JPH04290720A - Mold for extrusion molding of vinyl chloride resin - Google Patents

Mold for extrusion molding of vinyl chloride resin

Info

Publication number
JPH04290720A
JPH04290720A JP3054564A JP5456491A JPH04290720A JP H04290720 A JPH04290720 A JP H04290720A JP 3054564 A JP3054564 A JP 3054564A JP 5456491 A JP5456491 A JP 5456491A JP H04290720 A JPH04290720 A JP H04290720A
Authority
JP
Japan
Prior art keywords
mold
film
gas
vinyl chloride
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3054564A
Other languages
Japanese (ja)
Inventor
Tomoshige Tsutao
友重 蔦尾
Masahiro Tahara
太原 正弘
Katsuyoshi Kimura
勝義 木村
Masato Sato
真人 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP3054564A priority Critical patent/JPH04290720A/en
Publication of JPH04290720A publication Critical patent/JPH04290720A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an extrusion mold having high surface hardness and excellent in corrosion resistance by forming a ceramics film to at least the surface coming into contact with a molten vinyl chloride resin of a mold by ion plating. CONSTITUTION:A ceramics film is formed to the surface of the base material of an extrusion mold using an ion plating method wherein a metal constituting the ceramics film is evaporated to form evaporated particles which are, in turn, ionized and the ionized metal particles are reacted with reactive gas (e.g., nitrogen gas in the case of a nitride film, hydrocarbon gas such as methane gas or acetylene gas in the case of a carbide film). The ceramics film is composed of ceramics selected from a group consisting of nitride, carbide, carbonitride and oxide of a metal selected from Ti, Zr, Cr, Hf, B, Si, V or the like.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、塩化ビニル系樹脂押出
成形用金型に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold for extrusion molding a vinyl chloride resin.

【0002】0002

【従来の技術】従来、プラスチックの押出成形用金型表
面に耐磨耗性を付与したり、溶融樹脂との摩擦力を低減
して押出成形性をよくするために硬質クロムめっきやニ
ッケルめっきを施すことが行われている。
[Prior Art] Conventionally, hard chromium plating or nickel plating has been used to impart wear resistance to the surface of plastic extrusion molds and to improve extrusion moldability by reducing the frictional force with the molten resin. is being carried out.

【0003】しかしながら、上記めっきには、長期使用
によるめっき面の磨耗、メンテナンス時のバフ研磨によ
るめっき面のキズ、樹脂の熱分解時に発生する酸性ガス
(例えば、塩酸)によるめっき面の腐食等が原因でめっ
き面の平滑性が損なわれ、その結果、成形品の表面にキ
ズが発生して良品が得られないという欠点を有していた
However, the above-mentioned plating is susceptible to wear on the plated surface due to long-term use, scratches on the plated surface due to buffing during maintenance, and corrosion of the plated surface due to acid gas (for example, hydrochloric acid) generated during thermal decomposition of the resin. As a result, the smoothness of the plated surface is impaired, and as a result, scratches occur on the surface of the molded product, making it impossible to obtain a good product.

【0004】一方、金型表面に耐磨耗性、耐食性等を付
与するためにセラミックス被膜を形成することが提案さ
れており、例えば、特開昭63−27223号公報に、
射出成形用金型の射出成形表面の一部または全部にセラ
ミックス被膜を真空蒸着法もしくはCVD法により形成
した射出成形用金型が記載されている。
On the other hand, it has been proposed to form a ceramic coating on the mold surface in order to impart wear resistance, corrosion resistance, etc.
An injection mold is described in which a ceramic coating is formed on part or all of the injection molding surface of the injection mold by a vacuum deposition method or a CVD method.

【0005】しかしながら、上記射出成形用金型におい
ては、真空蒸着法によってセラミックス被膜を形成した
場合、セラミックス被膜と金型基材との密着性、金型基
材の凹凸表面部でのセラミックス被膜の膜厚均一性、表
面硬度等が劣るという欠点があり、CVD法によってセ
ラミックス被膜を形成した場合、被膜形成温度が高いた
めに金型基材が熱により寸法変化を起こし、所定形状の
成形体が得られないという欠点があった。
However, in the above-mentioned injection mold, when the ceramic coating is formed by vacuum evaporation, the adhesion between the ceramic coating and the mold base material, and the formation of the ceramic coating on the uneven surface of the mold base material are poor. It has the disadvantage of poor film thickness uniformity, surface hardness, etc. When a ceramic film is formed using the CVD method, the mold base material undergoes dimensional changes due to heat due to the high film formation temperature, resulting in a molded object having a predetermined shape. The drawback was that it was not available.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記欠点に
鑑みてなされたものであり、その目的は、金型基材との
密着性、金型基材の凹凸表面部での膜厚均一性等に優れ
たセラミックス被膜が、金型表面の溶融樹脂と接触する
面に形成された表面硬度が大きく、しかも耐食性に優れ
た塩化ビニル系樹脂押出成形用金型を提供することにあ
る。
[Problems to be Solved by the Invention] The present invention has been made in view of the above-mentioned drawbacks, and its purpose is to improve the adhesion to the mold base material and to improve the uniformity of the film thickness on the uneven surface of the mold base material. To provide a mold for extrusion molding of a vinyl chloride resin, which has a high surface hardness and excellent corrosion resistance, in which a ceramic coating having excellent properties, etc. is formed on the surface of the mold that contacts the molten resin.

【0007】[0007]

【課題を解決するための手段】本発明の塩化ビニル系樹
脂押出成形用金型は、押出成形用金型の金型基材表面に
イオンプレ−ティング法を用いてセラミックス被膜を形
成することによって得られ、上記セラミックス被膜は、
金型基材表面の少なくとも溶融した塩化ビニル系樹脂が
接触する面に形成されている。
[Means for Solving the Problems] The vinyl chloride resin extrusion mold of the present invention is obtained by forming a ceramic coating on the surface of the mold base material of the extrusion mold using an ion plating method. and the above ceramic coating is
It is formed at least on the surface of the mold base material that comes into contact with the molten vinyl chloride resin.

【0008】上記押出成形用金型としては特に限定され
るものではなく、例えば、モノフィラメント押出成形用
金型、フィルム押出成形用金型、パイプ押出成形用金型
等があげられる。
The extrusion mold described above is not particularly limited, and examples include a monofilament extrusion mold, a film extrusion mold, a pipe extrusion mold, and the like.

【0009】上記金型基材の材質としては特に限定され
るものではなく、プラスチック金型用として従来公知の
ものが使用でき、例えば、炭素鋼系、ステンレス鋼系、
クロムモリブデン鋼、ニッケルクロムモリブデン鋼、熱
間ダイス鋼、時効硬化型合金鋼等の合金鋼系、銅合金系
、アルミニウム合金系、亜鉛合金系などがあげられる。
The material of the mold base material is not particularly limited, and materials conventionally known for plastic molds can be used, such as carbon steel, stainless steel,
Examples include alloy steels such as chromium molybdenum steel, nickel chromium molybdenum steel, hot die steel, and age hardening alloy steel, copper alloys, aluminum alloys, and zinc alloys.

【0010】上記セラミックス被膜としては、例えば、
Ti、Zr、Cr、Hf、B、Si、V等の金属の窒化
物、炭化物、炭窒化物および酸化物からなる群より選ば
れる一種以上のセラミックスがあげられる。
[0010] Examples of the above ceramic coating include:
Examples include one or more ceramics selected from the group consisting of nitrides, carbides, carbonitrides, and oxides of metals such as Ti, Zr, Cr, Hf, B, Si, and V.

【0011】上記セラミックス被膜の膜厚は、薄くなる
と被覆面の表面硬度が低下したり、被膜にピンホ−ルが
発生して耐食性が低下し、厚くなると金型基材との密着
性が低下したり、被膜の残留応力が増加して金型基材が
変形し、金型の寸法精度が悪くなるので、0.5〜10
μmが好ましく、より好ましくは1〜7μmである。
[0011] When the thickness of the ceramic coating becomes thin, the surface hardness of the coated surface decreases and pinholes occur in the coating, resulting in a decrease in corrosion resistance, and when it becomes thick, the adhesion to the mold base material decreases. 0.5 to 10.
It is preferably μm, more preferably 1 to 7 μm.

【0012】上記セラミックス被膜をイオンプレ−ティ
ング法により形成するには、セラミックス被膜を構成す
る金属を蒸発させ、さらにその蒸発粒子をイオン化し、
イオン化した金属を反応性ガス(例えば、形成したい被
膜が窒化物の場合は窒素ガス、炭化物の場合はメタンガ
ス、アセチレンガス等の炭化水素ガス、炭窒化物の場合
は窒素ガスと炭化水素ガスの混合ガス、酸化物の場合は
酸素ガス)と反応させればよい。
[0012] In order to form the above-mentioned ceramic coating by the ion plating method, the metal constituting the ceramic coating is evaporated, and the evaporated particles are further ionized.
The ionized metal is transferred to a reactive gas (for example, nitrogen gas if the film to be formed is a nitride, hydrocarbon gas such as methane gas or acetylene gas if the film is a carbide, or a mixture of nitrogen gas and hydrocarbon gas if the film is a carbonitride) It may be reacted with a gas (oxygen gas in the case of an oxide).

【0013】上記イオンプレ−ティング法としては特に
限定されるものではなく、従来公知の方法が使用でき、
例えば、直流放電法、中空陰極放電法(以下、HCD法
という)、高周波励起法(以下、RF法という)、ア−
クプラズマ法(以下、AIP法という)等の方式があげ
られ、複雑な表面形状のものにセラミックス被膜が形成
できる点で、HCD法、RF法およびAIP法が好まし
い。。なお、これら各方式の相違点は、金属の蒸発方法
および蒸発粒子のイオン化方法が異なっている点にある
The above ion plating method is not particularly limited, and conventionally known methods can be used.
For example, direct current discharge method, hollow cathode discharge method (hereinafter referred to as HCD method), high frequency excitation method (hereinafter referred to as RF method),
For example, the HCD method, the RF method, and the AIP method are preferred because they can form a ceramic film on a surface with a complicated surface shape. . The difference between these methods is that the method of evaporating the metal and the method of ionizing the evaporated particles are different.

【0014】上記各方式を用いてセラミックス被膜を金
型基材上に形成するプロセスとしては、例えば、金型基
材を真空容器内に供給し、金型基材を加熱するとともに
真空容器内を所定の真空度に減圧し、その後、反応させ
る金属を蒸発させ、さらにイオン化し、一方で反応性ガ
スを真空容器内に導入して所定の反応圧力(但し、HC
D法の場合は、反応性ガス以外にArガス等の不活性ガ
スを導入する必要があるので全圧中の反応性ガス分圧が
反応圧力)とし、金型基材に直流電圧を印加して、イオ
ン化された金属と反応性ガスを反応させて、金型基材上
に目的とするセラミックス被膜を形成するプロセスがあ
げられる。
[0014] As a process for forming a ceramic coating on a mold base material using each of the above methods, for example, the mold base material is supplied into a vacuum container, the mold base material is heated, and the inside of the vacuum container is heated. The pressure is reduced to a predetermined degree of vacuum, and then the metal to be reacted is evaporated and further ionized, while a reactive gas is introduced into the vacuum container to a predetermined reaction pressure (however, HC
In the case of method D, it is necessary to introduce an inert gas such as Ar gas in addition to the reactive gas, so the partial pressure of the reactive gas in the total pressure is set as the reaction pressure), and a DC voltage is applied to the mold base material. Another example is a process in which an ionized metal is reacted with a reactive gas to form a desired ceramic coating on a mold base material.

【0015】上記プロセスにおいて、金型基材の加熱温
度は、低くなると得られるセラミックス被膜と金型基材
との密着性が低下し、高くなると金型基材が変形し、金
型の寸法精度が悪くなるので、200〜800℃が好ま
しく、より好ましくは250〜550℃であり、真空容
器内の真空度は、低くなると得られるセラミックス被膜
に不純物が混入して被膜の硬度が低下するので、5×1
0−5Torr以下が好ましい。なお、反応圧力は、用
いるイオンプレ−ティングの方式および形成するセラミ
ックス被膜の種類によって異なるが、反応圧力が高すぎ
ても低すぎても蒸発粒子のイオン化が不十分になるとと
もに得られるセラミックス被膜の硬度が低下するので、
直流放電法の場合は5×10−4〜1×10−2Tor
rが好ましく、RF法およびAIP法の場合は1×10
−5〜1×10−3Torrが好ましく、HCD法の場
合は、1×10−5〜5×10−3Torrが好ましい
。そして、これらの反応圧力範囲内において、反応圧力
のより好ましい範囲が、形成するセラミックス被膜の種
類に応じて適宜決定される。例えば、HCD法およびA
IP法によるTiN被膜もしくはTiC被膜の場合は5
×10−5〜1×10−3Torrである。
In the above process, when the heating temperature of the mold base material is low, the adhesion between the obtained ceramic coating and the mold base material decreases, and when it becomes high, the mold base material is deformed, and the dimensional accuracy of the mold is deteriorated. The temperature is preferably 200 to 800°C, more preferably 250 to 550°C. If the degree of vacuum in the vacuum container is low, impurities will be mixed into the resulting ceramic coating and the hardness of the coating will decrease. 5×1
It is preferably 0-5 Torr or less. Note that the reaction pressure varies depending on the ion plating method used and the type of ceramic film to be formed, but if the reaction pressure is too high or too low, the ionization of the evaporated particles will be insufficient and the hardness of the ceramic film obtained will decrease. decreases, so
In the case of DC discharge method, 5 x 10-4 to 1 x 10-2 Tor
r is preferred, and in the case of RF method and AIP method, 1×10
-5 to 1 x 10-3 Torr is preferable, and in the case of the HCD method, 1 x 10-5 to 5 x 10-3 Torr is preferable. Within these reaction pressure ranges, a more preferable range of reaction pressure is determined as appropriate depending on the type of ceramic coating to be formed. For example, HCD method and A
5 for TiN coating or TiC coating by IP method
×10 −5 to 1×10 −3 Torr.

【0016】また、金型基材に印加する直流電圧は、用
いるイオンプレ−ティングの方式および形成するセラミ
ックス被膜の種類によって大きく異なり、金型基材に印
加する直流電圧が大きすぎても小さすぎても得られる被
膜の硬度が低下するので、その好適範囲が、イオンプレ
−ティングの方式および被膜の種類に応じて適宜決定さ
れる。例えば、HCD法によるTiN被膜もしくはTi
C被膜の場合は、+10〜−300Vであり、AIP法
によるTiN被膜もしくはTiC被膜の場合は、−20
0〜−600Vである。
Furthermore, the DC voltage applied to the mold base material varies greatly depending on the ion plating method used and the type of ceramic coating to be formed, and the DC voltage applied to the mold base material may be too high or too low. However, since the hardness of the film obtained also decreases, the preferable range is appropriately determined depending on the ion plating method and the type of film. For example, TiN coating by HCD method or Ti
In the case of C coating, it is +10 to -300V, and in the case of TiN coating or TiC coating by AIP method, it is -20V.
It is 0 to -600V.

【0017】本発明の塩化ビニル系樹脂押出成形用金型
は、上述した方法で得られるが、得られるセラミックス
被膜と金型基材との密着性を向上させるために、セラミ
ックス被膜を形成する前に予め金型基材の被膜形成予定
面を有機溶剤で洗浄し、さらに減圧下でArガス等の不
活性ガスもしくはTi等の金属イオンでボンバ−ド処理
して金型基材の被膜形成予定面を清浄にしておくのが好
ましい。
The vinyl chloride resin extrusion mold of the present invention can be obtained by the method described above, but in order to improve the adhesion between the obtained ceramic film and the mold base material, before forming the ceramic film, In advance, the surface of the mold base material on which the film is to be formed is cleaned with an organic solvent, and then bombarded with an inert gas such as Ar gas or metal ions such as Ti under reduced pressure to form the film on the mold base material. It is preferable to keep the surface clean.

【0018】本発明の塩化ビニル系樹脂押出成形用金型
を用いて押出成形される塩化ビニル系樹脂としては、押
出成形体として使用されている従来公知のものが用いら
れてよく、塩化ビニルの単独重合体の他に、塩化ビニル
と塩化ビニル以外の重合性単量体が共重合された共重合
体、塩化ビニル以外の重合体に塩化ビニルをグラフトさ
せたグラフト共重合体等が使用できる。
As the vinyl chloride resin to be extruded using the vinyl chloride resin extrusion mold of the present invention, conventionally known resins used as extrusion molded products may be used. In addition to homopolymers, copolymers in which vinyl chloride and polymerizable monomers other than vinyl chloride are copolymerized, graft copolymers in which vinyl chloride is grafted onto polymers other than vinyl chloride, and the like can be used.

【0019】上記重合性単量体としては、例えば、エチ
レン、プロピレン、ブチレン等のα−オレフィン類、酢
酸ビニル、プロピオン酸ビニル等のビニルエステル類な
どがあげられる。これらは、単独で使用されてもよいし
2種以上併用されてもよい。
Examples of the polymerizable monomer include α-olefins such as ethylene, propylene and butylene, and vinyl esters such as vinyl acetate and vinyl propionate. These may be used alone or in combination of two or more.

【0020】上記塩化ビニル以外の重合体としては、例
えば、エチレン−酢酸ビニル共重合体、エチレン−プロ
ピレン共重合体等があげられる。
Examples of polymers other than vinyl chloride include ethylene-vinyl acetate copolymer, ethylene-propylene copolymer, and the like.

【0021】[0021]

【実施例】以下、本発明の実施例を説明する。    
                         
 実施例1 図1は、本実施例に使用した塩化ビニル系樹脂パイプ押
出成形用金型の押出軸方向の中心断面模式図である。図
1において、1は金型の外型であり、2は金型の内型で
あり、3は溶融した塩化ビニル系樹脂との接触面である
[Examples] Examples of the present invention will be described below.

Example 1 FIG. 1 is a schematic cross-sectional view of the center of the extrusion axis direction of a vinyl chloride resin pipe extrusion mold used in this example. In FIG. 1, 1 is the outer mold of the mold, 2 is the inner mold of the mold, and 3 is the contact surface with the molten vinyl chloride resin.

【0022】図1に示した外型1および内型2(金型基
材材質は、S45C炭素鋼)をトリクレンを用いて超音
波洗浄を行い、表面の油分を除去した後、HCD法イオ
ンプレ−ティング装置(日本真空技術社製、型式;IP
B60/60)に供給し、下記成膜条件にて接触面3に
TiN被膜を形成した。
The outer mold 1 and inner mold 2 (the mold base material is S45C carbon steel) shown in FIG. ting device (manufactured by Nippon Vacuum Technology Co., Ltd., model: IP
B60/60), and a TiN film was formed on the contact surface 3 under the following film forming conditions.

【0023】(成膜条件) (1)初期真空度:1×10−5Torr (2)金型
基材加熱温度:500℃ (3)Arボンバ−ド処理時
のArガス圧力:0.1Torr (4)蒸発源となる
金属:Ti(純度99.7%) (5)反応性ガス:N
2 ガス(Arガス併用) (6)成膜時のN2 ガス
圧力:0.8×10−3Torr (7)金型基材への
直流印加電圧:−100V (8)成膜時間:20分
(Film forming conditions) (1) Initial degree of vacuum: 1 x 10-5 Torr (2) Mold base material heating temperature: 500°C (3) Ar gas pressure during Ar bombardment: 0.1 Torr ( 4) Metal as evaporation source: Ti (purity 99.7%) (5) Reactive gas: N
2 gas (combined with Ar gas) (6) N2 gas pressure during film formation: 0.8 x 10-3 Torr (7) DC applied voltage to mold base material: -100V (8) Film formation time: 20 minutes

【0024】得られたTiN被膜の膜厚および表面硬度
は、下記評価基準に基づいて評価し、結果を表1に示し
た。 (評価基準)上記金型と同材質の50×50×2mmの
テストピ−スを金型のTiN被膜形成予定面とほぼ同じ
位置になるように5個配置し、金型と同時にTiN被膜
を形成して評価試料とし、下記測定方法で測定した評価
試料の膜厚および表面硬度をもって金型基材上に形成さ
れたTiN被膜の評価とした。
The thickness and surface hardness of the obtained TiN coating were evaluated based on the following evaluation criteria, and the results are shown in Table 1. (Evaluation criteria) Five test pieces of 50 x 50 x 2 mm made of the same material as the above mold were placed at approximately the same position as the surface on which the TiN coating was to be formed on the mold, and the TiN coating was formed at the same time as the mold. The TiN film formed on the mold base material was evaluated based on the film thickness and surface hardness of the evaluation sample measured by the following measurement method.

【0025】(測定方法) (1)膜厚 評価試料を蛍光X線微小部膜厚計(セイコ−電子工業社
製、型式;SFT−157)に供し、1個の評価試料に
ついて3ヶ所(5個で15ヶ所)膜厚を測定し、その平
均値とバラツキを算出した。
(Measurement method) (1) The film thickness evaluation sample was subjected to a fluorescent X-ray micro film thickness meter (manufactured by Seiko Electronics Co., Ltd., model: SFT-157), and one evaluation sample was measured at three locations (5 The film thickness was measured at 15 locations, and the average value and variation were calculated.

【0026】(2)表面硬度 評価試料をビッカ−ス微小硬度計(明石製作所社製、型
式;マイクロハ−ドネステスタ−MVK−E)に供し、
1個の評価試料について3ヶ所(5個で15ヶ所)表面
硬度を測定し、その平均値を算出した。
(2) Surface hardness evaluation The sample was subjected to a Vickers microhardness meter (manufactured by Akashi Seisakusho Co., Ltd., model: Microhardness Tester MVK-E),
The surface hardness of each evaluation sample was measured at three locations (5 locations, 15 locations), and the average value was calculated.

【0027】次に、TiN被膜が形成された塩化ビニル
系樹脂パイプ押出成形用金型(内型および外型)を押出
機(東芝機械社製、型式;TEM−50)にセットし、
金型内で樹脂温が200℃となるように金型温度を設定
した金型内に溶融した塩化ビニル樹脂(重合度1000
)を送りこみ、塩化ビニル樹脂を金型内で20分間滞留
させた後、金型内の樹脂を押出し、金型を冷却した。 上記冷却後の金型を分解し、TiN被膜が形成された金
型基材表面をバフ研磨した後、TiN被膜が形成された
金型基材表面の状態を観察し、下記評価基準に基づいて
耐食性を評価し、結果を表1に示した。
Next, the vinyl chloride resin pipe extrusion mold (inner mold and outer mold) on which the TiN coating was formed was set in an extruder (manufactured by Toshiba Machine Co., Ltd., model: TEM-50).
Melted vinyl chloride resin (polymerization degree 1000
), the vinyl chloride resin was allowed to stay in the mold for 20 minutes, the resin in the mold was extruded, and the mold was cooled. After disassembling the mold after cooling and buffing the surface of the mold base material on which the TiN film was formed, the condition of the surface of the mold base material on which the TiN film was formed was observed and evaluated based on the following evaluation criteria. Corrosion resistance was evaluated and the results are shown in Table 1.

【0028】(評価基準) ○:金型基材表面の腐食なし △:金型基材表面の腐食一部に発生 ×:金型基材表面の腐食全面に発生(Evaluation criteria) ○: No corrosion on the mold base material surface △: Corrosion occurs in a part of the mold base material surface ×: Corrosion occurs on the entire surface of the mold base material

【0029】さらに、上記耐食性評価後の金型を再び押
出機(東芝機械社製、型式;TEM−50)にセットし
、180℃で塩化ビニル樹脂(重合度1000)を押出
成形し、得られたパイプ成形品の表面性を下記評価基準
に基づいて評価し、結果を表1に示した。 (評価基準) ○:表面にキズなし ×:表面にキズあり
[0029] Further, the mold after the above corrosion resistance evaluation was set in the extruder (manufactured by Toshiba Machine Co., Ltd., model: TEM-50) again, and vinyl chloride resin (degree of polymerization 1000) was extruded at 180°C. The surface properties of the pipe molded products were evaluated based on the following evaluation criteria, and the results are shown in Table 1. (Evaluation criteria) ○: No scratches on the surface ×: There are scratches on the surface

【0030】実施例2 実施例1において、成膜時間を50分に変えた以外は実
施例1と同様にしてTiN被膜が形成された金型を得た
Example 2 A mold on which a TiN film was formed was obtained in the same manner as in Example 1 except that the film forming time was changed to 50 minutes.

【0031】得られた金型の膜厚、表面硬度、耐食性お
よびその金型を用いて得られたパイプ成形品の表面性を
実施例1と同様にして評価し、結果を表1に示した。
The film thickness, surface hardness, and corrosion resistance of the mold obtained, as well as the surface properties of the pipe molded product obtained using the mold, were evaluated in the same manner as in Example 1, and the results are shown in Table 1. .

【0032】実施例3 実施例1において、反応ガスをアセチレンガスに変え、
成膜時間を40分とした以外は実施例1と同様にしてT
iC被膜が形成された金型を得た。
Example 3 In Example 1, the reaction gas was changed to acetylene gas,
T was conducted in the same manner as in Example 1 except that the film formation time was 40 minutes.
A mold with an iC coating formed thereon was obtained.

【0033】得られた金型の膜厚、表面硬度、耐食性お
よびその金型を用いて得られたパイプ成形品の表面性を
実施例1と同様にして評価し、結果を表1に示した。
The film thickness, surface hardness, and corrosion resistance of the mold obtained, as well as the surface properties of the pipe molded product obtained using the mold, were evaluated in the same manner as in Example 1, and the results are shown in Table 1. .

【0034】実施例4 実施例1において、イオンプレ−ティング装置としてA
IP法イオンプレ−ティング装置(神戸製鋼所社製、型
式;AIP1000)を用い、成膜条件を下記の条件と
した以外は実施例1と同様にしてTiN被膜が形成され
た金型を得た。
Example 4 In Example 1, A was used as the ion plating apparatus.
A mold on which a TiN film was formed was obtained in the same manner as in Example 1, except that an IP method ion plating apparatus (manufactured by Kobe Steel, model: AIP1000) was used and the film forming conditions were changed to the following conditions.

【0035】(成膜条件) (1)初期真空度:1×10−5Torr (2)金型
基材加熱温度:500℃ (3)Arボンバ−ド処理時
のArガス圧力:0.1Torr (4)蒸発源となる
金属:Ti(純度99.7%) (5)反応性ガス:N
2 ガス (6)成膜時のN2 ガス圧力:0.4×1
0−3Torr (7)金型基材への直流印加電圧:−
500V (8)成膜時間:30分得られた金型の膜厚
、表面硬度、耐食性およびその金型を用いて得られたパ
イプ成形品の表面性を実施例1と同様にして評価し、結
果を表1に示した。
(Film forming conditions) (1) Initial degree of vacuum: 1×10 −5 Torr (2) Mold base material heating temperature: 500° C. (3) Ar gas pressure during Ar bombardment treatment: 0.1 Torr ( 4) Metal as evaporation source: Ti (purity 99.7%) (5) Reactive gas: N
2 gas (6) N2 gas pressure during film formation: 0.4×1
0-3 Torr (7) DC applied voltage to mold base material: -
500V (8) Film forming time: 30 minutes The film thickness, surface hardness, and corrosion resistance of the obtained mold and the surface properties of the pipe molded product obtained using the mold were evaluated in the same manner as in Example 1, The results are shown in Table 1.

【0036】実施例5 実施例4において、成膜時間を60分に変えた以外は実
施例4と同様にしてTiN被膜が形成された金型を得た
Example 5 A mold on which a TiN film was formed was obtained in the same manner as in Example 4, except that the film forming time was changed to 60 minutes.

【0037】得られた金型の膜厚、表面硬度、耐食性お
よびその金型を用いて得られたパイプ成形品の表面性を
実施例1と同様にして評価し、結果を表1に示した。
The film thickness, surface hardness, and corrosion resistance of the mold obtained, as well as the surface properties of the pipe molded product obtained using the mold, were evaluated in the same manner as in Example 1, and the results are shown in Table 1. .

【0038】比較例1 実施例1において、イオンプレ−ティング装置の代わり
に真空蒸着装置(昭和真空社製、型式;SGC−22W
A)を用い、成膜条件を下記の条件とした以外は実施例
1と同様にしてTiN被膜が形成された金型を得た。
Comparative Example 1 In Example 1, a vacuum evaporation device (manufactured by Showa Shinku Co., Ltd., model: SGC-22W) was used instead of the ion plating device.
A mold on which a TiN film was formed was obtained in the same manner as in Example 1 except that A) was used and the film forming conditions were changed to the following conditions.

【0039】(成膜条件) (1)初期真空度:1×10−5Torr (2)金型
基材加熱温度:500℃ (3)Arボンバ−ド処理時
のArガス圧力:0.1Torr (4)蒸発源となる
金属:Ti(純度99.7%) (5)反応性ガス:N
2 ガス (6)成膜時のN2 ガス圧力:0.4×1
0−3Torr (7)成膜時間:40分得られた金型
の膜厚、表面硬度、耐食性およびその金型を用いて得ら
れたパイプ成形品の表面性を実施例1と同様にして評価
し、結果を表1に示した。
(Film forming conditions) (1) Initial degree of vacuum: 1 x 10-5 Torr (2) Mold base material heating temperature: 500°C (3) Ar gas pressure during Ar bombardment treatment: 0.1 Torr ( 4) Metal as evaporation source: Ti (purity 99.7%) (5) Reactive gas: N
2 gas (6) N2 gas pressure during film formation: 0.4×1
0-3 Torr (7) Film forming time: 40 minutes The film thickness, surface hardness, and corrosion resistance of the mold obtained and the surface properties of the pipe molded product obtained using the mold were evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0040】比較例2 実施例1で用いた金型に30μmの膜厚の硬質クロムめ
っきを施し、硬質クロムめっき被膜が形成された金型を
得た。
Comparative Example 2 The mold used in Example 1 was plated with hard chromium to a thickness of 30 μm to obtain a mold with a hard chromium plating film formed thereon.

【0041】得られた金型の耐食性およびその金型を用
いて得られたパイプ成形品の表面性を実施例1と同様に
して評価し、結果を表1に示した。
The corrosion resistance of the mold obtained and the surface properties of the pipe molded product obtained using the mold were evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0042】比較例3 実施例1で用いた金型に20μmの膜厚の無電解ニッケ
ルめっきを施し、ニッケルめっき被膜が形成された金型
を得た。
Comparative Example 3 The mold used in Example 1 was electroless nickel plated to a thickness of 20 μm to obtain a mold with a nickel plating film formed thereon.

【0043】得られた金型の耐食性およびその金型を用
いて得られたパイプ成形品の表面性を実施例1と同様に
して評価し、結果を表1に示した。
The corrosion resistance of the obtained mold and the surface properties of the pipe molded product obtained using the mold were evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0044】[0044]

【表1】[Table 1]

【0045】[0045]

【発明の効果】本発明の塩化ビニル系樹脂押出成形用金
型の構成は前記した通りであり、イオンプレ−ティング
法によって、特定のセラミックス被膜が金型基材の少な
くとも溶融した塩化ビニル系樹脂と接触する面に形成さ
れ、形成されたセラミックス被膜が表面硬度、金型基材
との密着性、金型基材の凹凸表面部での膜厚均一性等に
優れているから、上記塩化ビニル系樹脂押出成形用金型
はメンテナンス時のバフ研磨によるキズ防止、酸性ガス
による腐食防止等が可能となる。
Effects of the Invention The structure of the vinyl chloride resin extrusion mold of the present invention is as described above, and the ion plating method is used to coat a specific ceramic coating with at least the molten vinyl chloride resin of the mold base material. The vinyl chloride-based Resin extrusion molds can be buffed during maintenance to prevent scratches and corrosion caused by acid gas.

【0046】その結果、上記塩化ビニル系樹脂押出成形
用金型を用いて得られる塩化ビニル系樹脂押出成形品の
表面には、長期ランニング時においても、筋、かすれ等
の外観不良が発生しなくなる。
As a result, the surface of the vinyl chloride resin extrusion molded product obtained using the vinyl chloride resin extrusion mold does not suffer from appearance defects such as streaks or scratches even during long-term running. .

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は、塩化ビニル系樹脂パイプ押出成形用金
型の押出軸方向の中心断面模式図である。
FIG. 1 is a schematic cross-sectional view of the center of a mold for extrusion molding a vinyl chloride resin pipe in the extrusion axis direction.

【符号の説明】[Explanation of symbols]

1  金型の外型 2  金型の内型 1. Outer mold of the mold 2 Inner mold of the mold

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】塩化ビニル系樹脂を押出成形するための金
型であって、上記金型表面の少なくとも溶融した塩化ビ
ニル系樹脂と接触する面に、イオンプレ−ティング法に
よりセラミックス被膜が形成されていることを特徴とす
る塩化ビニル系樹脂押出成形用金型。
1. A mold for extrusion molding a vinyl chloride resin, wherein a ceramic coating is formed by an ion plating method on at least the surface of the mold that comes into contact with the molten vinyl chloride resin. A mold for extrusion molding of vinyl chloride resin.
JP3054564A 1991-03-19 1991-03-19 Mold for extrusion molding of vinyl chloride resin Pending JPH04290720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3054564A JPH04290720A (en) 1991-03-19 1991-03-19 Mold for extrusion molding of vinyl chloride resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3054564A JPH04290720A (en) 1991-03-19 1991-03-19 Mold for extrusion molding of vinyl chloride resin

Publications (1)

Publication Number Publication Date
JPH04290720A true JPH04290720A (en) 1992-10-15

Family

ID=12974186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3054564A Pending JPH04290720A (en) 1991-03-19 1991-03-19 Mold for extrusion molding of vinyl chloride resin

Country Status (1)

Country Link
JP (1) JPH04290720A (en)

Similar Documents

Publication Publication Date Title
US5112025A (en) Molds having wear resistant release coatings
US7563509B2 (en) Article with protective film
CN101254515B (en) Pressing mold and method for producing the same
JP5463216B2 (en) Chromium hard coating, mold having chromium hard coating formed on the surface, and method for producing chromium hard coating
JPH04290720A (en) Mold for extrusion molding of vinyl chloride resin
JPH06106543A (en) Metal mold for molding of vinyl chloride resin
JP2004315876A (en) Die for molding magnesium having sliding resistance improved, and surface treatment method thereof
JPH04345821A (en) Sizing die for extrusion molding
JPH06299328A (en) Article with corrosion and wear resistant coating film
JPH04351524A (en) Breaker plate for extrusion molding
JPH04351523A (en) Orifice for extrusion molding
JPH06306645A (en) Die with wear resistant hard film
US20220243318A1 (en) Coated forming tools with enhanced performance and increased service life
KR100298599B1 (en) Titanium Compound Coating
JPH0469044B2 (en)
JPH05209261A (en) Article with corrosion and wear resistance coating film
JPH1158403A (en) Mold for abrasion resistant rubber and its production
KR100650504B1 (en) Method for preparing tungsten carbide layer for replacing electroplating of chromium
JPH0445287A (en) Material coated with hard carbon film and production thereof
JPH08296033A (en) Surface treatment of metal
JPH10278049A (en) Mold with abrasion resistant and corrosion resistant film and its manufacture
JP2000225620A (en) Mold for molding resin and production of mold
JPH10244543A (en) Mold fitted with abrasion-resistant durable hard coating film
JPH03253558A (en) Product with coating film and production thereof
TWI490351B (en) Coated article and method for making the same