pipe 21 disposed in an annular shape above the evaporator 7; a liquid refrigerant dispersion pipe 13 disposed within the absorber 7 in an annular shape above the evaporator 8; Evaporation/absorption part 1
A refrigerant vapor passage 17 that communicates with the outer periphery of the upper end of the double cylindrical evaporator/absorber 16 and is arranged in a flange shape, and a liquid refrigerant flow path that communicates with the outer periphery of the lower end of the double cylindrical evaporator/absorber 16 and is arranged in a flange shape. 18, a plurality of condensers 6 disposed vertically connecting the liquid refrigerant flow path 18 and the refrigerant vapor passage 17, and a plurality of condensers 6 arranged at the upper part of the inner circumferential surface of the inner cylinder 14 and communicating with the refrigerant vapor passage 17. A cylindrical low-temperature regenerator 3 arranged concentrically, a spiral low-temperature regenerator coil 3A concentrically installed in the low-temperature regenerator 3,
A cylindrical separator 2 connected to one end of the low-temperature regeneration coil 3A via a refrigerant vapor pipe 19 and arranged in the central cavity of the inner cylinder 14; and a cylindrical separator 2 arranged concentrically with the separator 2. A double cylindrical high-temperature regenerator 1 connected to the separator 2 through a pipe 20, and a burner 1 attached to the high-temperature regenerator 1.
1, a refrigerant circulation pump 10 arranged such that its suction side is connected to the liquid refrigerant flow path 18 and its discharge side is connected to the liquid refrigerant distribution pipes 13 and 21 through a liquid refrigerant pipe 22; A low temperature solution heat exchanger 5 is connected to the lower end of the absorber 7 via a solution circulation pump 9, and has an inlet for heating fluid connected to an outlet of the concentrated solution of the low temperature regenerator 3, and an inlet for the fluid to be heated. A high temperature solution heat exchanger 4 whose heating fluid inlet is connected to the intermediate concentrated solution outlet of the separator 2 at the heated fluid outlet of the low temperature solution heat exchanger 5, and the evaporation/absorption section 1
The cooling fan 12 is arranged above the condenser 6 and blows cooling air to the condenser 6.

【0007】低温溶液熱交換器5の加熱流体出口は配管
23により吸収器7の上端部に接続され、高温溶液熱交
換器4の被加熱流体出口は高温再生器1に、加熱流体出
口は低温再生器3にそれぞれ接続されている。前記配管
23が吸収器7に接続されている部分の吸収器内部には
、円環状の分散板24が配置され、該配管23から供給
される濃溶液が吸収器7の内壁面7Aを伝って液膜をな
して流下するようになっている。また、凝縮器6の外周
には、冷却効率をあげるために周方向にフィンが設けら
れている。
The heated fluid outlet of the low temperature solution heat exchanger 5 is connected to the upper end of the absorber 7 by a pipe 23, the heated fluid outlet of the high temperature solution heat exchanger 4 is connected to the high temperature regenerator 1, and the heated fluid outlet is connected to the low temperature Each is connected to the regenerator 3. An annular dispersion plate 24 is disposed inside the absorber where the pipe 23 is connected to the absorber 7, and the concentrated solution supplied from the pipe 23 is transmitted along the inner wall surface 7A of the absorber 7. It flows down in a liquid film. Furthermore, fins are provided on the outer periphery of the condenser 6 in the circumferential direction to increase cooling efficiency.

【0008】上記構成の吸収冷凍機の動作を次に説明す
る。高温再生器1の二重円筒内で加熱された希溶液は、
配管20を経て分離器20に流入し、冷媒蒸気と中間濃
溶液に分離される。冷媒蒸気は配管19を経て低温再生
コイル3Aに流入し、低温再生器3内の中間濃溶液を加
熱して冷媒蒸気を発生させたのち、一部液体,一部蒸気
の2相流として蒸発/吸収部16に流入する。一方、冷
媒を蒸発させた中間濃溶液は濃溶液となって低温熱交換
器5の加熱流体側,配管23を経て、吸収器7の上端に
流入し、分散板24で分散されて該吸収器7の内壁面7
Aに沿って流下する。濃溶液は、吸収器7の内壁面に沿
って流下しつつ、吸収器内で蒸発した冷媒蒸気を吸収し
て希溶液となり、溶液循環ポンプ9に吸入されて低温溶
液熱交換器5の被加熱流体側に送りこまれる。低温溶液
熱交換器5の被加熱流体側を通過しつつ加熱流体側を流
れる濃溶液で加熱された希溶液は、さらに高温熱交換器
4の被加熱流体側に流入し、加熱流体側を流れる中間濃
溶液で加熱されたのち、高温再生器1に還流する。
The operation of the absorption refrigerator having the above structure will be explained next. The dilute solution heated in the double cylinder of the high temperature regenerator 1 is
It flows into the separator 20 via the pipe 20 and is separated into refrigerant vapor and intermediate concentrated solution. The refrigerant vapor flows into the low-temperature regeneration coil 3A through the pipe 19, heats the intermediate concentrated solution in the low-temperature regenerator 3 to generate refrigerant vapor, and then evaporates as a two-phase flow of part liquid and part vapor. It flows into the absorption section 16. On the other hand, the intermediate concentrated solution obtained by evaporating the refrigerant becomes a concentrated solution and flows into the upper end of the absorber 7 via the heating fluid side of the low-temperature heat exchanger 5 and the piping 23, and is dispersed by the dispersion plate 24. 7 inner wall surface 7
Flows down along A. The concentrated solution flows down along the inner wall surface of the absorber 7 and absorbs the refrigerant vapor evaporated in the absorber to become a dilute solution, which is sucked into the solution circulation pump 9 and sent to the heated solution in the low-temperature solution heat exchanger 5. It is sent to the fluid side. The dilute solution heated by the concentrated solution flowing on the heated fluid side while passing through the heated fluid side of the low temperature solution heat exchanger 5 further flows into the heated fluid side of the high temperature heat exchanger 4 and flows on the heated fluid side. After being heated with the intermediate concentrated solution, it is refluxed to the high temperature regenerator 1.

【0009】低温再生器3で発生した冷媒蒸気は蒸発/
吸収部16に流入し、低温再生コイル3Aを経て蒸発/
吸収部16に流入した冷媒蒸気とともに、冷媒蒸気通路
17を経て凝縮器6に流入する。凝縮器6に流入した冷
媒蒸気は前記フィンを介して放熱し、凝縮・液化して液
冷媒となって冷媒循環ポンプ10に吸引される。冷媒循
環ポンプ10は、吸引した液冷媒を液冷媒散布管13,
21に送りこみ、蒸発器8を形成する螺旋状のコイルの
外周面及び吸収器7の外表面に散布する。液冷媒散布管
13から散布された液冷媒は、蒸発器8を形成する螺旋
状のコイルの外周面で蒸発しつつ該コイル内を流れる冷
却媒体の熱を奪って冷却し、冷凍作用を行う。
The refrigerant vapor generated in the low temperature regenerator 3 is evaporated/
Flows into the absorption section 16, passes through the low temperature regeneration coil 3A, and evaporates/
The refrigerant vapor that has entered the absorption section 16 flows into the condenser 6 via the refrigerant vapor passage 17 . The refrigerant vapor that has flowed into the condenser 6 radiates heat through the fins, condenses and liquefies to become liquid refrigerant, and is sucked into the refrigerant circulation pump 10 . The refrigerant circulation pump 10 sends the sucked liquid refrigerant to a liquid refrigerant distribution pipe 13,
21 and sprayed on the outer peripheral surface of the spiral coil forming the evaporator 8 and the outer surface of the absorber 7. The liquid refrigerant sprayed from the liquid refrigerant dispersion pipe 13 evaporates on the outer circumferential surface of the spiral coil forming the evaporator 8 and cools the cooling medium flowing through the coil, thereby performing a refrigeration action.

【0010】蒸発器8の外周面で蒸発した冷媒蒸気は、
前記配管23を経て吸収器7に供給されて該吸収器の内
壁面を液膜となって流下する濃溶液に吸収される。該濃
溶液は冷媒蒸気を吸収して希溶液になるとともに該内壁
面に吸収熱を発生する。一方、吸収器7の外表面7B、
すなわち前記吸収熱が発生する内壁面の反対面には、前
述のように液冷媒が散布されており、該液冷媒は、内壁
面に発生する吸収熱を奪って蒸発する。蒸発した冷媒蒸
気は冷媒蒸気通路17を経て凝縮器6に流入し、低温再
生器3で生成された冷媒蒸気,低温再生コイル3A内で
凝縮液化されずに蒸発/吸収部16に流入した冷媒蒸気
とともに、凝縮液化されて前述の手順が繰り返される。
The refrigerant vapor evaporated on the outer peripheral surface of the evaporator 8 is
It is supplied to the absorber 7 via the pipe 23 and absorbed by the concentrated solution flowing down the inner wall of the absorber as a liquid film. The concentrated solution absorbs refrigerant vapor to become a dilute solution and generates absorption heat on the inner wall surface. On the other hand, the outer surface 7B of the absorber 7,
That is, as described above, the liquid refrigerant is spread on the opposite surface of the inner wall surface where the absorbed heat is generated, and the liquid refrigerant absorbs the absorbed heat generated on the inner wall surface and evaporates. The evaporated refrigerant vapor flows into the condenser 6 through the refrigerant vapor passage 17, and the refrigerant vapor generated in the low-temperature regenerator 3 and the refrigerant vapor that has not been condensed and liquefied in the low-temperature regeneration coil 3A and have flowed into the evaporation/absorption section 16 At the same time, it is condensed and liquefied, and the above-mentioned procedure is repeated.

【0011】本実施例によれば、吸収熱は吸収器7の外
表面で蒸発する液冷媒の蒸発熱の形で冷媒蒸気に移され
、この冷媒蒸気は、高温再生器1,低温再生器3で生成
された冷媒蒸気とともに凝縮器6で凝縮される。このた
め、吸収熱を放熱するための熱交換器と液冷媒生成のた
めの凝縮用熱交換器とを共用でき、構造が簡素化される
。また、通常、蒸発器を外部と遮断するために設けられ
る壁体が吸収器を構成し、その内壁面が吸収液による冷
媒蒸気の吸収面、外表面が吸収熱を除去する冷媒の蒸発
面を形成するので、構造がコンパクト化される。
According to this embodiment, the absorbed heat is transferred to the refrigerant vapor in the form of the heat of vaporization of the liquid refrigerant that evaporates on the outer surface of the absorber 7, and this refrigerant vapor is transferred to the high temperature regenerator 1 and the low temperature regenerator 3. It is condensed together with the refrigerant vapor generated in the condenser 6. Therefore, the heat exchanger for dissipating absorbed heat and the condensing heat exchanger for producing liquid refrigerant can be used in common, and the structure is simplified. In addition, normally, a wall provided to isolate the evaporator from the outside constitutes an absorber, and its inner wall surface serves as an absorption surface for refrigerant vapor by an absorption liquid, and its outer surface serves as an evaporation surface for the refrigerant that removes absorbed heat. As a result, the structure is made more compact.

【0012】本実施例では、吸収器は一段(一重の円筒
)としてあるが、吸収熱を除去する冷媒の蒸発温度は凝
縮器の凝縮温度により決まるから、冷媒の蒸発温度で決
まる吸収器の冷却温度は、吸収器が複数段となっても吸
収器外部からの冷却とは無関係に均一であり、吸収液が
効率よく吸収を行う温度に設定保持することが可能であ
る。また、本実施例では、凝縮器を空冷しているが、本
発明は水冷の場合でも同様に適用可能である。図1に示
した吸収器7は円筒形であるが、図4にその軸方向に垂
直な断面で示すように、壁面を例えば蛇腹形に凹凸させ
て、吸収・蒸発表面積を増加させた形状とするのが好ま
しい。
In this embodiment, the absorber is a single stage (single cylinder), but since the evaporation temperature of the refrigerant that removes absorbed heat is determined by the condensation temperature of the condenser, the absorption temperature of the absorber is determined by the evaporation temperature of the refrigerant. Even if the absorber has multiple stages, the temperature remains uniform regardless of cooling from outside the absorber, and it is possible to set and maintain the temperature at which the absorption liquid efficiently absorbs. Furthermore, although the condenser is air-cooled in this embodiment, the present invention is equally applicable to water-cooled condensers. The absorber 7 shown in FIG. 1 has a cylindrical shape, but as shown in FIG. 4 in a cross section perpendicular to its axial direction, the absorber 7 has a shape in which the wall surface is uneven, for example, in a bellows shape to increase the absorption/evaporation surface area. It is preferable to do so.

【0013】[0013]

【発明の効果】本発明によれば、蒸発器で発生した冷媒
蒸気を吸収面に供給される吸収液に吸収させることによ
り生ずる吸収熱が、前記吸収面の反対面で液冷媒を蒸発
させることにより冷媒蒸気に移され、該冷媒蒸気は高温
再生器,低温再生器で生成された冷媒蒸気と共通の凝縮
器で放熱して凝縮液化されるので、吸収器の設置段数や
冷却方式と無関係に吸収器の冷却温度を設定保持するこ
とが可能となり、吸収液の吸収効果を十分に発揮させる
とともに構造をコンパクト化する効果がある。
[Effects of the Invention] According to the present invention, the absorption heat generated by absorbing the refrigerant vapor generated in the evaporator into the absorption liquid supplied to the absorption surface evaporates the liquid refrigerant on the surface opposite to the absorption surface. The refrigerant vapor is transferred to refrigerant vapor by the high-temperature regenerator and the refrigerant vapor generated by the low-temperature regenerator, and is condensed and liquefied by dissipating heat in a common condenser, regardless of the number of absorber stages installed or the cooling method. It becomes possible to set and maintain the cooling temperature of the absorber, which has the effect of fully demonstrating the absorption effect of the absorption liquid and making the structure more compact.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例である空冷二重効用吸収冷凍機
の要部を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing the main parts of an air-cooled double-effect absorption refrigerator according to an embodiment of the present invention.

【図2】従来技術の例を示すブロック図である。FIG. 2 is a block diagram illustrating an example of prior art.

【図3】吸収器が冷却空気の流れに交差する方向に複数
段配置されている従来技術の例を示す縦断面図である。
FIG. 3 is a longitudinal sectional view showing an example of a conventional technology in which absorbers are arranged in multiple stages in a direction intersecting the flow of cooling air.

【図4】図1に示す吸収器の他の形状例を示す横断面図
である。
4 is a cross-sectional view showing another example of the shape of the absorber shown in FIG. 1. FIG.

【符号の説明】[Explanation of symbols]

1  高温再生器 2  分離器 3  低温再生器 4  高温溶液熱交換器 5  低温溶液熱交換器 6  凝縮器 7  吸収器 8  蒸発器 9  溶液循環ポンプ 10  冷媒循環ポンプ 11  バーナ 12  空冷ファン 13,21  液冷媒散布管 14  内筒 15  外筒 16  蒸発/吸収部 17  冷媒蒸気通路 18  液冷媒流路 19  冷媒蒸気管 20  配管 22  液冷媒管 23  配管 24  分散板 1 High temperature regenerator 2 Separator 3 Low temperature regenerator 4 High temperature solution heat exchanger 5 Low temperature solution heat exchanger 6 Condenser 7 Absorber 8 Evaporator 9 Solution circulation pump 10 Refrigerant circulation pump 11 Burner 12 Air cooling fan 13, 21 Liquid refrigerant distribution pipe 14 Inner cylinder 15 Outer cylinder 16 Evaporation/absorption part 17 Refrigerant vapor passage 18 Liquid refrigerant flow path 19 Refrigerant vapor pipe 20 Piping 22 Liquid refrigerant pipe 23 Piping 24 Dispersion plate

Claims (1)

【特許請求の範囲】 【請求項1】  再生器で発生した冷媒蒸気を冷却して
液化する凝縮器と、該液化された冷媒を蒸発させ冷却媒
体から蒸発熱を奪って該冷却媒体を冷却して冷凍作用を
行う蒸発器と、該蒸発器で蒸発した冷媒蒸気を吸収液に
吸収させる吸収器とを備えた吸収冷凍機において、前記
吸収器は前記蒸発器を内包する空間に接する壁面を含ん
で形成され、該壁面の前記空間に接する面に吸収液を供
給する手段とその反対面に液冷媒を供給する手段とを備
え、該反対面に接する空間は前記凝縮器に連通するもの
であることを特徴とする吸収冷凍機 【請求項2】  吸収器が縦型流下液膜式吸収器である
ことを特徴とする請求項1に記載の吸収冷凍機【請求項
3】  凝縮器が空冷されるものであることを特徴とす
る請求項1または2に記載の吸収冷凍機【請求項4】 
   凝縮器が水冷されるものであることを特徴とする
請求項1または2に記載の吸収冷凍機
[Scope of Claims] [Claim 1] A condenser that cools and liquefies refrigerant vapor generated in a regenerator, and a condenser that evaporates the liquefied refrigerant and removes evaporation heat from the refrigerant to cool the refrigerant. In the absorption refrigerator, the absorber includes an evaporator that performs a freezing action, and an absorber that absorbs refrigerant vapor evaporated in the evaporator into an absorption liquid, the absorber including a wall surface that is in contact with a space containing the evaporator. and a means for supplying an absorption liquid to a surface of the wall surface in contact with the space, and a means for supplying a liquid refrigerant to the opposite surface thereof, and the space in contact with the opposite surface communicates with the condenser. [Claim 2] The absorption refrigerator according to claim 1, wherein the absorber is a vertical falling film type absorber. [Claim 3] The absorption refrigerator is characterized in that the condenser is air-cooled. The absorption refrigerator according to claim 1 or 2, characterized in that: [Claim 4]
The absorption refrigerator according to claim 1 or 2, wherein the condenser is water-cooled.
JP5236291A 1991-03-18 1991-03-18 Absorption refrigerator Expired - Lifetime JP2503315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5236291A JP2503315B2 (en) 1991-03-18 1991-03-18 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5236291A JP2503315B2 (en) 1991-03-18 1991-03-18 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH04292759A true JPH04292759A (en) 1992-10-16
JP2503315B2 JP2503315B2 (en) 1996-06-05

Family

ID=12912698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5236291A Expired - Lifetime JP2503315B2 (en) 1991-03-18 1991-03-18 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP2503315B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201213A (en) * 1992-11-03 1994-07-19 Samsung Electronics Co Ltd Absorption type air conditioner
JP2007532855A (en) * 2004-04-09 2007-11-15 エイアイエル リサーチ インク Thermal mass exchange machine
CN103994607A (en) * 2014-05-19 2014-08-20 东南大学 Shell and tube vertical type anti-scaling falling film absorbing device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7615233B2 (en) 2001-07-10 2009-11-10 Canon Kabushiki Kaisha Particulate construct comprising polyhydroxyalkanoate and method for producing it
JP2004331750A (en) 2003-05-02 2004-11-25 Canon Inc Magnetic structure comprising polyhydroxyalkanoate and method for producing the same and use thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201213A (en) * 1992-11-03 1994-07-19 Samsung Electronics Co Ltd Absorption type air conditioner
JP2007532855A (en) * 2004-04-09 2007-11-15 エイアイエル リサーチ インク Thermal mass exchange machine
CN103994607A (en) * 2014-05-19 2014-08-20 东南大学 Shell and tube vertical type anti-scaling falling film absorbing device
CN103994607B (en) * 2014-05-19 2016-03-23 东南大学 The vertical good antiscale property falling film absorbing device of a kind of shell

Also Published As

Publication number Publication date
JP2503315B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
JP7137555B2 (en) Active/passive cooling system
EP1365199B1 (en) Evaporator with mist eliminator
JP2000179975A (en) Multistage evaporating and absorption type absorption cold and hot water machine and large temperature difference air conditioning system provided with same
JP2503315B2 (en) Absorption refrigerator
KR890004393B1 (en) Air cooling type absorption cooler
JP3712775B2 (en) Plate evaporator / absorber for absorption refrigerator
JPH0320575A (en) Absorption refrigeration machine
JPS6273053A (en) Air-cooled absorption refrigerator
JP3475003B2 (en) Plate evaporator for absorption refrigerator
JP2001041608A (en) Evaporator and absorber for absorption refrigerating machine
KR101071938B1 (en) Generation and absorption refrigerating machine usihg the same
KR101080308B1 (en) Generation and air-cooling type absorption refrigerating machine usihg the same
KR200172397Y1 (en) High temperature generator for an absorption refrigerator
KR200438626Y1 (en) Air to Refrigerant Heat Exchanger of High Efficiency Refrigerated Air Dryer with a Guide Vane
KR100286833B1 (en) Heat exchanger for regenerator of cool/heating system
JPH0539410Y2 (en)
JPH0221167A (en) Air-cooled absorption system cold and hot water apparatus
KR0143852B1 (en) Evaporator for absorptive airconditioner
JP2558033Y2 (en) Absorption chiller / heater
KR20040095666A (en) Absorption type refrigerator
KR101090228B1 (en) Absorption refrigerating machine usihg the same
JPH1030860A (en) Air cooling absorption type refrigerating device
JP3277349B2 (en) Evaporation absorber for absorption refrigerator
JP2007278570A (en) Air-cooled absorption type refrigerating device
KR100229318B1 (en) Precooler system of absorption type