JPH04290594A - Method and device for biological treatment - Google Patents
Method and device for biological treatmentInfo
- Publication number
- JPH04290594A JPH04290594A JP3040618A JP4061891A JPH04290594A JP H04290594 A JPH04290594 A JP H04290594A JP 3040618 A JP3040618 A JP 3040618A JP 4061891 A JP4061891 A JP 4061891A JP H04290594 A JPH04290594 A JP H04290594A
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- tank
- treatment
- porous membrane
- biological treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 55
- 239000001301 oxygen Substances 0.000 claims abstract description 55
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 55
- 239000012528 membrane Substances 0.000 claims abstract description 45
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 21
- 239000002351 wastewater Substances 0.000 claims description 14
- 239000007789 gas Substances 0.000 claims description 6
- 239000010865 sewage Substances 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract 2
- 239000007788 liquid Substances 0.000 description 30
- 239000010802 sludge Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 238000003756 stirring Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- -1 polytetrafluoroethylene Polymers 0.000 description 6
- 238000005273 aeration Methods 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000010800 human waste Substances 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、有機性汚水の生物学的
処理方法及び装置に関し、特に動力なしで、あるいは僅
かな動力で処理槽内の有機性汚水に酸素を供給できるよ
うにした生物学的処理方法及び装置に関する。[Industrial Application Field] The present invention relates to a biological treatment method and apparatus for organic wastewater, and in particular to a biological treatment method and apparatus that can supply oxygen to organic wastewater in a treatment tank without or with a small amount of power. The present invention relates to a chemical treatment method and apparatus.
【0002】0002
【従来の技術】下水、し尿、工場廃水などの有機性汚水
を生物学的に処理する方法としては、活性汚泥あるいは
菌体の存在下に酸素含有ガスを供給して好気性処理を行
う方法が良く知られ、その方法のうち、利用頻度の高い
方法としては、水中に設置した散気装置の多孔質体に送
風機により空気を供給して気泡を発生させ、気泡中の酸
素を液中に溶解させる方法がある。この方法は、送風機
と散気装置とがあればよいため簡単な装置で足りるし、
かなりの酸素溶解能力もあるし、処理能力も自由に変え
られるし、また散気装置からの気泡の上昇に伴う液の撹
拌作用もあるため広く使用されている。[Prior Art] As a method of biologically treating organic wastewater such as sewage, human waste, and industrial wastewater, there is a method of aerobic treatment by supplying oxygen-containing gas in the presence of activated sludge or bacterial cells. A well-known and frequently used method is to use a blower to supply air to the porous body of an aeration device installed underwater to generate bubbles, and then dissolve the oxygen in the bubbles into the liquid. There is a way to do it. This method requires only a blower and a diffuser, so a simple device is sufficient.
It is widely used because it has a considerable ability to dissolve oxygen, its processing capacity can be changed freely, and it also has a stirring effect on the liquid as bubbles rise from the aeration device.
【0003】0003
【発明が解決しようとする課題】しかしながら、この方
法では、少なくとも多孔質体を設置した水深相当の水圧
に相当する圧力で空気を供給する必要があり、その動力
は非常に大きいものになる。液中に空気を散気する場合
には、前記の多孔質体により構成された散気装置以外の
酸素供給手段を用いる方法においても、供給した酸素量
当りに必要な動力は同一レベルのものである。[Problems to be Solved by the Invention] However, in this method, it is necessary to supply air at a pressure equivalent to at least the water pressure equivalent to the water depth in which the porous body is installed, and the power required for this is extremely large. When diffusing air into a liquid, the power required per amount of oxygen supplied is at the same level even when using an oxygen supply means other than the above-mentioned aeration device constructed from a porous material. be.
【0004】有機性汚水の生物学的処理を経済的に行わ
せるには、処理に要するエネルギーをなるべく少なくす
ることである。このため、生物学的処理にいて酸素の供
給に必要な動力を小さくすることが好ましい。本発明は
、生物学的処理において活性汚泥あるいは菌体に動力な
しで、あるいは最小の動力で酸素を供給する手段を提供
することを目的とするものである。[0004] In order to carry out biological treatment of organic wastewater economically, it is necessary to reduce the energy required for treatment as much as possible. For this reason, it is preferable to reduce the power required to supply oxygen in biological treatment. An object of the present invention is to provide a means for supplying oxygen to activated sludge or bacterial cells without power or with minimal power in biological treatment.
【0005】[0005]
【課題を解決するための手段】本発明は、次の手段によ
って前記の目的を達成することができる。
1.有機性汚水を好気性生物処理する処理方法において
、有機性汚水を処理槽の槽壁の少なくとも一部を構成す
る疎水性多孔質膜を透過してとりこんだ酸素により好気
性処理をすることを特徴とする生物学的処理方法。
2.有機性汚水を好気性生物処理する処理装置において
、槽壁の少なくとも一部を疎水性多孔質膜で構成し、前
記疎水性多孔質膜を酸素含有ガスを透過させるようにし
たことを特徴とする生物学的処理装置。[Means for Solving the Problems] The present invention can achieve the above object by the following means. 1. A treatment method for aerobic biological treatment of organic wastewater, characterized in that the organic wastewater is subjected to aerobic treatment using oxygen that is taken in through a hydrophobic porous membrane that constitutes at least a part of the tank wall of a treatment tank. biological treatment method. 2. A treatment device for aerobic biological treatment of organic wastewater, characterized in that at least a part of the tank wall is made of a hydrophobic porous membrane, and the hydrophobic porous membrane is permeable to oxygen-containing gas. Biological treatment equipment.
【0006】処理槽の槽壁の少なくとも一部をポリ四フ
ッ化エチレン、ポリプロピレン、ポリエチレンなどでつ
くられた疎水性多孔質膜で形成し、この多孔質膜の微小
な孔を通して、槽外の酸素含有ガスより酸素を透過させ
ることにより、処理槽内の液に酸素の供給を行うもので
ある。前記多孔質膜の性質としては液を通さず、それで
いて酸素を透過させるためには、気孔率(膜の見かけ容
積に対する空間の割合)が50〜70%程度の物が望ま
しい。また、膜の孔径は0.01ミクロンから数ミクロ
ンのものがよく、孔径を大きくすると水が漏れやすくな
るため、通常1ミクロン程度のものが好ましい。前記多
孔質膜の厚さは薄い方が酸素を透過させる上で好ましい
が、液の水圧に耐える上ではある程度の厚みを有するこ
とが必要である。もちろん、多孔質膜だけで液の水圧に
耐えるような十分な厚さとすると、かなり厚くなって酸
素の透過が少なくなるので、酸素を十分に透過しうる厚
さである薄い疎水性多孔質膜をより多孔性の大きいシー
ト状支持体で支持し、それをさらに強度が強く、かつ孔
径が大きい例えばパンチングメタル、多孔金属板のよう
な支持体で支持することが好ましい。また、前記疎水性
多孔質膜として、内側を液の通過を十分に阻止し、酸素
を透過しうる気孔率をもつ多孔質層として、その外側を
前記層よりも酸素を通し易い気孔率をもつ多孔質層とし
た二重層の膜を用いることができる。その層の数は二以
上とすることができる。[0006] At least a part of the tank wall of the treatment tank is formed of a hydrophobic porous membrane made of polytetrafluoroethylene, polypropylene, polyethylene, etc., and oxygen from outside the tank is passed through the minute pores of this porous membrane. Oxygen is supplied to the liquid in the processing tank by permeating oxygen from the contained gas. The porous membrane preferably has a porosity (ratio of space to the apparent volume of the membrane) of about 50 to 70% in order to not allow liquid to pass through it, but to allow oxygen to pass therethrough. Further, the pore size of the membrane is preferably from 0.01 micron to several microns, and since increasing the pore size makes it easier for water to leak, it is usually preferably about 1 micron. The thinner the porous membrane is, the better in terms of permeating oxygen, but it is necessary to have a certain degree of thickness in order to withstand the water pressure of the liquid. Of course, if the porous membrane was made thick enough to withstand the water pressure of the liquid, it would be quite thick and the permeation of oxygen would be reduced, so a thin hydrophobic porous membrane that is thick enough to permeate oxygen is used. It is preferable to support a sheet-like support with greater porosity, and then to support it with a support having stronger strength and larger pores, such as a punched metal or a perforated metal plate. In addition, the hydrophobic porous membrane has an inner side that sufficiently blocks the passage of liquid and a porous layer that has a porosity that allows oxygen to pass through, and an outer side that has a porosity that allows oxygen to pass through more easily than the above-mentioned layer. A double layer membrane with a porous layer can be used. The number of layers can be two or more.
【0007】また、疎水性多孔質膜により槽壁の少なく
とも一部を形成する関係上、前記多孔質膜から液体が外
へ流出することは好ましくない。液体が流出しないよう
にするためには、浸水圧が水圧より大きいことが必要で
ある。そして、前記多孔質膜を用いて容器として構成し
うるためには膜自体が相応の引っ張り強度を有すること
が好ましい。その膜の引っ張り強度としては、具体的に
は4〜6kgf /mm2 であることが好ましい。こ
の引っ張り強度はポリ塩化ビニールパイプが有する引っ
張り強度5〜6kgf /mm2と同程度のものである
。一方、前記多孔質膜の浸水圧は通常2kgf /cm
2 である。Furthermore, since at least a portion of the tank wall is formed of a hydrophobic porous membrane, it is undesirable for liquid to flow out from the porous membrane. In order to prevent liquid from flowing out, it is necessary that the immersion pressure be greater than the water pressure. In order to be able to construct a container using the porous membrane, it is preferable that the membrane itself has a suitable tensile strength. Specifically, the tensile strength of the membrane is preferably 4 to 6 kgf/mm2. This tensile strength is comparable to the tensile strength of 5 to 6 kgf/mm2 of polyvinyl chloride pipes. On the other hand, the water immersion pressure of the porous membrane is usually 2 kgf/cm.
It is 2.
【0008】疎水性多孔質膜は、前記したように液が外
へ流出することがないよう、その膜を構成する物質が疎
水性のものであることが好ましいが、前記膜の内側の面
あるいは層が透過してきた酸素を溶解するのを助長する
作用を有するものであることが好ましく、そのために例
えば触媒などを含有したものとすることができる。処理
槽の形は、円筒形、矩形の各種の形状とすることができ
るが、液を疎水性多孔質膜から遠い距離に置かないため
にはなるべく薄形とした方が好ましい。液に対する酸素
の供給は前記多孔質膜を通しての酸素の透過と溶解、並
びに溶解した酸素の拡散により行われるため、それを助
長するには液の撹拌を行うことができる。[0008] In the hydrophobic porous membrane, it is preferable that the substance constituting the membrane is hydrophobic in order to prevent the liquid from flowing out as described above. It is preferable that the layer has the effect of promoting the dissolution of oxygen that has passed through the layer, and for this purpose, it may contain a catalyst or the like. The shape of the treatment tank can be various shapes such as cylindrical and rectangular, but it is preferable to make it as thin as possible so that the liquid is not placed far from the hydrophobic porous membrane. Oxygen is supplied to the liquid by permeation and dissolution of oxygen through the porous membrane, as well as by diffusion of dissolved oxygen, so stirring of the liquid can be performed to promote this.
【0009】処理槽の槽壁の液に接している部分のほと
んど全部を前記多孔質膜で構成してもよいし、またその
一部のみで構成してもよい。酸素の溶解量は前記多孔質
膜の面積に比例するから、前記多孔質膜で構成した槽壁
の面積を増大するために、処理槽内に内部が外気に通じ
た中空の槽壁を設けることができる。[0009] Almost all of the portion of the tank wall of the processing tank that is in contact with the liquid may be composed of the porous membrane, or only a portion thereof may be composed of the porous membrane. Since the amount of dissolved oxygen is proportional to the area of the porous membrane, in order to increase the area of the tank wall made of the porous membrane, a hollow tank wall is provided in the processing tank, the inside of which communicates with the outside air. Can be done.
【0010】また、本発明は、酸素の供給は外気からの
疎水性多孔質膜を通して酸素の拡散による透過及び溶解
によって行われるが、処理槽外に空気を通風するように
するか、あるいは外気を空気に代えて酸素濃度の高いガ
スを送るようにすると、処理槽への酸素供給量を増すこ
とができる。[0010] Furthermore, in the present invention, oxygen is supplied from outside air through a hydrophobic porous membrane by permeation and dissolution by diffusion of oxygen. By sending a gas with a high oxygen concentration instead of air, the amount of oxygen supplied to the processing tank can be increased.
【0011】[0011]
【作用】有機性汚水の好気性生物処理において、処理槽
の槽壁の少なくとも一部を疎水性多孔質膜で構成し、外
気から前記多孔質膜を透過して酸素を供給するようにし
たため、処理槽の水深に関わらず、拡散透過のみで直接
酸素が供給できるので、処理槽内液に酸素を供給する動
力がほとんどゼロになり、それによりきわめて少ない動
力で酸素を供給することができる。また、本発明では酸
素の供給を促進し、あるいは処理の均一化をはかるため
に処理槽内の液を撹拌することができるが、従来の空気
の吸込みによる無秩序な撹拌が行われることがなく、液
の処理に最適な必要十分な撹拌を行えばよいので、撹拌
における無駄なエネルギーの消費もないし、活性汚泥の
性状に悪影響を及ぼすこともない。[Function] In the aerobic biological treatment of organic wastewater, at least a part of the tank wall of the treatment tank is composed of a hydrophobic porous membrane, and oxygen is supplied by passing through the porous membrane from the outside air. Regardless of the depth of the water in the treatment tank, oxygen can be directly supplied only through diffusion permeation, so the power required to supply oxygen to the liquid in the treatment tank is almost zero, and as a result, oxygen can be supplied with extremely little power. Furthermore, in the present invention, it is possible to stir the liquid in the processing tank in order to promote the supply of oxygen or to make the processing uniform, but the conventional method does not involve chaotic stirring due to air suction. Since it is sufficient to perform the necessary and sufficient stirring that is optimal for the treatment of the liquid, there is no wasted energy consumption during stirring, and there is no adverse effect on the properties of the activated sludge.
【0012】0012
【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらの実施例のみに限定されることは
ない。
実施例1
図1に、本発明の一例である生物学的処理装置の模式図
を示す。処理槽1は円筒形で気孔率70%のポリ四フッ
化エチレンからなる疎水性多孔質膜(孔径1ミクロン)
2で槽壁が構成され、有機性汚水3がこの処理槽1に流
入し、活性汚泥と混合して混合液4となり、前記多孔質
膜2を透過し、溶解してくる大気中の酸素によって好気
性処理が行なわれ、その処理を受けた活性汚泥スラリ5
は処理槽1から沈殿槽6に入り、活性汚泥が沈殿し、清
澄となった処理液7が取り出され、沈殿槽6にたまった
活性汚泥は返送汚泥8として処理槽1へ送られる。[Examples] The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to these Examples. Example 1 FIG. 1 shows a schematic diagram of a biological treatment apparatus that is an example of the present invention. The treatment tank 1 has a cylindrical shape and is made of a hydrophobic porous membrane (pore diameter 1 micron) made of polytetrafluoroethylene with a porosity of 70%.
2 constitutes a tank wall, and organic sewage 3 flows into this treatment tank 1, mixes with activated sludge to form a mixed liquid 4, passes through the porous membrane 2, and is treated by dissolved oxygen in the atmosphere. Activated sludge slurry 5 subjected to aerobic treatment
The activated sludge enters the sedimentation tank 6 from the treatment tank 1, the activated sludge is precipitated, and the clarified treatment liquid 7 is taken out.The activated sludge accumulated in the sedimentation tank 6 is sent to the treatment tank 1 as return sludge 8.
【0013】実施例2
図2に、本発明の別の例である生物処理装置の模式図を
示し、図3にその装置における処理槽の模式的平面図を
示す。この生物処理装置の処理槽1は、上部液留部11
及び下部液留部12との間に6本の疎水性多孔質膜2か
らなる円筒体10があり、それらを通して上下に連通し
ており、円筒体10によって前記多孔質膜2の膜面積の
増大をはかっている。酸素の透過をよくするために送風
機9により同筒体10の間に空気を通す。その他の構成
は図1に示したのと同じである。この生物処理装置は、
前記多孔質膜の面積が大きいので処理能力を大きくする
ことができ、通風によってそれを一層大きくすることが
できる。Example 2 FIG. 2 shows a schematic diagram of a biological treatment device as another example of the present invention, and FIG. 3 shows a schematic plan view of a treatment tank in the device. The treatment tank 1 of this biological treatment equipment includes an upper liquid storage section 11
A cylindrical body 10 consisting of six hydrophobic porous membranes 2 is disposed between the upper and lower liquid reservoirs 12 and communicates vertically through them, and the cylindrical body 10 increases the membrane area of the porous membranes 2. is being measured. Air is passed between the cylindrical bodies 10 by a blower 9 to improve oxygen permeation. The other configurations are the same as shown in FIG. This biological treatment equipment is
Since the area of the porous membrane is large, the processing capacity can be increased, and it can be further increased by ventilation.
【0014】実施例3
図4に、本発明の他の一例である生物処理装置の模式図
を示す。この装置の処理槽1は、槽壁を構成する疎水性
多孔質膜2の外側を囲んで区画して酸素ガス室13を形
成し、これに酸素富化ガス14を供給することにより、
前記多孔質膜2を透過して液に入る酸素量が多くなるよ
うにされている。撹拌機15を駆動することにより必要
最小限の撹拌を行うことができる。この撹拌は、処理槽
内での混合が必要でないときには行わなくてもよい。Example 3 FIG. 4 shows a schematic diagram of a biological treatment apparatus which is another example of the present invention. The processing tank 1 of this device is divided by surrounding the outside of the hydrophobic porous membrane 2 that constitutes the tank wall to form an oxygen gas chamber 13, and by supplying an oxygen-enriched gas 14 to this,
The amount of oxygen that passes through the porous membrane 2 and enters the liquid is increased. By driving the stirrer 15, the necessary minimum amount of stirring can be performed. This stirring may not be performed when mixing within the processing tank is not required.
【0015】実施例4
この例は、本発明の有効性を説明するための試験例であ
る。この試験例は、有機性汚水を直接処理するものでは
ないが、生物学的処理は、酸素の供給能力と密接に関係
するので、本発明における処理槽の酸素供給能力を試験
して、その処理能力を見ようとするものである。この試
験例では、図5に示す試験装置を用いた。この試験装置
は、高さ5m、直径5cmの円筒形で、円筒面を四フッ
化エチレン樹脂製疎水性多孔質膜(気孔率70%、孔径
1ミクロン)2で形成した処理槽1を有し、処理槽1の
上端は密閉されている。槽内を混合するために処理槽の
上端から下端に連絡する液路16を設け、その途中にポ
ンプ17を設けてこれを駆動させることにより、液路1
6を経て処理槽1の上端から下端へ液を送り、処理槽1
内を上昇流として流すようにして混合撹拌を行っている
。処理槽1内にはDOセンサー18を設置し、これを溶
存酸素計19につないでおく。Example 4 This example is a test example for explaining the effectiveness of the present invention. This test example does not directly treat organic wastewater, but since biological treatment is closely related to the oxygen supply capacity, the oxygen supply capacity of the treatment tank in the present invention was tested and the treatment It's about looking at ability. In this test example, a test apparatus shown in FIG. 5 was used. This testing device has a cylindrical treatment tank 1 with a height of 5 m and a diameter of 5 cm, the cylindrical surface of which is made of a hydrophobic porous membrane made of polytetrafluoroethylene resin (porosity 70%, pore diameter 1 micron) 2. , the upper end of the processing tank 1 is sealed. In order to mix the inside of the tank, a liquid path 16 is provided that communicates from the upper end to the lower end of the processing tank, and a pump 17 is provided in the middle of the tank and is driven to drive the liquid path 1.
6, the liquid is sent from the upper end of the processing tank 1 to the lower end of the processing tank 1.
Mixing and agitation is performed by flowing the inside as an upward flow. A DO sensor 18 is installed in the treatment tank 1 and connected to a dissolved oxygen meter 19.
【0016】試験においては、処理槽1内に予め脱酸素
したイオン交換水を入れ、この水の溶存酸素濃度をゼロ
にした後、ポンプを駆動して槽内水の溶存酸素の変化を
測定して、酸素供給能力を測定した。その結果を表1に
示す。
表 1
槽内平均流速
酸素供給能力 〔c
m/sec 〕
〔mg/Lh〕
5
43
10
64
15
84
20
92
30
107
40
122 酸素
供給能力は1時間当り1L(リットル)に供給できる酸
素量〔mg〕で表わされるが、表1にみるように本発明
における酸素供給能力は一般の活性汚泥処理には十分な
性能である。この試験においては酸素供給のための動力
は全く使用していない。[0016] In the test, deoxygenated ion-exchanged water was placed in the treatment tank 1, and after the dissolved oxygen concentration in this water was brought to zero, the change in dissolved oxygen in the water in the tank was measured by driving the pump. The oxygen supply capacity was measured. The results are shown in Table 1.
Table 1
Average flow velocity in the tank
Oxygen supply capacity [c
m/sec]
[mg/Lh]
5
43
10
64
15
84
20
92
30
107
40
122 Oxygen supply capacity is expressed as the amount of oxygen [mg] that can be supplied to 1 L (liter) per hour, and as shown in Table 1, the oxygen supply capacity of the present invention is sufficient for general activated sludge treatment. . No power was used to supply oxygen in this test.
【0017】[0017]
【発明の効果】本発明は、有機性汚水を好気性処理する
さいに活性汚泥あるいは菌体に動力なしで、あるいはご
く僅かな動力で酸素を供給することができる。また、処
理槽内の液を撹拌するとその酸素供給能力を高めること
ができるが、本発明ではその処理のために行う撹拌混合
は最小限必要な範囲で行えばよいので、エネルギー消費
が少なくてすむ。液中に散気装置で空気を吹き込むとき
のような液や活性汚泥を激しく撹乱するようなことがな
いので、生物的処理上好ましい。Industrial Applicability According to the present invention, oxygen can be supplied to activated sludge or bacterial cells without or with very little power during aerobic treatment of organic wastewater. In addition, stirring the liquid in the processing tank can increase its oxygen supply capacity, but in the present invention, stirring and mixing for processing only needs to be carried out within the minimum necessary range, so energy consumption can be reduced. . This method is preferable for biological treatment because it does not cause severe disturbance of the liquid or activated sludge, unlike when air is blown into the liquid using an aeration device.
【図1】本発明の一例である生物学的処理装置の模式図
である。FIG. 1 is a schematic diagram of a biological treatment device that is an example of the present invention.
【図2】本発明の他の一例である生物学的処理措置の模
式図である。FIG. 2 is a schematic diagram of a biological treatment measure that is another example of the present invention.
【図3】図2に示す生物学的処理装置における処理槽の
模式的平面図である。3 is a schematic plan view of a treatment tank in the biological treatment apparatus shown in FIG. 2. FIG.
【図4】本発明の他の一例である生物学的処理装置の模
式図である。FIG. 4 is a schematic diagram of a biological treatment device that is another example of the present invention.
【図5】本発明における酸素供給能力を測定するのに用
いた試験装置の模式図である。FIG. 5 is a schematic diagram of a test device used to measure oxygen supply capacity in the present invention.
1 処理槽 2 疎水性多孔質膜 3 有機性汚水 4 混合液 5 活性汚泥スラリ 6 沈殿槽 7 処理水 1 Processing tank 2 Hydrophobic porous membrane 3. Organic wastewater 4 Mixed liquid 5 Activated sludge slurry 6 Sedimentation tank 7. Treated water
Claims (2)
方法において、有機性汚水を処理槽の槽壁の少なくとも
一部を構成する疎水性多孔質膜を透過してとりこんだ酸
素により好気性処理をすることを特徴とする生物学的処
理方法。Claim 1. A treatment method for aerobic biological treatment of organic wastewater, in which organic wastewater is subjected to aerobic treatment using oxygen introduced through a hydrophobic porous membrane that constitutes at least a part of the tank wall of a treatment tank. A biological treatment method characterized by:
装置において、槽壁の少なくとも一部を疎水性多孔質膜
で構成し、前記疎水性多孔質膜を酸素含有ガスを透過さ
せるようにしたことを特徴とする生物学的処理装置。[Claim 2] A treatment device for aerobic biological treatment of organic wastewater, wherein at least a portion of a tank wall is composed of a hydrophobic porous membrane, and the hydrophobic porous membrane is permeable to an oxygen-containing gas. A biological treatment device characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3040618A JPH04290594A (en) | 1991-02-13 | 1991-02-13 | Method and device for biological treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3040618A JPH04290594A (en) | 1991-02-13 | 1991-02-13 | Method and device for biological treatment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04290594A true JPH04290594A (en) | 1992-10-15 |
Family
ID=12585520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3040618A Pending JPH04290594A (en) | 1991-02-13 | 1991-02-13 | Method and device for biological treatment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04290594A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005511303A (en) * | 2001-12-14 | 2005-04-28 | スリーエム イノベイティブ プロパティズ カンパニー | Layered sheet for gas supply in water treatment |
JP2020175343A (en) * | 2019-04-19 | 2020-10-29 | 株式会社超微細科学研究所 | Aerator |
-
1991
- 1991-02-13 JP JP3040618A patent/JPH04290594A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005511303A (en) * | 2001-12-14 | 2005-04-28 | スリーエム イノベイティブ プロパティズ カンパニー | Layered sheet for gas supply in water treatment |
JP4680504B2 (en) * | 2001-12-14 | 2011-05-11 | スリーエム イノベイティブ プロパティズ カンパニー | Layered sheet for gas supply in water treatment |
JP2020175343A (en) * | 2019-04-19 | 2020-10-29 | 株式会社超微細科学研究所 | Aerator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cote et al. | Bubble-free aeration using membranes: process analysis | |
US11339068B2 (en) | Eductor-based membrane bioreactor | |
US3966608A (en) | Liquid treatment apparatus | |
EP0378735A1 (en) | Submerged biological wastewater treatment system | |
US9499290B2 (en) | Stationary bubble reactors | |
CN101506102A (en) | Bio tank/oxygen replenishment system | |
JP4426596B2 (en) | Air diffuser | |
JPH07155758A (en) | Waste water treating device | |
WO1999033552A1 (en) | Vapor/liquid mixer and polluted water purification apparatus using the mixer | |
US4940540A (en) | Submerged biological wastewater treatment system | |
JPS6012636Y2 (en) | Reactor device for treating liquids consisting of biologically degradable waste products | |
WO2018100841A1 (en) | Biologically activated carbon processing device | |
US11772995B2 (en) | Total nitrogen removal device for sewage and method for operating the same | |
JPH04290594A (en) | Method and device for biological treatment | |
US11833483B2 (en) | Device and method for generating gas bubbles in a liquid | |
Marbelia et al. | A Comparative Study of Conventional Aerator and Microbubble Generator in Aerobic Reactors for Wastewater Treatment | |
WO2019163429A1 (en) | Operating method for aerobic organism treatment device | |
CN106746357A (en) | A kind of sewage-treatment plant | |
JPS61120694A (en) | Treatment of organic waste water | |
JP2003053378A (en) | Method and device for treating water by using separation membrane | |
JPH09225487A (en) | Biological treating device | |
JPH07108295A (en) | Pressurized aeration treatment device for waste water | |
JPH0568996A (en) | Generation of dissolved gas and sewage treatment apparatus using dissolved gas | |
JP3953127B2 (en) | Aeration treatment equipment | |
JPH09117794A (en) | Biological denitrification device |