JPH04292528A - Air suction controller of internal combustion engine - Google Patents

Air suction controller of internal combustion engine

Info

Publication number
JPH04292528A
JPH04292528A JP3054890A JP5489091A JPH04292528A JP H04292528 A JPH04292528 A JP H04292528A JP 3054890 A JP3054890 A JP 3054890A JP 5489091 A JP5489091 A JP 5489091A JP H04292528 A JPH04292528 A JP H04292528A
Authority
JP
Japan
Prior art keywords
intake
control valve
valve
intake control
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3054890A
Other languages
Japanese (ja)
Inventor
Shigeo Nomura
重夫 野村
Yurio Nomura
由利夫 野村
Hideki Obayashi
秀樹 大林
Tokio Kohama
時男 小浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP3054890A priority Critical patent/JPH04292528A/en
Publication of JPH04292528A publication Critical patent/JPH04292528A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/08Modifying distribution valve timing for charging purposes
    • F02B29/083Cyclically operated valves disposed upstream of the cylinder intake valve, controlled by external means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

PURPOSE:To improve combustion and fuel consumption while reducing pumping loss. CONSTITUTION:Although an air suction control valve is closed in the halfway of suction process, average opening degree of the air suction control valve is reduced to a smaller opening degree (for examle, half-open) than full open. Therefore, the time when opening of the air suction contorl valve is completed for sucking the pridetermined amount of air is delayed comparing to the time when the valve is fully opened conventionally. As a result, the period of adiabatic expansion is shortened, and the degree of temperature drop of air in a cylinder is reduce. At the same time, the degree of reduction of swirl is reduced. Consequently, it becomes possible to improve combustion and fuel efficiency by far while maintaining the reduction of pumping loss which the air suction control valve has.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は吸気制御弁を用いた内燃
機関の吸気制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake control system for an internal combustion engine using an intake control valve.

【0002】0002

【従来の技術】従来より内燃機関の各気筒の吸気通路に
吸気制御弁を設けて吸入空気量を制御し、部分負荷時の
燃費を向上させる吸気制御装置がある(例えば特開昭6
3−65138号)。この従来の吸気制御装置において
は、各気筒の吸気通路に設けた吸気制御弁を各々アクチ
ュエータで独立して開閉制御することにより、カムプロ
フィールに関係なく吸入期間を実質的に短くできる。図
18に従来装置の吸気制御弁の開閉時期と吸気通路の上
流部における圧力との関係を例示する。図示のように従
来装置では吸気行程の早い時期に吸気制御弁を閉じるこ
とができるから、スロットルバルブを全開(WOT)に
してほぼ大気圧の空気を所定量だけ吸入できる。したが
って、負圧の空気の吸入により発生する損失いわゆるポ
ンピングロスが大幅に低減し、燃費の向上を図ることが
できる。
2. Description of the Related Art Conventionally, there has been an intake control device that controls the amount of intake air by providing an intake control valve in the intake passage of each cylinder of an internal combustion engine to improve fuel efficiency at partial load (for example, in Japanese Patent Laid-Open No. 6
3-65138). In this conventional intake control device, the intake period can be substantially shortened regardless of the cam profile by independently controlling the opening and closing of the intake control valves provided in the intake passages of each cylinder using actuators. FIG. 18 illustrates the relationship between the opening/closing timing of the intake control valve and the pressure at the upstream portion of the intake passage in a conventional device. As shown in the figure, in the conventional device, the intake control valve can be closed early in the intake stroke, so the throttle valve can be fully opened (WOT) and a predetermined amount of air at approximately atmospheric pressure can be taken in. Therefore, the loss, so-called pumping loss, caused by suction of negative pressure air is significantly reduced, and fuel efficiency can be improved.

【0003】0003

【発明が解決しようとする課題】上記従来装置ではポン
ピングロスの低減を実現したが、燃焼が悪化することが
あり、燃費の一層の向上が難しいという問題がある。こ
れは、図18に示したように吸気制御弁が吸気行程の早
い時期に吸気通路を閉鎖することに起因する。つまり、
吸気制御弁の閉鎖から吸気行程の終了までの長い期間が
断熱膨張となってシリンダ内の空気の温度が低下すると
共に、空気の吸入が吸気行程の早期に止められてスワー
ルが小さくなりスワールによる燃焼の改善作用が低下す
るからである。これらのことが燃焼の悪化を招き、燃費
の一層の向上を困難にしている。
[Problems to be Solved by the Invention] Although the above-mentioned conventional device has achieved a reduction in pumping loss, there is a problem in that combustion may deteriorate, making it difficult to further improve fuel efficiency. This is because the intake control valve closes the intake passage early in the intake stroke, as shown in FIG. In other words,
The long period from the closure of the intake control valve to the end of the intake stroke results in adiabatic expansion, which lowers the temperature of the air in the cylinder, and at the same time, air intake is stopped early in the intake stroke, reducing the swirl and combustion due to swirl. This is because the improving effect of These factors lead to deterioration of combustion, making it difficult to further improve fuel efficiency.

【0004】本発明の内燃機関の吸気制御装置は、上記
課題を解決し、燃焼を改善し燃費の一層の向上を可能に
することを目的とする。
The purpose of the intake air control device for an internal combustion engine of the present invention is to solve the above problems, improve combustion, and make it possible to further improve fuel efficiency.

【0005】[0005]

【課題を解決するための手段及び作用】本発明の内燃機
関の吸気制御装置は、図1に例示するように、内燃機関
の各気筒の吸気通路に設けた吸気制御弁を吸気制御弁制
御手段により所定のタイミングで開閉して吸入空気量を
制御する内燃機関の吸気制御装置において、前記吸気制
御弁制御手段による前記吸気制御弁の開弁期間中の平均
した開度を全開より小さい開度に低減する平均開度低減
手段を設けたことを特徴とする。
[Means and operations for solving the problems] As illustrated in FIG. 1, an intake control device for an internal combustion engine according to the present invention includes an intake control valve control means that controls an intake control valve provided in an intake passage of each cylinder of an internal combustion engine. In the intake control device for an internal combustion engine, which opens and closes at a predetermined timing to control the amount of intake air, the average opening degree of the intake control valve during the opening period of the intake control valve by the intake control valve control means is set to an opening degree smaller than fully open. It is characterized by providing means for reducing the average opening degree.

【0006】上記構成の内燃機関の吸気制御装置は、吸
気制御弁制御手段による吸気制御弁の開弁期間中の平均
開度を平均開度低減手段が全開より小さい開度に低減す
るから、所定の吸入空気量を得るために吸気制御弁の閉
弁完了の時期が遅くなる。したがって、吸気制御弁の閉
鎖から吸入行程の終了までの断熱膨張期間が短くなりシ
リンダ内の空気の温度低下の程度が軽減される。また、
吸気制御弁が空気の吸入を吸気行程の途中で止める時期
が遅くなりスワールの減少程度が小さくなる。これらの
ことから、燃焼が良好となり、燃費の一層の向上が図ら
れる。
[0006] In the intake control device for an internal combustion engine having the above structure, the average opening degree reduction means reduces the average opening degree during the opening period of the intake control valve by the intake control valve control means to a predetermined degree of opening less than full opening. In order to obtain the amount of intake air of Therefore, the adiabatic expansion period from the closing of the intake control valve to the end of the intake stroke is shortened, and the degree of temperature drop of the air in the cylinder is reduced. Also,
The timing at which the intake control valve stops sucking air in the middle of the intake stroke is delayed, and the degree of reduction in swirl becomes smaller. These factors result in better combustion and further improvement in fuel efficiency.

【0007】[0007]

【実施例】以下、本発明の一実施例を説明する。本実施
例の吸気制御装置が搭載されるエンジンのシステム構成
を図2に示す。
[Embodiment] An embodiment of the present invention will be described below. FIG. 2 shows the system configuration of an engine equipped with the intake air control device of this embodiment.

【0008】図2に示すように、エンジンのシステム構
成は、4気筒エンジン1と、このエンジン1の吸気系1
aに設けた吸気制御部3、およびこれらを制御する電子
制御装置(以下単にECUという)5などから構成され
る。
As shown in FIG. 2, the engine system configuration includes a four-cylinder engine 1 and an intake system 1 of this engine 1.
It is composed of an intake control unit 3 provided in a, an electronic control unit (hereinafter simply referred to as ECU) 5 that controls these, and the like.

【0009】エンジン1は4個の気筒7を備える。各気
筒7には高速適合カムによって開閉されるインテークバ
ルブ9と、エキゾーストバルブ11とが設けられる。エ
ンジン1の吸気系1aには圧力調整弁としてのスロット
ルバルブ13が配設される。スロットルバルブ13はス
ロットルアクチュエータ15の駆動制御によりスロット
ル開度を変更する。各エキゾーストバルブ11には排気
管1bが接続される。
[0009] The engine 1 includes four cylinders 7. Each cylinder 7 is provided with an intake valve 9 and an exhaust valve 11 that are opened and closed by a high-speed compatible cam. A throttle valve 13 as a pressure regulating valve is disposed in the intake system 1a of the engine 1. The throttle valve 13 changes the throttle opening degree by drive control of the throttle actuator 15. An exhaust pipe 1b is connected to each exhaust valve 11.

【0010】吸気系1aから分岐して設けた各吸気ポー
ト17は各気筒7に連通する。吸気ポート17の各々の
内部には吸気制御弁19が設けられる。各吸気制御弁1
9はアクチュエータ21の駆動制御により気筒毎に独立
して吸気ポート17の開度を変更する。吸気ポート17
の上流部17aには、燃料を噴射するインジェクタ23
が設けられている。
Each intake port 17 branched from the intake system 1a communicates with each cylinder 7. An intake control valve 19 is provided inside each intake port 17 . Each intake control valve 1
Reference numeral 9 changes the opening degree of the intake port 17 independently for each cylinder by drive control of the actuator 21. Intake port 17
An injector 23 for injecting fuel is provided at the upstream portion 17a of the
is provided.

【0011】エンジン1には、検出器として各種のセン
サ類が備えられる。例えば、各気筒7のピストンが上死
点(TDC)に位置するときにパルス信号を出力するク
ランク角センサ25がある。また、所定のクランク角度
毎にパルス信号を出力する回転速度センサ27、気筒毎
にトルクあるいは燃焼を検出するセンサ29(例えば筒
内圧センサ、トルクセンサ、ノックセンサ)、気筒毎に
空気量を検出するセンサ31(例えば吸気管内圧力セン
サ)、負荷状態を検出する負荷検出手段33(例えばス
ロットルセンサ、アクセルセンサ)、騒音あるいは振動
を検出する騒音・振動検出手段35、エミッションの状
態を検出するエミッション検出手段37などがある。
The engine 1 is equipped with various sensors as detectors. For example, there is a crank angle sensor 25 that outputs a pulse signal when the piston of each cylinder 7 is located at top dead center (TDC). Additionally, a rotational speed sensor 27 outputs a pulse signal at each predetermined crank angle, a sensor 29 detects torque or combustion for each cylinder (for example, a cylinder pressure sensor, a torque sensor, a knock sensor), and an air amount sensor 29 for each cylinder. A sensor 31 (for example, an intake pipe pressure sensor), a load detection means 33 (for example, a throttle sensor, an accelerator sensor) that detects a load state, a noise/vibration detection means 35 that detects noise or vibration, and an emission detection means that detects an emission state. There are 37 etc.

【0012】さらに、エンジン1には各種制御手段が備
えられる。例えば、インジェクタ23による噴射量およ
び噴射時期を制御する噴射制御手段39、点火時期を制
御する点火時期制御手段41、吸気の過給を行なう過給
手段43、運転状態に応じて学習制御を行なう学習制御
手段45、吸気の加熱を行なう吸気加熱手段47、冷却
水の温度を調整する冷却水温調整手段49がある。
Furthermore, the engine 1 is equipped with various control means. For example, an injection control means 39 that controls the injection amount and injection timing by the injector 23, an ignition timing control means 41 that controls the ignition timing, a supercharging means 43 that supercharges intake air, and a learning system that performs learning control according to the operating state. There are a control means 45, an intake air heating means 47 for heating intake air, and a cooling water temperature adjusting means 49 for adjusting the temperature of cooling water.

【0013】ECU5はCPU5a、ROM5b、RA
M5cを中心に算術論理回路として構成されており、コ
モンバス5dを介して入出力部5eに接続され、外部と
の入出力を行なう。上記各センサ25〜37からの検出
信号及び上記各制御手段41〜49からの信号は入出力
部5eからCPU5aに入力される。CPU5aは入出
力部5eを介してスロットルアクチュエータ15、吸気
制御弁19のアクチュエータ21、過給手段43、吸気
加熱手段47に制御信号を出力する。また、ECU5は
上記クランク角センサ25と回転速度センサ27との信
号に基づいて、各気筒7のインテークバルブ9の開閉期
間を検出する。
[0013]ECU5 includes CPU5a, ROM5b, RA
It is configured as an arithmetic logic circuit centered around M5c, and is connected to an input/output section 5e via a common bus 5d to perform input/output with the outside. Detection signals from the sensors 25 to 37 and signals from the control means 41 to 49 are input to the CPU 5a from the input/output section 5e. The CPU 5a outputs control signals to the throttle actuator 15, the actuator 21 of the intake control valve 19, the supercharging means 43, and the intake air heating means 47 via the input/output section 5e. Further, the ECU 5 detects the opening/closing period of the intake valve 9 of each cylinder 7 based on the signals from the crank angle sensor 25 and the rotational speed sensor 27.

【0014】次に、吸気制御弁19およびアクチュエー
タ21を図3ないし図5により説明する。図3は吸気制
御弁19とアクチュエータ21の構造を示す断面図、図
4は図3における4−4線で切断した断面図、図5は吸
気制御弁19の動作を示す説明図である。図3に示すよ
うに、吸気制御弁19は吸気ポート17内部に設けたバ
タフライ型の円形弁板50である。円形弁板50は支軸
51により回動自在に支持されており、吸気ポート17
の壁面に対し極めて狭いクリアランスを持ちながら非接
触で支軸51を中心に揺動する(図5参照)。なお、支
軸51の一端はベアリング53により吸気ポート17に
支持され、支軸51の他端はアクチュエータ21に連結
されている。
Next, the intake control valve 19 and actuator 21 will be explained with reference to FIGS. 3 to 5. 3 is a sectional view showing the structure of the intake control valve 19 and the actuator 21, FIG. 4 is a sectional view taken along line 4--4 in FIG. 3, and FIG. 5 is an explanatory diagram showing the operation of the intake control valve 19. As shown in FIG. 3, the intake control valve 19 is a butterfly-type circular valve plate 50 provided inside the intake port 17. The circular valve plate 50 is rotatably supported by a support shaft 51, and is connected to the intake port 17.
It swings around the support shaft 51 in a non-contact manner while having an extremely narrow clearance with respect to the wall surface (see FIG. 5). Note that one end of the support shaft 51 is supported by the intake port 17 by a bearing 53, and the other end of the support shaft 51 is connected to the actuator 21.

【0015】アクチュエータ21は、支軸57、磁石部
材59、電磁コイル61,63、永久磁石65,67な
どを備える。支軸57はケーシング55内に回動自在に
支持されており、上記吸気制御弁19の支軸51に連結
される。支軸57の外周に磁石部材59が嵌着されてい
る。磁石部材59には周方向に関し対称に異極となる磁
極が形成される。一対の電磁コイル61,63は、上記
磁石部材59を間において対向させた状態でケーシング
55の内壁に設けられている。また、一対の永久磁石6
5,67は、上記磁石部材59を間において対向しかつ
上記一対の電磁コイル61,63と直交する状態で、ケ
ーシング55の内壁に設けられている。
The actuator 21 includes a support shaft 57, a magnet member 59, electromagnetic coils 61, 63, permanent magnets 65, 67, and the like. The support shaft 57 is rotatably supported within the casing 55 and is connected to the support shaft 51 of the intake control valve 19 . A magnet member 59 is fitted around the outer periphery of the support shaft 57 . Magnetic poles that are symmetrically different in the circumferential direction are formed in the magnet member 59 . A pair of electromagnetic coils 61 and 63 are provided on the inner wall of the casing 55 with the magnet member 59 interposed therebetween. In addition, a pair of permanent magnets 6
5 and 67 are provided on the inner wall of the casing 55 so as to face each other with the magnet member 59 in between and to be orthogonal to the pair of electromagnetic coils 61 and 63.

【0016】次に、電磁コイル61,63の制御回路を
説明する。図6に示すように、制御回路は4個のFET
70A,70B,70C,70D(トランジスタでも可
)、直流電源71等を備えた公知のチョッパ駆動を行な
う回路である。ECU5側にこの制御回路のドライバ(
図示せず)が備えられる。上記電磁コイル61,63の
一端は直列に接続される。電磁コイル61の他端はFE
T70AとFET70Bとの間に接続され、電磁コイル
63の他端はFET70CとFET70Dとの間に接続
される。
Next, a control circuit for the electromagnetic coils 61 and 63 will be explained. As shown in Figure 6, the control circuit consists of four FETs.
This is a known chopper driving circuit including 70A, 70B, 70C, 70D (transistors may also be used), a DC power supply 71, and the like. This control circuit driver (
(not shown) is provided. One ends of the electromagnetic coils 61 and 63 are connected in series. The other end of the electromagnetic coil 61 is FE
It is connected between T70A and FET70B, and the other end of electromagnetic coil 63 is connected between FET70C and FET70D.

【0017】上記制御回路により制御される吸気制御弁
19は基本的に以下のように動作する。図7のタイミン
グチャートにドライバの入力信号とFET70A〜Dの
ソース電圧と駆動電圧との関係を示す。ドライバに電圧
レベルの高い「H」信号が入力されると、ドライバはF
ET70B,70Cのソース電圧を電圧レベルの低い「
L」レベルにし、FET70Aのソース電圧を電圧レベ
ルの高い「H」レベルにすると共に、FET70Dのソ
ース電圧を「H」,「L」レベルの間でPWM制御によ
り切り替える制御を実行する。したがって、正の駆動電
圧が印加されることになり、図6中のa点からb点の側
にduty比(期間T2と期間T3との比)で決まる大
きさの電流が流れて、電磁コイル61,63が電流の大
きさに応じた磁力を発生する。そして、電磁コイル61
,63により形成される磁極と、永久磁石65,67に
よって形成される磁極とにより決まる位置まで磁石部材
59は揺動する。この結果、磁石部材59に一体の支軸
57が揺動し、円筒弁体50は図5に2点鎖線で示す全
開位置の側に揺動する。揺動量(開安定位置)はdut
y比を変えることで変更される。
The intake control valve 19 controlled by the above control circuit basically operates as follows. The timing chart of FIG. 7 shows the relationship between the input signal of the driver, the source voltages of FETs 70A to 70D, and the drive voltages. When an “H” signal with a high voltage level is input to the driver, the driver
Change the source voltage of ET70B and 70C to a low voltage level.
At the same time, the source voltage of the FET 70A is set to the high level "H", and the source voltage of the FET 70D is switched between the "H" and "L" levels by PWM control. Therefore, a positive drive voltage is applied, and a current with a magnitude determined by the duty ratio (ratio between period T2 and period T3) flows from point a to point b in FIG. 61 and 63 generate magnetic force according to the magnitude of the current. And the electromagnetic coil 61
, 63 and the magnetic poles formed by the permanent magnets 65, 67. As a result, the support shaft 57 integral with the magnet member 59 swings, and the cylindrical valve body 50 swings toward the fully open position shown by the two-dot chain line in FIG. The amount of swing (stable open position) is dut
It is changed by changing the y ratio.

【0018】また、ドライバに電圧レベルの低い「L」
信号が入力されると、ドライバはFET70A,70D
のソース電圧を「L」レベルにし、FET70Cのソー
ス電圧を「H」レベルにすると共に、FET70Bのソ
ース電圧を「H」,「L」レベルの間でPWM制御によ
り切り替える制御を実行する。したがって、負の駆動電
圧が印加されることになり、図6中のb点からa点の側
にduty比(期間T5と期間T6との比)で決まる大
きさの電流が流れて磁石部材59は逆方向に揺動する。 この結果、円筒弁体50は図5に2点鎖線で示す全閉位
置の側に揺動する。揺動量(閉安定位置)はduty比
を変えることで変更される。
[0018] Also, if the driver has a low voltage level "L"
When a signal is input, the driver switches FETs 70A and 70D.
The source voltage of the FET 70C is set to the "L" level, the source voltage of the FET 70C is set to the "H" level, and the source voltage of the FET 70B is switched between the "H" and "L" levels by PWM control. Therefore, a negative drive voltage is applied, and a current having a magnitude determined by the duty ratio (ratio between period T5 and period T6) flows from point b to point a in FIG. swings in the opposite direction. As a result, the cylindrical valve body 50 swings toward the fully closed position shown by the two-dot chain line in FIG. The amount of rocking (closed stable position) is changed by changing the duty ratio.

【0019】さらに、電磁コイル61,63への通電を
遮断すると磁石部材59は永久磁石65,67の磁極の
みによって保持される。したがって、円筒弁体50は図
5に実線で示すように中立位置(半開位置)に揺動して
安定する。中立位置は、アクチュエータ21に無通電時
のコギングトルク(ディテンドトルク)によるロータマ
グネット及び制御の安定した位置である。
Further, when the electromagnetic coils 61 and 63 are de-energized, the magnet member 59 is held only by the magnetic poles of the permanent magnets 65 and 67. Therefore, the cylindrical valve body 50 swings to the neutral position (half-open position) and becomes stable, as shown by the solid line in FIG. The neutral position is a position where the rotor magnet and control are stable by cogging torque (detent torque) when the actuator 21 is not energized.

【0020】したがって、以上の構成においては、開安
定位置は期間T2と期間T3との比により決まり期間T
2が長いと全開状態となり、期間T2を短くするにした
がって半開状態に近づいた位置で安定することになる。 そして、無通電つまり期間T2=0とすると中立位置、
即ち半開状態となる。開度が中立位置と全閉位置との間
にある開位置とする場合には、期間T5,T6の比を変
更する。期間T6を長くするにしたがって全閉状態に近
づいた位置で安定することになる。このようにduty
比を変更すれば吸気制御弁19を任意の開度にすること
ができる。
Therefore, in the above configuration, the stable open position is determined by the ratio of the period T2 and the period T3.
If T2 is long, it will be in a fully open state, and as the period T2 is shortened, it will become stable at a position approaching a half-open state. Then, if no current is applied, that is, period T2 = 0, the neutral position,
That is, it becomes a half-open state. When setting the opening position to an open position where the degree of opening is between the neutral position and the fully closed position, the ratio of periods T5 and T6 is changed. As the period T6 is lengthened, it becomes stable at a position closer to the fully closed state. In this way the duty
By changing the ratio, the intake control valve 19 can be opened to an arbitrary degree.

【0021】なお、期間T1,T4は、制御弁の立ち上
がり特性を補うものである。期間T1,T4の幅を長く
することにより、図8の線図Aに示すように、吸気制御
弁19の移動速度が高まり、応答性が良くなる。期間T
1,T4の幅が短いと、線図Bのように応答性は良くな
い。また、図7のトライバ入力信号は、ECU5からド
ライバに入力される信号であって、円筒弁体50の揺動
方向を開側・閉側のうちから選択する信号である。
It should be noted that the periods T1 and T4 are used to compensate for the rise characteristics of the control valve. By increasing the widths of the periods T1 and T4, the moving speed of the intake control valve 19 increases and responsiveness improves, as shown in diagram A in FIG. 8. Period T
1. If the width of T4 is short, the response is not good as shown in diagram B. Further, the driver input signal in FIG. 7 is a signal input from the ECU 5 to the driver, and is a signal for selecting the swinging direction of the cylindrical valve body 50 from the open side and the closed side.

【0022】以上説明した構成を備える吸気制御装置の
作用を以下に説明する。気筒毎の吸入空気量Qは気筒毎
に空気量を検出するセンサ31からの入力信号(吸気圧
力P)と、アクチュエータ21へ出力される吸気制御弁
19の制御信号(吸気時間T)とに基づき求められるが
、これらのうち吸気圧力Pはスロットルバルブ13の開
度により決められ、吸気時間Tは吸気制御弁19および
吸気弁9により決められる。スロットルバルブ13の開
度とアクセル踏込量との関係を図9に示す。図示のよう
に実施例ではアクセル踏込量が所定値以上になるとスロ
ットルバルブ13の開度が一定値に抑えられる設定がな
されている。吸気制御弁19の基本的な閉弁時期につい
ては表1のごとく設定されている。表1に示すように、
負荷に応じて吸気制御弁の閉弁時期は基本的に調整され
る。表1において閉弁時期は吸気行程終了の下死点に対
する進角量を示す。また、上記制御は吸気制御弁19で
吸気弁9の閉弁時期を実質的に制御するものであるが、
吸気弁9の開時間内で吸気制御弁を開閉することで実吸
気時間を制御する構成でもよい。
The operation of the intake control device having the configuration described above will be explained below. The intake air amount Q for each cylinder is based on the input signal (intake pressure P) from the sensor 31 that detects the air amount for each cylinder, and the control signal (intake time T) of the intake control valve 19 output to the actuator 21. Of these, the intake pressure P is determined by the opening degree of the throttle valve 13, and the intake time T is determined by the intake control valve 19 and the intake valve 9. FIG. 9 shows the relationship between the opening degree of the throttle valve 13 and the amount of accelerator depression. As shown in the figure, in the embodiment, the opening degree of the throttle valve 13 is suppressed to a constant value when the amount of accelerator depression exceeds a predetermined value. The basic closing timing of the intake control valve 19 is set as shown in Table 1. As shown in Table 1,
The closing timing of the intake control valve is basically adjusted depending on the load. In Table 1, the valve closing timing indicates the amount of advance relative to the bottom dead center at the end of the intake stroke. Furthermore, although the above control substantially controls the closing timing of the intake valve 9 using the intake control valve 19,
The actual intake time may be controlled by opening and closing the intake control valve within the opening time of the intake valve 9.

【0023】[0023]

【表1】[Table 1]

【0024】開弁時期は表2に示すように与えられる。 即ち、開弁時期はエンジン回転数に応じて設定されてお
り、表2の開弁時期は圧縮行程終了上死点に対する進角
量を示している。上記の開閉弁時期に対して吸気制御弁
19の開閉制御は以下のように実行される。
The valve opening timing is given as shown in Table 2. That is, the valve opening timing is set according to the engine speed, and the valve opening timing in Table 2 indicates the amount of advance relative to the top dead center at the end of the compression stroke. Opening/closing control of the intake control valve 19 is executed as follows with respect to the above-mentioned opening/closing valve timing.

【0025】[0025]

【表2】[Table 2]

【0026】図10にアクチュエータ21の駆動電圧の
タイミングチャート、図11にインテークバルブ9と吸
気制御弁19との動作のタイミングチャートを示す。な
お、図11には比較のために従来装置による吸気制御弁
の動作を2点鎖線で示した。
FIG. 10 shows a timing chart of the driving voltage of the actuator 21, and FIG. 11 shows a timing chart of the operation of the intake valve 9 and the intake control valve 19. For comparison, FIG. 11 shows the operation of the intake control valve according to the conventional device using a chain double-dashed line.

【0027】制御回路(図6)の基本的な動作に関連し
て先に説明したように、duty比により吸気制御弁1
9の開度は任意に設定される。したがって、図10(B
)に示すように、正の駆動電圧を印加する期間T3を値
0にする場合には、吸気制御弁19の動作が図11の線
図Aのようになり、吸気制御弁19は中立位置に揺動す
る。したがって、開度が半開となり、所定の吸入空気量
を得るため、吸気制御弁19の閉鎖完了時期が従来より
も下死点BDC側にずれる。
As explained above in relation to the basic operation of the control circuit (FIG. 6), the intake control valve 1 is controlled depending on the duty ratio.
The opening degree of 9 is set arbitrarily. Therefore, Fig. 10 (B
), when the period T3 during which a positive drive voltage is applied is set to the value 0, the operation of the intake control valve 19 becomes as shown in diagram A in FIG. 11, and the intake control valve 19 is in the neutral position. oscillate. Therefore, the opening degree becomes half open, and in order to obtain a predetermined amount of intake air, the closing completion timing of the intake control valve 19 is shifted closer to the bottom dead center BDC than in the past.

【0028】また、図10(A)に示すように、全閉の
ための負の駆動電圧を印加する期間T6よりも正の駆動
電圧を印加する期間T3を短くする場合には、吸気制御
弁19の動作は図11の線図Bのようになる。吸気制御
弁19は半開位置と全開位置との間で安定する。この結
果、吸気制御弁19の閉鎖完了時は、同じく所定の吸入
空気量を得るために従来よりも下死点BDC側にずれる
が、ずれ量は半開時よりも少なくなる。
Furthermore, as shown in FIG. 10(A), when the period T3 during which a positive drive voltage is applied is made shorter than the period T6 during which a negative drive voltage is applied for full closing, the intake control valve The operation of No. 19 is as shown in diagram B of FIG. The intake control valve 19 is stabilized between the half open position and the fully open position. As a result, when the intake control valve 19 is completely closed, it deviates toward the bottom dead center BDC side compared to the conventional case in order to obtain a predetermined amount of intake air, but the amount of deviation is smaller than when it is half-open.

【0029】さらに、図10(C)に示すように、期間
T1だけ立ち上がりのために正の駆動電圧を印加し、以
降は負の駆動電圧を印加させる場合であって、全閉のた
めの負の駆動電圧を印加する期間T6よりも、負の駆動
電圧を印加させる期間T8を短くする場合には、吸気制
御弁の動作は図11の線図Cのようになる。吸気制御弁
19は半開位置と全閉位置との間で安定する。この結果
、所定の吸入空気量を得るために、吸気制御弁19の閉
鎖完了時は半開時よりもさらに下死点BDC側にずれる
Furthermore, as shown in FIG. 10(C), a positive drive voltage is applied for a period T1 for rising, and thereafter a negative drive voltage is applied, and a negative drive voltage for fully closing is applied. When the period T8 during which a negative drive voltage is applied is made shorter than the period T6 during which a drive voltage of 1 is applied, the operation of the intake control valve becomes as shown in line C in FIG. The intake control valve 19 is stabilized between a half-open position and a fully closed position. As a result, in order to obtain a predetermined amount of intake air, when the intake control valve 19 is completely closed, it is further shifted toward the bottom dead center BDC side than when it is half-open.

【0030】なお、以上のほかにもduty比を変更す
ることで、図11の線図Dに示すように半開状態からの
閉弁動作を低速度で行なう制御、線図Eに示すように全
開位置から半開状態に移動して一旦保持した後、半開状
態から全閉状態にする制御が実現される。
In addition to the above, by changing the duty ratio, the valve can be controlled to close from a half-open state at a low speed, as shown in line D in FIG. 11, or to be fully open, as shown in line E. After moving from the position to the half-open state and once holding it, control is realized to change the state from the half-open state to the fully closed state.

【0031】以上の各線図A〜Eの制御のうちで、線図
Aの制御つまり吸気制御弁19の開度を半開にする制御
を実行した場合に関して、図12のタイミングチャート
に吸気制御弁19の動作と吸気ポート上流部17aの圧
力との関係を示す。
Among the controls shown in each of the diagrams A to E above, the timing chart of FIG. 12 shows the timing chart of FIG. The relationship between the operation and the pressure at the upstream portion 17a of the intake port is shown.

【0032】期間1サイクルの制御では以下の現象が起
こる。各気筒7の吸気行程の途中で各吸気制御弁19が
吸気ポート17を閉鎖するから、上流部17aの圧力は
図示のごとく大気圧から負圧へと圧力が大きく降下し、
ピストンの下死点で最小値となる。その後ピストンが上
昇するため圧力は若干大気側に戻っていくが、インテー
クバルブ9を閉じると上流部17aの圧力は負圧で保持
される。次にインテークバルブ9が閉となったあとに、
吸気制御弁19を再び開とすると、吸気ポート17の上
流から空気が上流部17aに急激に流れ込み、上流部1
7aの圧力は急速に上昇し、大気圧近傍で圧力変動をお
こす。
[0032] In the control for one cycle of period, the following phenomenon occurs. Since each intake control valve 19 closes the intake port 17 during the intake stroke of each cylinder 7, the pressure in the upstream section 17a greatly drops from atmospheric pressure to negative pressure as shown in the figure.
The minimum value is reached at the bottom dead center of the piston. Thereafter, as the piston rises, the pressure slightly returns to the atmosphere side, but when the intake valve 9 is closed, the pressure in the upstream portion 17a is maintained at negative pressure. Next, after the intake valve 9 is closed,
When the intake control valve 19 is opened again, air suddenly flows into the upstream section 17a from upstream of the intake port 17, and the air suddenly flows into the upstream section 17a.
The pressure at 7a rises rapidly and causes pressure fluctuations near atmospheric pressure.

【0033】以上のサイクルにおいて、吸気制御弁19
の開安定位置は半開であるから、所定の吸入空気量を得
るために、各気筒7の吸気行程の途中で各吸気制御弁1
9を全閉にする時期がBDC側にずれ遅れる。この結果
、断熱膨張の期間が短くなりシリンダ内の空気の温度の
低下の程度が低減される。さらに、吸気制御弁19が空
気の吸入を吸気行程の途中で止める時期が遅くなるので
あるからスワールの減少の程度が小さくなる。この結果
、燃焼が良好となる。なお、ポンピングロスは増大する
が、増加量はごくわずかである。図13にこのエンジン
のPV線図を示す。エンジンのポンピングロスは図中符
号AHBXGで囲まれた面積となる。従来の吸気制御装
置のポンピングロスは図中符号GHBXで囲まれた面積
である。ポンピングロスの増加量はわずかに符号AHG
で囲まれた小さな面積だけである。吸気制御弁19を使
用しない場合のポンピングロス(図中符号AJBXで囲
まれた面積)と比べると充分に小さい。つまり、吸気制
御弁19の半開制御により吸気制御弁19の閉弁完了時
期を遅らすことで、ポンピングロスを充分低減しつつも
燃焼温度の低下とスワールの減少とが極力抑えられるの
である。
In the above cycle, the intake control valve 19
Since the stable open position of is half open, each intake control valve 1 is opened during the intake stroke of each cylinder 7 in order to obtain a predetermined amount of intake air.
The timing to fully close 9 is delayed on the BDC side. As a result, the period of adiabatic expansion is shortened, and the degree of decrease in the temperature of the air within the cylinder is reduced. Furthermore, since the timing at which the intake control valve 19 stops sucking air in the middle of the intake stroke is delayed, the degree of reduction in swirl is reduced. As a result, combustion becomes better. Note that although the pumping loss increases, the amount of increase is very small. Figure 13 shows the PV diagram of this engine. The pumping loss of the engine is the area surrounded by the symbol AHBXG in the figure. The pumping loss of the conventional intake control device is the area surrounded by the symbol GHBX in the figure. The amount of increase in pumping loss is slightly with the sign AHG
It is only a small area surrounded by This is sufficiently small compared to the pumping loss (the area surrounded by the symbol AJBX in the figure) when the intake control valve 19 is not used. In other words, by delaying the closing timing of the intake control valve 19 through half-open control of the intake control valve 19, it is possible to sufficiently reduce the pumping loss while minimizing the reduction in combustion temperature and swirl.

【0034】以下、上述した吸気弁制御時のECU5の
作動を図14のフローチャートに基づいて説明する。本
ルーチンは吸気行程の下死点毎にECU5において実行
される割込処理であって、図11の線図Aの場合を例示
している。
The operation of the ECU 5 during the above-mentioned intake valve control will be explained below based on the flowchart of FIG. 14. This routine is an interrupt process executed in the ECU 5 at every bottom dead center of the intake stroke, and the case shown in diagram A in FIG. 11 is illustrated.

【0035】本ルーチンを起動すると、まず、エンジン
回転数と負荷を読み込み(ステップS10)、次に回転
数および負荷に基づき、予めROM5bに記憶されてい
る表1,表2に相当するマップを参照して開時期および
閉時期を読み込む(ステップS20)。なお、表1,表
2では開時期および閉時期を吸気下死点または吸気上死
点からの進角量で示したが上記マップでは上述の開時期
および閉時期に対応する吸気下死点からのタイマカウン
トが用いられている。
When this routine is started, first, the engine speed and load are read (step S10), and then, based on the engine speed and load, maps corresponding to Tables 1 and 2 stored in advance in the ROM 5b are referred to. The opening timing and closing timing are read (step S20). In addition, in Tables 1 and 2, the opening timing and closing timing are shown by the amount of advance from intake bottom dead center or intake top dead center, but in the above map, the opening timing and closing timing are shown by the advance angle from intake bottom dead center corresponding to the above-mentioned opening timing and closing timing. A timer count is used.

【0036】次に、開側条件および閉側条件を読み込む
(ステップS30)。ここで開,閉条件とは図10で示
したT1〜T6のことである。本ルーチンは図11の線
図Aの場合を例示しており、開条件は半開、閉条件は全
閉である。
Next, the open side condition and the close side condition are read (step S30). Here, the open and close conditions refer to T1 to T6 shown in FIG. This routine exemplifies the case of diagram A in FIG. 11, where the open condition is half open and the close condition is fully closed.

【0037】ところで、吸気制御弁の開度は前述したよ
うにT2とT3との比、T5とT6の比によって定まる
。この比と制御弁開度との関係を図15に示す。即ち、
T3/(T2+T3)が約40パーセントで全開となり
、−T6/(T5+T6)が約−40パーセントで全閉
となっている。そのため、半開のときはT3が値0とな
り、全閉のときは−T6/(T5+T6)が約40パー
セントとなる。また、T1,T4は上記比の絶対値に応
じた値となっている。
By the way, as described above, the opening degree of the intake control valve is determined by the ratio of T2 and T3 and the ratio of T5 and T6. The relationship between this ratio and the control valve opening degree is shown in FIG. That is,
When T3/(T2+T3) is about 40%, it is fully open, and when -T6/(T5+T6) is about -40%, it is fully closed. Therefore, when the valve is half open, T3 has a value of 0, and when it is fully closed, -T6/(T5+T6) is approximately 40%. Further, T1 and T4 have values corresponding to the absolute value of the above ratio.

【0038】上記ステップS30で開条件(半開),閉
条件(全閉)を読み込むと、タイマがカウントを開始し
(ステップS40)、カウント値が開時期に相当するか
否かを判断する(ステップS50)。カウント値が開時
期に相当し「YES」と判断した場合は、開信号(半開
信号)をアクチュエータ21に出力する(S70)。
When the open condition (half-open) and close condition (fully closed) are read in step S30, the timer starts counting (step S40), and it is determined whether the count value corresponds to the opening timing (step S50). If the count value corresponds to the opening timing and the determination is "YES", an open signal (half-open signal) is output to the actuator 21 (S70).

【0039】また、ステップS50でカウント値が開状
態に相当せず「NO」と判断した場合は、閉信号(全閉
信号)を出力し(ステップS60)、カウント値が開時
期に相当するに至るまで閉信号の出力(ステップS60
)を繰り返す。
Further, if the count value does not correspond to the open state and the determination is "NO" in step S50, a close signal (fully closed signal) is output (step S60), and the count value corresponds to the open state. Output of the closed signal (step S60
)repeat.

【0040】次に、カウント値が閉時期に相当するか否
かを判断する(ステップS80)。カウント値が閉時期
に相当し「YES」と判断した場合は閉信号(全閉信号
)をアクチュエータ21に出力する(ステップS90)
。カウント値が閉時期に相当せずステップS80で「N
O」と判断した場合は上記ステップS70に戻り開信号
を出力し、カウント値が閉時期に相当するまでステップ
S70の開信号出力を繰り返す。
Next, it is determined whether the count value corresponds to the closing time (step S80). If the count value corresponds to the closing timing and it is determined as "YES", a closing signal (fully closed signal) is output to the actuator 21 (step S90).
. Since the count value does not correspond to the closing timing, "N" is returned in step S80.
If it is determined as "O", the process returns to step S70 and an open signal is output, and the open signal output in step S70 is repeated until the count value corresponds to the closing timing.

【0041】以上説明した内燃機関の吸気制御装置によ
れば、吸気制御弁19の閉弁完了時期を遅らすことがで
きるから、ポンピングロスの低減作用をほぼ維持しつつ
も燃焼温度の低下とスワールの減少とを抑えることがで
き、燃焼を改善して燃費の格段の向上を図ることが可能
となるという優れた効果を奏する。また、燃焼が安定す
るから運転性が向上するという利点がある。なお、こう
した効果をあげる吸気制御弁19の閉弁完了時期を遅ら
せる制御は、吸気制御弁19の平均開度を全閉より小さ
い開度に低減しながら全開制御時と同じ吸入空気量を確
保する制御であって、図11の線図A〜Eに示したよう
に多様なパターンの制御が考えられる。
According to the intake control device for an internal combustion engine described above, since the timing of completion of closing of the intake control valve 19 can be delayed, the effect of reducing the pumping loss can be substantially maintained while reducing the combustion temperature and reducing the swirl. This has an excellent effect in that it is possible to suppress the decrease in fuel consumption, improve combustion, and significantly improve fuel efficiency. Further, since combustion is stabilized, there is an advantage that drivability is improved. Note that the control that delays the closing timing of the intake control valve 19, which achieves these effects, reduces the average opening degree of the intake control valve 19 to an opening degree smaller than the fully closed degree, while ensuring the same amount of intake air as during the fully open control. Regarding the control, various patterns of control can be considered as shown in the diagrams A to E in FIG. 11.

【0042】また、吸気制御弁19の開度を半開に設定
する制御(図11線図A)を行なう構成においては、電
力の供給をすることなく半開状態を維持できるから、吸
気制御弁19の駆動制御に要する消費電力を小さくする
ことができるという効果がある。なお、開度が半開状態
から全開状態の間に設定する構成よりも、開度が半開状
態から全閉状態の間に設定する構成のほうが全閉にいた
る揺動量が少ないから消費電力は若干小さいが、いずれ
も上記半開制御の構成よりは大きい。
Furthermore, in a configuration in which control is performed to set the opening degree of the intake control valve 19 to half-open (diagram A in FIG. 11), the half-open state can be maintained without supplying electric power. This has the effect of reducing power consumption required for drive control. In addition, a configuration in which the opening degree is set between half-open and fully closed has a smaller amount of swing to reach fully closed, so power consumption is slightly lower than a configuration in which the opening is set between half-open and fully open. However, both are larger than the half-open control configuration described above.

【0043】以上実施例を説明したが、本発明は実施例
に何等限定されるものではなく、本発明の趣旨を逸脱し
ない範囲において種々なる態様で実施し得ることは勿論
である。例えば、吸気制御弁としては、特開昭63−6
5138号公報に記載されている複数毎の板材の移動に
より吸気通路を開閉する構成を用いてもよい。スロット
ルバルブ40は全開として説明したが、全開に近い一定
位置としてもよい。あるいは、吸気制御弁の開閉制御(
開閉時間を決定)と、スロットルバルブ40の開度(空
気密度を決定)との両方を組み合わせて吸入空気量を制
御する構成としてもよい。例えば、図16に例示する吸
気制御弁開度と負荷(スロットル開度)との関係(階段
状の関係、あるいは連続的な関係)を規定したグラフを
マップとしてメモリに記憶させておく。このマップを参
照して負荷に応じた吸気制御弁19の開度を設定するこ
とで、吸気制御弁19の閉弁完了時期を遅らす構成とし
てもよい。閉弁完了時期としては下死点(BDC)前の
80〜120度であればよい。また、燃焼を良好にしつ
つポンピングロスを低減させる最適な閉弁完了時期を試
験により見つければよい。吸気制御弁19の開度は回転
数よりも上記負荷の影響が大きいが、回転数に関連づけ
て制御する構成とするならば、吸入空気量一定という条
件で考えれば、吸気弁9の開時期はエンジン回転数に比
例して減少することから、吸気時期制御弁19の閉開始
時間は図17に示すように直線的な関係に設定すること
ができる。
Although the embodiments have been described above, the present invention is not limited to the embodiments in any way, and it goes without saying that it can be implemented in various forms without departing from the spirit of the invention. For example, as an intake control valve, JP-A-63-6
The configuration described in Japanese Patent No. 5138, in which the intake passage is opened and closed by moving a plurality of plate members, may also be used. Although the throttle valve 40 has been described as being fully open, it may be at a constant position close to fully open. Alternatively, the opening/closing control of the intake control valve (
The intake air amount may be controlled by combining both the opening/closing time (determining the opening/closing time) and the opening degree of the throttle valve 40 (determining the air density). For example, a graph defining the relationship (stepwise relationship or continuous relationship) between the intake control valve opening and the load (throttle opening) illustrated in FIG. 16 is stored in the memory as a map. By referring to this map and setting the opening degree of the intake control valve 19 according to the load, the timing at which the intake control valve 19 completes closing may be delayed. The valve closing completion timing may be 80 to 120 degrees before bottom dead center (BDC). Further, it is sufficient to find through testing the optimum valve closing completion timing that reduces pumping loss while improving combustion. The opening degree of the intake control valve 19 is influenced more by the above-mentioned load than the rotation speed, but if it is configured to be controlled in relation to the rotation speed, and considering the condition that the amount of intake air is constant, the opening timing of the intake valve 9 will be Since it decreases in proportion to the engine speed, the closing start time of the intake timing control valve 19 can be set in a linear relationship as shown in FIG.

【0044】[0044]

【発明の効果】以上説明したように、本発明の内燃機関
の吸気制御装置によれば、吸気制御弁の開度を全開より
小さい開度に維持するため、全開制御していた従来装置
に比べて吸気制御弁による吸気通路の閉鎖完了時期を遅
らせて断熱膨張期間を短くするから、ポンピングロスの
低減作用をほぼ維持しつつも燃焼温度の低下とスワール
の減少とを抑えることができ、燃焼を改善して燃費の格
段の向上を図ることが可能となるという優れた効果を奏
する。
As explained above, according to the intake control device for an internal combustion engine of the present invention, the opening degree of the intake control valve is maintained at an opening degree smaller than full open, compared to the conventional device which controls the intake control valve to be fully open. This shortens the adiabatic expansion period by delaying the time when the intake passage is completely closed by the intake control valve, so it is possible to suppress the reduction in combustion temperature and swirl while maintaining most of the pumping loss reduction effect. This has the excellent effect of making it possible to significantly improve fuel efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の基本的構成を例示するブロック図であ
る。
FIG. 1 is a block diagram illustrating the basic configuration of the present invention.

【図2】本発明の一実施例である吸気制御装置を適用し
たエンジンのシステム全体を示すブロック図である。
FIG. 2 is a block diagram showing an entire engine system to which an air intake control device according to an embodiment of the present invention is applied.

【図3】吸気制御弁の構造を示す断面図である。FIG. 3 is a sectional view showing the structure of an intake control valve.

【図4】図3を4−4線で切断した断面図である。FIG. 4 is a cross-sectional view of FIG. 3 taken along line 4-4.

【図5】吸気制御弁の構造を示す説明図である。FIG. 5 is an explanatory diagram showing the structure of an intake control valve.

【図6】吸気制御弁のアクチュエータの制御回路を示す
回路図である。
FIG. 6 is a circuit diagram showing a control circuit of an actuator of an intake control valve.

【図7】吸気制御弁のアクチュエータの制御回路の入力
信号と駆動電圧との関係を示すタイミングチャートであ
る。
FIG. 7 is a timing chart showing the relationship between the input signal of the control circuit of the actuator of the intake control valve and the drive voltage.

【図8】実施例装置により得られる吸気制御弁の動作の
様子を示すタイミングチャートである。
FIG. 8 is a timing chart showing the operation of the intake control valve obtained by the embodiment device.

【図9】スロットル開度とアクセル踏込量との関係を示
すグラフである。
FIG. 9 is a graph showing the relationship between throttle opening and accelerator depression amount.

【図10】吸気制御弁の駆動電圧の態様を示す説明図で
ある。
FIG. 10 is an explanatory diagram showing an aspect of the driving voltage of the intake control valve.

【図11】吸気制御弁の動作を示すタイミングチャート
である。
FIG. 11 is a timing chart showing the operation of the intake control valve.

【図12】吸気制御弁の動作と吸気ポート上流部の圧力
との関係を示すタイミングチャートである。
FIG. 12 is a timing chart showing the relationship between the operation of the intake control valve and the pressure upstream of the intake port.

【図13】実施例装置により得られるPV線図である。FIG. 13 is a PV diagram obtained by the example device.

【図14】ECUにおいて行なわれる割込処理を示すフ
ローチャートである。
FIG. 14 is a flowchart showing interrupt processing performed in the ECU.

【図15】デューティ比と制御弁開度との関係を示した
特性図である。
FIG. 15 is a characteristic diagram showing the relationship between duty ratio and control valve opening degree.

【図16】吸気制御弁開度と負荷との関係を示すグラフ
である。
FIG. 16 is a graph showing the relationship between intake control valve opening and load.

【図17】吸気制御弁開度と吸気弁閉時期との関係を示
すグラフである。
FIG. 17 is a graph showing the relationship between the intake control valve opening degree and the intake valve closing timing.

【図18】従来装置における吸気制御弁の動作と吸気ポ
ート上流部の圧力との関係を示すタイミングチャートで
ある。
FIG. 18 is a timing chart showing the relationship between the operation of the intake control valve and the pressure upstream of the intake port in a conventional device.

【符号の説明】[Explanation of symbols]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  内燃機関の各気筒の吸気通路に設けた
吸気制御弁を吸気制御弁制御手段により所定のタイミン
グで開閉して吸入空気量を制御する内燃機関の吸気制御
装置において、前記吸気制御弁制御手段による前記吸気
制御弁の開弁期間中の平均した開度を全開より小さい開
度に低減する平均開度低減手段を設けたことを特徴とす
る内燃機関の吸気制御装置。
1. An intake control device for an internal combustion engine, wherein an intake control valve provided in an intake passage of each cylinder of the internal combustion engine is opened and closed at a predetermined timing by an intake control valve control means to control an intake air amount. An intake control device for an internal combustion engine, comprising an average opening reducing means for reducing the average opening of the intake control valve during a valve opening period by the valve control means to an opening smaller than a full opening.
JP3054890A 1991-03-19 1991-03-19 Air suction controller of internal combustion engine Pending JPH04292528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3054890A JPH04292528A (en) 1991-03-19 1991-03-19 Air suction controller of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3054890A JPH04292528A (en) 1991-03-19 1991-03-19 Air suction controller of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH04292528A true JPH04292528A (en) 1992-10-16

Family

ID=12983189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3054890A Pending JPH04292528A (en) 1991-03-19 1991-03-19 Air suction controller of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH04292528A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6622695B2 (en) 2001-11-20 2003-09-23 Denso Corporation Intake control system of internal combustion engine
JP2009114914A (en) * 2007-11-05 2009-05-28 Aisin Seiki Co Ltd Intake-air controller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6622695B2 (en) 2001-11-20 2003-09-23 Denso Corporation Intake control system of internal combustion engine
JP2009114914A (en) * 2007-11-05 2009-05-28 Aisin Seiki Co Ltd Intake-air controller

Similar Documents

Publication Publication Date Title
JP3994586B2 (en) Valve driving device for internal combustion engine
US6425369B2 (en) Control apparatus for internal combustion engines
KR100815035B1 (en) Valve gear control device of internal combustion engine
US6622695B2 (en) Intake control system of internal combustion engine
JPH04292528A (en) Air suction controller of internal combustion engine
JPH07133726A (en) Intake air controller of internal combustion engine
JPH04287830A (en) Intake controller for internal combustion engine
JPH11223137A (en) Suction-exhaust valve controller for miller cycle engine
JPS6093137A (en) Internal-combustion engine with supercharger
JPH03275935A (en) Intake controller of internal combustion engine
JP2001221071A (en) Controller of adjustable valve engine
JPH0658192A (en) Intake air control device for internal combustion engine
JP2001271665A (en) Control device for variable valve system engine
JPH09303122A (en) Starting method for electromagnetically-driven valve for internal combustion engine
JP2003193889A (en) Intake control device for multi-cylinder internal combustion engine
JP2857950B2 (en) Intake control device for internal combustion engine
JP3758448B2 (en) Control device for variable valve engine
JP2001020766A (en) Valve driving system of internal combustion engine
JP2000045804A (en) Torque control device for internal combustion engine
JP4033115B2 (en) Intake control device for internal combustion engine
JPH07166900A (en) Intake control device for internal combustion engine
JPH05280355A (en) Air intake device for internal combustion engine
JPH04179824A (en) Suction control apparatus for internal combustion engine
JPH04279750A (en) Suction control device of internal combustion engine
JPH05222940A (en) Air intake controller for internal combustion engine