JPH04290481A - Plastic substrate for thin film laminated device and thin film laminated device using the same - Google Patents

Plastic substrate for thin film laminated device and thin film laminated device using the same

Info

Publication number
JPH04290481A
JPH04290481A JP3080757A JP8075791A JPH04290481A JP H04290481 A JPH04290481 A JP H04290481A JP 3080757 A JP3080757 A JP 3080757A JP 8075791 A JP8075791 A JP 8075791A JP H04290481 A JPH04290481 A JP H04290481A
Authority
JP
Japan
Prior art keywords
film
thin film
substrate
coating
plastic substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3080757A
Other languages
Japanese (ja)
Inventor
Masayoshi Takahashi
高橋 正悦
Katsuyuki Yamada
勝幸 山田
Hidekazu Ota
英一 太田
Hitoshi Kondo
均 近藤
Yuji Kimura
裕治 木村
Kenji Kameyama
健司 亀山
Makoto Tanabe
誠 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP3080757A priority Critical patent/JPH04290481A/en
Publication of JPH04290481A publication Critical patent/JPH04290481A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent moisture or the like from entering plastic by forming a thin insulating film on at least one of surfaces, forming two or more kinds of application films of the thin insulating film with spin-on application of a coating formation material comprising metallic organic compound and then making two or more layers of application films which have been subjected to plasma treatment. CONSTITUTION:Surfaces of a plastic plate or a plastic film substrate are uneven due to filler and drawing. Therefore, first coating forming agent is first applied on a plastic substrate 11 by a spinner and a roll coater, and it is heated in the air for the purpose of vaporizing reflow and solvent to form a first layer of an application film 12-1. Then second coating forming agent is applied and dried to form a second application film 13-1. Then the application films are treated in inert gas or plasma of inert gas containing a very small amount of oxygen. This treatment allows the two layers of the application films 12-1, 13-1 to change into first and second insulating films 12-2,13-2.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【技術分野】本発明は、薄膜積層デバイス用、アクテイ
ブマトリックス用プラスチック基板、および薄膜積層用
蒹液晶表示装置用プラスチック基板に関する。また、本
発明はそれを使用した薄膜積層デバイスおよびOA機器
用、TV用等のフラットパネルディスプレー等に好適な
液晶表示装置に関する。
TECHNICAL FIELD The present invention relates to a plastic substrate for thin film laminated devices, an active matrix, and a plastic substrate for thin film laminated liquid crystal display devices. The present invention also relates to a thin film laminated device using the same, and a liquid crystal display device suitable for use in flat panel displays for OA equipment, TVs, etc.

【0002】0002

【従来技術】OA機器端末機や液晶TVは大面積液晶パ
ネルの使用の要望が強く、そのため、アクティブマトリ
ックス方式では各画素ごとにスィッチを設け、電圧を保
持するように工夫されている(特開昭62−62333
、同61−260219号公報)。また、近年液晶パネ
ルの軽量化、低コスト化が盛んに行なわれており、スイ
ッチング素子の基板にプラスチックスを用いることが検
討されている(特開平1−47769号公報)。しかし
、プラスチック基板上に薄膜積層デバイスを形成する場
合、以下の問題点を生じる。■  プロセス工程中、酸
、アルカリ、水等の溶液に基板が浸漬されるため、それ
ら成分がプラスチック内に残留し、デバイス特性の劣化
を引き起こす。また基板伸縮の原因ともなる。■  基
板上に堆積されるデバイス作製用の薄膜の内部ストレス
によって基板がカール及び伸縮する。■  一般に、プ
ラスチックフィルム基板にはフィラーあるいは延伸処理
による凸凹が存在し、デバイスの欠陥(ショート、断線
)の原因となる。これらを回避するために、プラスチッ
ク基板の少なくとも片面(薄膜積層デバイスの形成され
ている面)、好ましくは両面に絶縁性薄膜を形成するこ
とが考えられる。このような薄膜を形成する場合は、上
記■〜■の問題を解決するためには、つぎの理由により
可能なかぎりできるだけ厚く形成しなければならない。 a)上記■は絶縁性薄膜中を酸、アルカリ、水等が拡散
(浸透)することにより起こるが、拡散の方程式から考
えて、膜厚を厚くすれば防ぐことができる。 b)上記■で基板がカール、伸縮するのはプラスチック
基板部分であり、絶縁性薄膜を厚く形成すれば、基板の
合成のヤング率(プラスチック+絶縁性薄膜)が高くな
り変形を少なくできる。 c)表面の平坦化(レベリング)を高めるには、被膜を
厚くし、かつ、被膜形成法として塗付法を用いる方が一
層効果が大きい(気相法では一旦凸凹ができると、それ
より厚くしてもその凹凸にならってしまうが塗付法では
リフローが可能である。)。絶縁性薄膜の形成法として
は大別すると気相法と塗布法があるが、気相法では堆積
速度が遅く、かつ、膜の内部ストレスが大きいために数
μm程度に形成するのは実用的ではない。また、塗布法
では塗付後の焼成温度が450℃以上と高く、耐熱性基
板にかぎられる。したがって、いずれの方法も満足すべ
きものではない。
[Prior Art] There is a strong demand for the use of large-area liquid crystal panels in office automation equipment terminals and liquid crystal TVs. Therefore, in the active matrix method, a switch is provided for each pixel to maintain the voltage. Showa 62-62333
, No. 61-260219). Further, in recent years, there have been active efforts to reduce the weight and cost of liquid crystal panels, and the use of plastics for the substrates of switching elements is being considered (Japanese Unexamined Patent Publication No. 1-47769). However, when forming a thin film stacked device on a plastic substrate, the following problems occur. ■During the process, the substrate is immersed in solutions such as acids, alkalis, and water, and these components remain in the plastic, causing deterioration of device characteristics. It also causes expansion and contraction of the board. (2) The substrate curls and expands and contracts due to internal stress in the thin film for device fabrication deposited on the substrate. ■Generally, plastic film substrates have unevenness due to filler or stretching treatment, which can cause device defects (short circuits, disconnections). In order to avoid these problems, it is conceivable to form an insulating thin film on at least one side (the side on which the thin film laminated device is formed) of the plastic substrate, preferably on both sides. When forming such a thin film, in order to solve the above-mentioned problems (1) to (3), it must be formed as thick as possible for the following reasons. a) The above problem (2) occurs due to the diffusion (penetration) of acid, alkali, water, etc. in the insulating thin film, but considering the equation of diffusion, it can be prevented by increasing the thickness of the film. b) The part of the substrate that curls and expands/contracts in the above case (2) is the plastic substrate part, and if the insulating thin film is formed thickly, the composite Young's modulus of the substrate (plastic + insulating thin film) will be high and deformation can be reduced. c) In order to increase the leveling of the surface, it is more effective to make the film thicker and to use the coating method as the film formation method (in the vapor phase method, once unevenness is formed, it is more effective to make the film thicker). However, reflow is possible with the coating method.) Methods for forming insulating thin films can be roughly divided into vapor phase methods and coating methods, but vapor phase methods have a slow deposition rate and high internal stress in the film, so it is not practical to form a film with a thickness of several micrometers. isn't it. Further, in the coating method, the baking temperature after coating is as high as 450° C. or higher, and the coating method is limited to heat-resistant substrates. Therefore, neither method is satisfactory.

【0003】0003

【目的】本発明の目的は上記問題を解決し、特性が良好
で劣化の少ない薄膜積層デバイスを形成し得るプラスチ
ック基板を提供する点にある。すなわち、本発明の目的
は、プラスチックスへの水分等の進入を防ぐとともに、
プラスチックスが含有している水分等の素子への進入を
防ぐことのできるかつ、カール、基板伸縮の発生しない
プラスチック基板を提供する点にある。本発明の他の目
的は、前記改良されたプラスチック基板を用いた薄膜積
層デバイス、とくに薄膜二端子素子を提供する点にある
An object of the present invention is to solve the above problems and provide a plastic substrate on which a thin film laminated device with good characteristics and less deterioration can be formed. That is, the purpose of the present invention is to prevent moisture etc. from entering plastics, and
It is an object of the present invention to provide a plastic substrate that can prevent moisture contained in plastics from entering an element, and that does not cause curling or expansion/contraction of the substrate. Another object of the present invention is to provide a thin film laminated device, particularly a thin film two-terminal device, using the improved plastic substrate.

【0004】0004

【構成】本発明の第1は、少なくとも片面に絶縁性薄膜
を形成した薄膜積層デバイス用プラスチック基板におい
て、前記絶縁性薄膜が金属有機化合物よりなる被膜形成
材料をスピン・オン塗布法により2層以上の塗膜を形成
後、プラズマ処理を受けた2層以上の塗膜からなるもの
であることを特徴とする薄膜積層デバイス用プラスチッ
ク基板に関する。本発明の第2は、前記絶縁性薄膜が異
なる性質をもつ2層以上の層からなるものである前記薄
膜積層デバイス用プラスチック基板に関する。本発明の
第3は、前記基板上に薄膜二端子素子を積層してなる薄
膜積層デバイスに関する。本発明の第4は、前記薄膜二
端子素子中の絶縁膜が硬質炭素膜である請求項3記載の
薄膜積層デバイスに関する。本発明において、基板上に
絶縁性薄膜を形成する方法を図1において、工程順に(
a)、(b)、(c)、(d)で示す。(a)はスピン
・オン塗布をする前のプラスチック基板断面図、(b)
は第1回目のスピン・オン塗布、乾燥を行った後の断面
図、(c)は第2回目のスピン・オン塗布、乾燥を行っ
た後の断面図、(d)はプラズマ処理により2層の塗膜
が絶縁性薄膜に変化している様子を示す断面図である。 以下に、図面を参照しながら具体的に説明する。 プラスチック板またはプラスチックフィルム基板1はフ
ィラー5や延伸処理により図1(a)にみられるように
表面に凹凸が存在する。そこで、先ず第1の被膜形成剤
をスピナー、ロールコーターでプラスチック基板11上
に塗布し、リフロー及び溶剤を蒸発させる意味で〜10
0℃、1時間程度、空気中で加熱して第1層目の塗膜1
2−1を形成する(図1(b))。ついで、第2の被膜
形成剤をその上に同様の手段により塗布、乾燥して第2
の塗膜13−1を形成する(図1(c))。次に不活性
ガスあるいは微量の酸素を含む不活性ガスのプラズマ中
で処理する。この処理により塗膜12−1、13−1の
2つの層は第1と第2の絶縁性薄膜12−2、13−2
に変化する(図1(d))。この時の温度は室温〜25
0℃であって好ましくは50℃〜150℃であった。ま
た不活性ガスとしてはAr,N2,He等であるが特に
これらに限定されるものではない。処理圧力は1/10
2〜数torr、好ましくは0.05〜1torrであ
った。プラズマ処理装置は図8に示すように、通常使用
される平行平板型のものであり、101はアース電極、
102はRF電極、103は被処理材、104はRF電
源、105はバイアス電源である。RF・パワーとして
は、数〜数100W(電極径φ100cm)、好ましく
は10〜200Wであった。使用する被膜形成剤は、主
成分が金属有機化合物(金属アルコキシド、金属有機錯
体、金属アルコラート等)であり、具体的には、Si(
OR)x(OH)y(x=0〜4、yは4−xである)
R−COO−Si,Al(OR)x(OH)y(x=0
〜4、y=3−xである)等であるが特にこれらに限定
されるものではない。被膜形成剤を塗布するために用い
る溶剤としては、アルコール、エステル、ケトン等が使
用できる。プラズマ処理の効果はプラズマ中の不活性ガ
スイオン、酸素イオンが被膜形成剤(塗付後)中に物理
的にピーニングし(かなり深くまで浸入することが我々
のIR測定による残留−OR,−OHの分析結果から明
らかとなっている。膜厚として数μmまでは効果がある
。)、R及びHの膜中からの脱離を促進するものである
。プラズマ処理を行なわない場合は、焼成温度としては
450〜500℃が必要であったが上記方法では室温〜
250℃、好ましくは50〜150℃で目的を達成する
ことができる。プラズマ処理により得られた膜は100
%完全な無機膜ではなく、膜中には被膜形成剤の成分で
ある−OH,−R,−ORなどの基が一部残留している
が、そのIRスペクトルから推定するとその残留量はお
おむね15wt%以下である。図1では片面にしか絶縁
性薄膜を形成していないが、前記問題点の■、■を考え
ると基板の両面に形成した方がその効果が高いことは容
易に理解される。膜厚は数100Å〜数μmであって、
好ましくは1000Å〜3μm程度である。さらに前記
問題点■、■をより一層完全に解消するために絶縁性薄
膜の上層もしくは下層により密着力が高くパッシベーシ
ョン効果の高い無機物質からなる第2のコート膜を形成
することは、効果を著しく高めるものである。具体的に
は、前記無機物質としてはSiO2,Si3N4,Si
ON,Al2O3,AlN,硬質炭素等であり、これら
はスパッタリング、P−CVD,ECR−CVD等で形
成可能である。前述のような特徴を有する本発明の基板
は、種々の薄膜積層デバイス、例えばフラットパネルデ
ィスプレー用スイッチング素子、原稿読取用センサー、
光プリンター用光源等に使用し得るが、特に液晶ディス
プレー用アクティブマトリックス基板として好適に使用
される。本発明の薄膜積層デバイスとしては、金属−絶
縁体−金属層構成のMIM型素子、特開昭61−275
811号公報で言うところのMSI素子(Metal−
Semi−Insulator)、半導体−絶縁体−半
導体層構成のSIS素子、特開昭64−7577号公報
に記載の金属−絶縁体−金属−絶縁体−金属のMIMI
M素子などがある。アクティブマトリクス基板において
は各画素毎にスイッチング素子を設けてなるが、該スイ
ッチング素子としては第1導体と第2導体間に絶縁膜を
介在させてなる薄膜二端子素子がコスト、開口率等の点
で特に有利である。さらに前記絶縁膜として硬質炭素膜
を用いることにより、広範囲でのデバイス設計が可能で
、しかも素子特性のバラツキが少なく、またしきい値電
圧、耐圧に優れ、歩留りのよい薄膜二端子素子が得られ
る。
[Structure] The first aspect of the present invention is a plastic substrate for a thin film laminated device having an insulating thin film formed on at least one side, in which the insulating thin film is made of two or more layers of a film-forming material made of a metal-organic compound by spin-on coating. The present invention relates to a plastic substrate for a thin film laminated device, characterized in that the plastic substrate is made up of two or more layers of coating film which are subjected to plasma treatment after forming the coating film. A second aspect of the present invention relates to the plastic substrate for a thin film laminated device, wherein the insulating thin film is composed of two or more layers having different properties. A third aspect of the present invention relates to a thin film laminated device formed by laminating thin film two-terminal elements on the substrate. A fourth aspect of the present invention relates to the thin film laminated device according to claim 3, wherein the insulating film in the thin film two-terminal element is a hard carbon film. In the present invention, the method for forming an insulating thin film on a substrate is shown in FIG.
Shown as a), (b), (c), and (d). (a) is a cross-sectional view of the plastic substrate before spin-on coating, (b)
is a cross-sectional view after the first spin-on coating and drying, (c) is a cross-sectional view after the second spin-on coating and drying, and (d) is a cross-sectional view after the second spin-on coating and drying. FIG. 3 is a cross-sectional view showing how the coating film has changed into an insulating thin film. A detailed explanation will be given below with reference to the drawings. The plastic plate or plastic film substrate 1 has irregularities on its surface due to the filler 5 and stretching treatment, as shown in FIG. 1(a). Therefore, first, the first film forming agent was coated on the plastic substrate 11 using a spinner or a roll coater, and the coating was applied for ~10 min to reflow and evaporate the solvent.
The first coating film 1 is heated at 0°C for about 1 hour in the air.
2-1 (FIG. 1(b)). Then, a second film-forming agent is applied thereon by the same means and dried to form a second film-forming agent.
A coating film 13-1 is formed (FIG. 1(c)). Next, it is processed in an inert gas or an inert gas plasma containing a trace amount of oxygen. Through this treatment, the two layers of the coating films 12-1 and 13-1 become the first and second insulating thin films 12-2 and 13-2.
(Fig. 1(d)). The temperature at this time is room temperature ~ 25
The temperature was 0°C, preferably 50°C to 150°C. Further, the inert gas includes Ar, N2, He, etc., but is not particularly limited to these. Processing pressure is 1/10
The pressure was 2 to several torr, preferably 0.05 to 1 torr. As shown in FIG. 8, the plasma processing apparatus is of a commonly used parallel plate type, and 101 is a ground electrode;
102 is an RF electrode, 103 is a processed material, 104 is an RF power source, and 105 is a bias power source. The RF power was several to several hundred W (electrode diameter φ100 cm), preferably 10 to 200 W. The main component of the film forming agent used is a metal organic compound (metal alkoxide, metal organic complex, metal alcoholate, etc.), and specifically, Si (
OR) x (OH) y (x = 0 to 4, y is 4-x)
R-COO-Si, Al(OR)x(OH)y(x=0
~4, y=3-x), but is not particularly limited to these. Alcohols, esters, ketones, etc. can be used as the solvent for applying the film forming agent. The effect of plasma treatment is that inert gas ions and oxygen ions in the plasma physically peen (infiltrate quite deeply) into the film forming agent (after application), resulting in residual -OR, -OH according to our IR measurements. It is clear from the analysis results that (it is effective up to a film thickness of several μm), it promotes the desorption of R and H from the film. When plasma treatment is not performed, a firing temperature of 450 to 500°C is required, but with the above method, the firing temperature is between room temperature and 500°C.
The objective can be achieved at 250°C, preferably from 50 to 150°C. The film obtained by plasma treatment is 100
% It is not a completely inorganic film, and some groups such as -OH, -R, -OR, which are components of the film forming agent, remain in the film, but the remaining amount is estimated from the IR spectrum. It is 15 wt% or less. In FIG. 1, the insulating thin film is formed only on one side, but considering the above-mentioned problems (1) and (2), it is easily understood that the effect is higher if it is formed on both sides of the substrate. The film thickness is several hundred Å to several μm,
Preferably it is about 1000 Å to 3 μm. Furthermore, in order to more completely eliminate the above-mentioned problems ① and ②, it is possible to form a second coat film made of an inorganic material with high adhesion and a high passivation effect on the upper or lower layer of the insulating thin film, which significantly improves the effect. It is something that enhances. Specifically, the inorganic substances include SiO2, Si3N4, Si
ON, Al2O3, AlN, hard carbon, etc., and these can be formed by sputtering, P-CVD, ECR-CVD, etc. The substrate of the present invention having the above-mentioned features can be used in various thin film laminated devices, such as switching elements for flat panel displays, sensors for reading documents,
Although it can be used as a light source for optical printers, it is particularly suitable for use as an active matrix substrate for liquid crystal displays. The thin film laminated device of the present invention includes an MIM type element having a metal-insulator-metal layer structure, JP-A-61-275
MSI element (Metal-
Semi-Insulator), SIS element with semiconductor-insulator-semiconductor layer structure, MIMI of metal-insulator-metal-insulator-metal described in JP-A-64-7577
There are M elements, etc. In an active matrix substrate, a switching element is provided for each pixel, and a thin film two-terminal element with an insulating film interposed between a first conductor and a second conductor is preferable as the switching element in terms of cost, aperture ratio, etc. It is particularly advantageous. Furthermore, by using a hard carbon film as the insulating film, it is possible to design a device over a wide range, and to obtain a thin film two-terminal device with little variation in device characteristics, excellent threshold voltage and breakdown voltage, and high yield. .

【0005】本発明の特徴とする基板を用いたMIM素
子の作製方法について図3を参照して説明する。まず、
前述のように絶縁性薄膜層を有する本発明の薄膜積層デ
バイス用プラスチック基板1上に画素電極用透明電極材
料を蒸着、スパッタリング等の方法で堆積し、所定のパ
ターンにパターニングし、画素電極4とする。次に、蒸
着、スパッタリング等の方法で下部電極用導体薄膜を形
成し、ウェット又はドライエッチングにより所定のパタ
ーンにパターニングして下部電極となる第1導体7とし
、その上にプラズマCVD法、イオンビーム法等により
硬質炭素膜2を被覆後、ドライエッチング、ウエットエ
ッチング又はレジストを用いるリフトオフ法により所定
のパターンにパターニングして絶縁膜とし、次にその上
に蒸着、スパッタリング等の方法によりバスライン用導
体薄膜を被覆し、所定のパターンにパターニングしてバ
スラインとなる第2導体(上部電極)6を形成し、最後
に下部電極の不必要部分を除去し、画素電極4を露出す
る。この場合、MIM素子の構成はこれに限られるもの
ではなく、MIM素子の作成後、最上層に透明電極を設
けたもの、透明電極が上部又は下部電極を兼ねた構成の
もの、下部電極の側面にMIM素子を形成したもの等、
種々の変形が可能である。ここで下部電極、上部電極及
び透明電極の厚さは通常、夫々数百〜数千Å、数百〜数
千Å、数百〜数千Åの範囲である。硬質炭素膜の厚さは
、100〜8000Å、望ましくは200〜6000Å
、さらに望ましくは300〜4000Åの範囲である。 又プラスチック基板の場合、いままでその耐熱性から能
動素子を用いたアクティブマトリックス装置の作製が非
常に困難であった。しかし硬質炭素膜は室温程度の基板
温度で良質な膜の作製が可能であり、プラスチック基板
においても作製が可能であり、非常に有効な画質向上手
段である。次に本発明で使用されるMIM素子の材料に
ついて更に詳しく説明する。下部電極となる第1導体7
の材料としては、Al,Ta,Cr,W,Mo,Pt,
Ni,Ti,Cu,Au,W,ITO,ZnO:Al,
In2O3,SnO2等種々の導電体が使用される。次
にバスラインとなる第2導体9の材料としては、Al,
Cr,Ni,Mo,Pt,Ag,Ti,Cu,Au,W
,Ta,ITO,ZnO:Al,In2O3,SnO2
等種々の導電体が使用されるが、I−V特性の安定性及
び信頼性が特に優れている点からNi,Pt,Agが好
ましい。 絶縁膜として硬質炭素膜8を用いたMIM素子は電極の
種類を変えても対称性が変化せず、またlnI∝√vの
関係からプールフレンケル型の伝導をしていることが判
る。またこの事からこの種のMIM素子の場合、上部電
極と下部電極との組合せをどのようにしてもよいことが
判る。しかし硬質炭素膜と上部電極との密着力や界面状
態により素子特性(I−V特性)の劣化及び変化が生じ
る。これらを考慮すると、Ni,Pt,Agが良いこと
がわかった。本発明のMIM素子の電流−電圧特性は図
4のように示され、近似的には以下に示すような伝導式
で表わされる。
A method of manufacturing an MIM element using a substrate, which is a feature of the present invention, will be explained with reference to FIG. first,
As described above, a transparent electrode material for a pixel electrode is deposited by a method such as vapor deposition or sputtering on the plastic substrate 1 for a thin film laminated device of the present invention having an insulating thin film layer, and is patterned into a predetermined pattern to form a pixel electrode 4. do. Next, a conductor thin film for the lower electrode is formed by a method such as vapor deposition or sputtering, and patterned into a predetermined pattern by wet or dry etching to form the first conductor 7 that will become the lower electrode. After coating the hard carbon film 2 by a method such as a dry etching method, it is patterned into a predetermined pattern by dry etching, wet etching, or a lift-off method using a resist to form an insulating film, and then a bus line conductor is formed on the insulating film by a method such as vapor deposition or sputtering. A thin film is coated and patterned into a predetermined pattern to form a second conductor (upper electrode) 6 that will become a bus line, and finally an unnecessary portion of the lower electrode is removed to expose the pixel electrode 4. In this case, the configuration of the MIM element is not limited to this, and after the MIM element is created, a transparent electrode is provided on the top layer, a transparent electrode also serves as an upper or lower electrode, and a side surface of the lower electrode. such as those with MIM elements formed on the
Various modifications are possible. Here, the thickness of the lower electrode, the upper electrode, and the transparent electrode is usually in the range of several hundred to several thousand Å, several hundred to several thousand Å, and several hundred to several thousand Å, respectively. The thickness of the hard carbon film is 100 to 8000 Å, preferably 200 to 6000 Å.
, more preferably in the range of 300 to 4000 Å. Furthermore, in the case of plastic substrates, it has been extremely difficult to fabricate active matrix devices using active elements due to their heat resistance. However, a hard carbon film can be produced at a substrate temperature of about room temperature, and can also be produced on a plastic substrate, making it a very effective means for improving image quality. Next, the material of the MIM element used in the present invention will be explained in more detail. First conductor 7 serving as the lower electrode
The materials include Al, Ta, Cr, W, Mo, Pt,
Ni, Ti, Cu, Au, W, ITO, ZnO:Al,
Various conductors such as In2O3 and SnO2 are used. Next, the material of the second conductor 9, which will become the bus line, is Al,
Cr, Ni, Mo, Pt, Ag, Ti, Cu, Au, W
, Ta, ITO, ZnO:Al, In2O3, SnO2
Although various conductors can be used, Ni, Pt, and Ag are preferred because they have particularly excellent stability and reliability of IV characteristics. In the MIM element using the hard carbon film 8 as an insulating film, the symmetry does not change even if the type of electrode is changed, and it can be seen from the relationship lnI∝√v that Poole-Frenkel type conduction is performed. Further, from this fact, it can be seen that in the case of this type of MIM element, the upper electrode and the lower electrode may be combined in any manner. However, the device characteristics (IV characteristics) deteriorate and change depending on the adhesion between the hard carbon film and the upper electrode and the state of the interface. Considering these, it was found that Ni, Pt, and Ag are good. The current-voltage characteristics of the MIM element of the present invention are shown in FIG. 4, and are approximately expressed by the conduction equation shown below.

【数1】 I:電流 V:印加電圧 κ:導電係数 β:プールフ
レンケル係数 n:キャリヤ密度  μ:キャリヤモビリティ  q:
電子の電荷量 Φ:トラップ深さ  ρ:比抵抗  d:硬質炭素の膜
厚(Å)k:ボルツマン定数  T:雰囲気温度  ε
1:硬質炭素の誘電率 ε2:真空誘電率
[Equation 1] I: Current V: Applied voltage κ: Conductivity coefficient β: Poole-Frenkel coefficient n: Carrier density μ: Carrier mobility q:
Electron charge Φ: Trap depth ρ: Specific resistance d: Hard carbon film thickness (Å) k: Boltzmann constant T: Ambient temperature ε
1: Dielectric constant of hard carbon ε2: Vacuum dielectric constant

【0006】次に図3により液晶表示装置の作製法を述
べる。まず、絶縁基板1′上に共通電極4′用の透明体
、例えばITO,ZnO:Al,ZnO:Si,SnO
2,In2O3等をスパッタリング、蒸着などで数百Å
から数μm堆積させ、ストライプ状にパターニングして
共通電極4′とする。この共通電極4′を設けた前記基
板1′と先にMIM素子5をマトリックス状に設けた基
板1の各々の表面にポリイミドのような配向材8を付け
、ラビング処理を行い、シール材を付け、ギャップ材9
を入れてギャップを一定にし、液晶3を封入して液晶表
示装置とする。このようにして液晶表示装置が得られる
Next, a method for manufacturing a liquid crystal display device will be described with reference to FIG. First, a transparent material for the common electrode 4', such as ITO, ZnO:Al, ZnO:Si, SnO, is placed on the insulating substrate 1'.
2. In2O3 etc. are sputtered or evaporated to a thickness of several hundred Å.
The common electrode 4' is deposited to a thickness of several μm and patterned into stripes. An alignment material 8 such as polyimide is applied to the surface of each of the substrate 1' on which the common electrode 4' is provided and the substrate 1 on which the MIM elements 5 are provided in a matrix, a rubbing process is performed, and a sealing material is applied. , gap material 9
is inserted to keep the gap constant, and the liquid crystal 3 is sealed to form a liquid crystal display device. In this way, a liquid crystal display device is obtained.

【0007】本発明における硬質炭素膜について詳しく
説明する。硬質炭素膜を形成するためには有機化合物ガ
ス、特に炭化水素ガスが用いられる。これら原料におけ
る相状態は常温常圧において必ずしも気相である必要は
なく、加熱或は減圧等により溶融、蒸発、昇華等を経て
気化し得るものであれば、液相でも固相でも使用可能で
ある。原料ガスとしての炭化水素ガスについては、例え
ばCH4,C2H6,C3H8,C4H10等のパラフ
ィン系炭化水素、C2H4等のアセチレン系炭化水素、
オレフィン系炭化水素、ジオレフィン系炭化水素、さら
には芳香族炭化水素などすベての炭化水素を少なくとも
含むガスが使用可能である。さらに、炭化水素以外でも
、例えば、アルコール類、ケトン類、エーテル類、エス
テル類、CO,CO2等、少なくとも炭素元素を含む化
合物であれば使用可能である。
The hard carbon film in the present invention will be explained in detail. An organic compound gas, especially a hydrocarbon gas, is used to form a hard carbon film. The phase state of these raw materials does not necessarily have to be a gas phase at normal temperature and pressure; they can be used in either a liquid or solid phase as long as they can be vaporized through melting, evaporation, sublimation, etc. by heating or reduced pressure. be. Regarding the hydrocarbon gas as the raw material gas, for example, paraffinic hydrocarbons such as CH4, C2H6, C3H8, C4H10, acetylenic hydrocarbons such as C2H4,
Gases containing at least all hydrocarbons such as olefinic hydrocarbons, diolefinic hydrocarbons, and even aromatic hydrocarbons can be used. Furthermore, other than hydrocarbons, compounds containing at least the carbon element can be used, such as alcohols, ketones, ethers, esters, CO, and CO2.

【0008】本発明における原料ガスからの硬質炭素膜
の形成方法としては、成膜活性種が、直流、低周波、高
周波、或いはマイクロ波等を用いたプラズマ法により生
成されるプラズマ状態を経て形成される方法が好ましい
が、より大面積化、均一性向上、低温成膜の目的で、低
圧下で堆積を行なうため、磁界効果を利用する方法がさ
らに好ましい。また高温における熱分解によっても活性
種を形成できる。その他にも、イオン化蒸着法、或いは
イオンビーム蒸着法等により生成されるイオン状態を経
て形成されてもよいし、真空蒸着法、或いはスパッタリ
ング法等により生成される中性粒子から形成されてもよ
いし、さらには、これらの組み合せにより形成されても
よい。こうして作製される硬質炭素膜の堆積条件の一例
はプラズマCVD法の場合、次の通りである。 RF出力:0.1〜50W/cm2     圧    力:1/103〜10Torr堆積
温度:室温〜950℃ このプラズマ状態により原料ガスがラジカルとイオンと
に分解され反応することによって、基板上に炭素原子C
と水素原子Hとからなるアモルファス(非晶質)及び微
結晶質(結晶の大きさは数10Å〜数μm)の少くとも
一方を含む硬質炭素膜が堆積する。また、硬質炭素膜の
諸特性を表1に示す。
[0008] In the method of forming a hard carbon film from a raw material gas in the present invention, active species for film formation are formed through a plasma state generated by a plasma method using direct current, low frequency, high frequency, microwave, etc. However, since the deposition is performed under low pressure for the purpose of increasing the area, improving uniformity, and forming a film at a low temperature, a method using a magnetic field effect is more preferable. Active species can also be formed by thermal decomposition at high temperatures. In addition, it may be formed through an ionic state generated by ionization vapor deposition, ion beam vapor deposition, etc., or may be formed from neutral particles generated by vacuum vapor deposition, sputtering, etc. However, it may also be formed by a combination of these. An example of the deposition conditions for the hard carbon film produced in this manner is as follows in the case of the plasma CVD method. RF output: 0.1 to 50 W/cm2 Pressure: 1/103 to 10 Torr Deposition temperature: Room temperature to 950°C Due to this plasma state, the raw material gas is decomposed into radicals and ions and reacts, thereby forming carbon atoms C on the substrate.
A hard carbon film containing at least one of amorphous (amorphous) and microcrystalline (crystal size is several tens of angstroms to several μm) is deposited. Further, Table 1 shows various properties of the hard carbon film.

【0009】[0009]

【表1】 注)測定法; 比抵抗(ρ)  :コプレナー型セルによるI−V特性
より求める。 光学的バンドギャップ(Egopt):分光特性から吸
収係数(α)を求め、数4式の関係より決定。
[Table 1] Note) Measurement method; Specific resistance (ρ): Determined from IV characteristics using a coplanar cell. Optical bandgap (Egopt): Obtain the absorption coefficient (α) from the spectral characteristics and determine from the relationship shown in Equation 4.

【数2】 膜中水素量〔C(H)〕:赤外吸収スペクトルから29
00/cm近のピークを積分し、吸収断面積Aを掛けて
求める。すなわち、 〔C(H)〕=A・∫α(v)/v・dvSP3/SP
2比:赤外吸収スペクトルを、SP3,SP2にそれぞ
れ帰属されるガウス関数に分解し、その面積比より求め
る。 ヒ゛ッカース硬度(H):マイクロビッカース計による
。 屈折率(n)   :エリプソメーターによる。 欠陥密度    :ESRによる。
[Equation 2] Amount of hydrogen in the film [C(H)]: 29 from the infrared absorption spectrum
It is determined by integrating the peak near 00/cm and multiplying it by the absorption cross section A. That is, [C(H)]=A・∫α(v)/v・dvSP3/SP
2 ratio: The infrared absorption spectrum is decomposed into Gaussian functions assigned to SP3 and SP2, respectively, and determined from the area ratio. Vickers hardness (H): Based on a micro Vickers meter. Refractive index (n): By ellipsometer. Defect density: Based on ESR.

【0010】こうして形成される硬質炭素膜はラマン分
光法及びIR吸収法による分析の結果、夫々、図6及び
図7に示すように炭素原子がSP3の混成軌道とSP2
の混成軌道とを形成した原子間結合が混在していること
が明らかになっている。SP3結合とSP2結合の比率
は、IRスペクトルをピーク分離することで概ね推定で
きる。IRスペクトルには、2800〜3150/cm
に多くのモードのスペクトルが重なって測定されるが、
夫々の波数に対応するピークの帰属は明らかになってお
り、図5の如くガウス分布によってピーク分離を行ない
、夫々のピーク面積を算出し、その比率を求めればSP
3/SP2を知ることができる。また、X線及び電子回
折分析によればアモルファス状態(a−C:H)、及び
/又は約50Å〜数μm程度の微結晶粒を含むアモルフ
ァス状態にあることが判っている。一般に量産に適して
いるプラズマCVD法の場合には、RF出力が小さいほ
ど膜の比抵抗値および硬度が増加し、低圧力なほど活性
種の寿命が増加するために基板温度の低温化、大面積で
の均一化が図れ、かつ比抵抗、硬度が増加する傾向にあ
る。 更に、低圧力ではプラズマ密度が減少するため、磁場閉
じ込め効果を利用する方法は比抵抗の増加には特に効果
的である。さらに、この方法は常温〜150℃程度の比
較的低い温度条件でも同様に良質の硬質炭素膜を形成で
きるという特徴を有しているため、MIM素子製造プロ
セスの低温化には最適である。従って、使用する基板材
料の選択自由度が広がり、基板温度をコントロールし易
いために大面積に均一な膜が得られるという特徴をもっ
ている。また硬質炭素膜の構造、物性は表1に示したよ
うに、広範囲に制御可能であるため、デバイス特性を自
由に設計できる利点もある。さらには膜の比誘電率も2
〜6と従来のMIM素子に使用されていたTa2O5,
Al2O3,SiNxと比較して小さいため、同じ電気
容量を持った素子を作る場合、素子サイズが大きくてす
むので、それほど微細加工を必要とせず、歩留りが向上
する(駆動条件の関係からLCDとMIM素子の容量比
はC(LCD)/C(MIM)=10:1程度必要であ
る)。 また、素子急峻性はβ∝1/√ε・√dであるため、比
誘電率εが小さければ急峻性は大きくなり、オン電流I
onとオフ電流Ioffとの比が大きくとれるようにな
る。 このためより低デューティ比でのLCD駆動が可能とな
り、高密度のLCDが実現できる。さらに膜の硬度が高
いため、液晶材料封入時のラビング工程による損傷が少
なくこの点からも歩留りが向上する。以上の点を顧みる
に、硬質炭素膜を使用することで、低コスト、階調性(
カラー化)、高密度LCDが実現できる。さらにこの硬
質炭素膜が炭素原子及び水素原子の他に、周期律表第I
II族元素、同第IV族元素、同第V族元素、アルカリ
金属元素、アルカリ土類金属元素、窒素原子、酸素元素
、カルコゲン系元素又はハロゲン原子を構成元素として
含んでもよい。構成元素の1つとして周期律表第III
族元素、同じく第V族元素、アルカリ金属元素、アルカ
リ土類金属元素、窒素原子又は酸素原子を導入したもの
は硬質炭素膜の膜厚をノンドープのものに比べて約2〜
3倍に厚くすることができ、またこれにより素子作製時
のピンホールの発生を防止すると共に、素子の機械的強
度を飛躍的に向上することができる。更に窒素原子又は
酸素原子の場合は以下に述べるような周期律表第IV族
元素等の場合と同様な効果がある。同様に周期律表第I
V族元素、カルコゲン系元素又はハロゲン元素を導入し
たものは硬質炭素膜の安定性が飛躍的に向上すると共に
、膜の硬度も改善されることも相まって高信頼性の素子
が作製できる。これらの効果が得られるのは第IV族元
素及びカルコゲン系元素の場合は硬質炭素膜中に存在す
る活性な2重結合を減少させるからであり、またハロゲ
ン元素の場合は、1)水素に対する引抜き反応により原
料ガスの分解を促進して膜中のダングリングボンドを減
少させ、2)成膜過程でハロゲン元素XがC−H結合中
の水素を引抜いてこれと置換し、C−X結合として膜中
に入り、結合エネルギーが増大する(C−H間及びC−
X間の結合エネルギーはC−X間の方が大きい)からで
ある。これらの元素を膜の構成元素とするためには、原
料ガスとしては炭化水素ガス及び水素の他に、ドーパン
トとして膜中に周期律表第III族元素、同第IV族元
素、同第V族元素、アルカリ金属元素、アルカリ土類金
属元素、窒素原子、酸素原子、カルコゲン系元素又はハ
ロゲン元素を含有させるために、これらの元素又は原子
を含む化合物(又は分子)(以下、これらを「他の化合
物」ということもある)のガスが用いられる。ここで周
期律表第III族元素を含む化合物としては、例えばB
(OC2H5)3,B2H6,BCl3,BBr3,B
F3,Al(O−i−C3H7)3,(CH3)3Al
,(C2H5)3Al,(i−C4H9)3Al,Al
Cl3,Ga(O−i−C3H7)3,(CH3)3G
a,(C2H5)3Ga,GaCl3,GaBr3,(
O−i−C3H7)3In,(C2H5)3In等があ
る。周期律表第IV族元素を含む化合物としては、例え
ばSi3H8,(C2H5)3SiH,SiF4,Si
H2Cl2,SiCl4,Si(OCH3)4,Si(
OC2H5)4,Si(OC3H7)4,GeCl4,
GeH4,Ge(OC2H5)4,Ge(C2H5)4
,(CH3)4Sn,(C2H5)4Sn,SnCl4
等がある。周期律表第V族元素を含む化合物としては、
例えばPH3,PF3,PF5,PCl2F3,PCl
3,PCl2F,PBr3,PO(OCH3)3,P(
C2H5)3,POCl3,AsH3,AsCl3,A
sBr3,AsF3,AsF5,AsCl3,SbH3
,SbF3,SbCl3,Sb(OC2H5)3等があ
る。アルカリ金属原子を含む化合物としては、例えばL
iO−i−C3H7,NaO−i−C3H7,KO−i
−C3H7等がある。アルカリ土類金属原子を含む化合
物としては、例えばCa(OC2H5)3,Mg(OC
2H5)2,(C2H5)2Mg等がある。窒素原子を
含む化合物としては、例えば窒素ガス、アンモニア等の
無機化合物、アミノ基、シアノ基等の官能基を有する有
機化合物及び窒素を含む複素環等がある。酸素原子を含
む化合物としては、例えば酸素ガス、オゾン、水(水蒸
気)、過酸化水素、一酸化炭素、二酸化炭素、亜酸化炭
素、一酸化窒素、二酸化窒素、三酸化二窒素、五酸化二
窒素、三酸化窒素等の無機化合物、水酸基、アルデヒド
基、アシル基、ケトン基、ニトロ基、ニトロソ基、スル
ホン基、エーテル結合、エステル結合、ペプチド結合、
酸素を含む複素環等の官能基或いは結合を有する有機化
合物、更には金属アルコキシド等が挙げられる。カルコ
ゲン系元素を含む化合物としては、例えばH2S,(C
H3)(CH2)4S(CH2)4CH3,CH2=C
HCH2SCH2CH=CH2,C2H5SC2H5,
C2H5SCH3,チオフェン、H2Se,(C2H5
)2Se,H2Te等がある。またハロゲン元素を含む
化合物としては、例えば弗素、塩素、臭素、沃素、弗化
水素、弗化炭素、弗化塩素、弗化臭素、弗化沃素、塩化
水素、塩化臭素、塩化沃素、臭化水素、臭化沃素、沃化
水素等の無機化合物、ハロゲン化アルキル、ハロゲン化
アリール、ハロゲン化スチレン、ハロゲン化ポリメチレ
ン、ハロホルム等の有機化合物が用いられる。液晶駆動
MIM素子として好適な硬質炭素膜は、駆動条件から膜
厚が100〜8000Å、比抵抗が106〜1013Ω
・cmの範囲であることが有利である。なお、駆動電圧
と耐圧(絶縁破壊電圧)とのマージンを考慮すると膜厚
は200Å以上であることが望ましく、また、画素部と
薄膜二端子素子部の段差(セルギャップ差)に起因する
色むらが実用上問題とならないようにするには膜厚は6
000Å以下であることが望ましいことから、硬質炭素
膜の膜厚は200〜6000Å、比抵抗は5×106〜
1013Ω・cmであることがより好ましい。硬質炭素
膜のピンホールによる素子の欠陥数は膜厚の減少にとも
なって増加し、300Å以下では特に顕著になること(
欠陥率は1%を越える)、及び、膜厚の面内分布の均一
性(ひいては素子特性の均一性)が確保できなくなる(
膜厚制御の精度は30Å程度が限度で、膜厚のバラツキ
が10%を越える)ことから、膜厚は300Å以上であ
ることがより望ましい。また、ストレスによる硬質炭素
膜の剥離が起こりにくくするため、及び、より低デュー
ティ比(望ましくは1/1000以下)で駆動するため
に、膜厚は4000Å以下であることがより望ましい。 これらを総合して考慮すると、硬質炭素膜の膜厚は30
0〜4000Å、比抵抗率は107〜1011Ω・cm
であることが一層好ましい。
[0010] As a result of analysis by Raman spectroscopy and IR absorption method, the hard carbon film thus formed shows that the carbon atoms have SP3 hybrid orbitals and SP2 hybrid orbitals, as shown in FIGS. 6 and 7, respectively.
It has become clear that there are interatomic bonds that form a hybrid orbital. The ratio of SP3 bonds to SP2 bonds can be approximately estimated by peak-separating the IR spectrum. 2800-3150/cm for IR spectrum
Although the spectra of many modes overlap and are measured,
The attribution of peaks corresponding to each wave number is clear, and if we perform peak separation using a Gaussian distribution as shown in Figure 5, calculate the area of each peak, and find the ratio, we can obtain SP.
3/SP2 can be known. Moreover, according to X-ray and electron diffraction analysis, it has been found that it is in an amorphous state (a-C:H) and/or an amorphous state containing microcrystalline grains of about 50 Å to several μm. In the case of the plasma CVD method, which is generally suitable for mass production, the lower the RF output, the higher the specific resistance and hardness of the film, and the lower the pressure, the longer the life of active species, so lowering the substrate temperature and increasing the The area can be made uniform, and the specific resistance and hardness tend to increase. Furthermore, since the plasma density decreases at low pressures, methods using magnetic field confinement effects are particularly effective in increasing resistivity. Furthermore, this method has the characteristic that it can form a hard carbon film of good quality even under relatively low temperature conditions of about room temperature to 150° C., so it is optimal for lowering the temperature of the MIM element manufacturing process. Therefore, the degree of freedom in selecting the substrate material to be used is increased, and the substrate temperature can be easily controlled, so that a uniform film can be obtained over a large area. Furthermore, as shown in Table 1, the structure and physical properties of the hard carbon film can be controlled over a wide range, so there is an advantage that device characteristics can be designed freely. Furthermore, the dielectric constant of the film is also 2.
~6 and Ta2O5 used in conventional MIM elements,
Since it is smaller than Al2O3 and SiNx, when making an element with the same capacitance, the element size only needs to be larger, so there is no need for much fine processing and the yield is improved (due to the driving conditions, LCD and MIM The capacitance ratio of the element needs to be about C(LCD)/C(MIM)=10:1). Also, since the element steepness is β∝1/√ε・√d, the smaller the dielectric constant ε, the greater the steepness, and the on-current I
The ratio between the on current and the off current Ioff can be increased. Therefore, it becomes possible to drive the LCD at a lower duty ratio, and a high-density LCD can be realized. Furthermore, since the film has high hardness, there is less damage caused by the rubbing process during encapsulation of the liquid crystal material, which also improves the yield. Considering the above points, by using a hard carbon film, it is possible to achieve low cost and gradation (
Colorization) and high-density LCDs can be realized. Furthermore, this hard carbon film contains carbon atoms, hydrogen atoms, and
It may contain a group II element, a group IV element, a group V element, an alkali metal element, an alkaline earth metal element, a nitrogen atom, an oxygen element, a chalcogen element, or a halogen atom as a constituent element. Periodic table III as one of the constituent elements
Group elements, also Group V elements, alkali metal elements, alkaline earth metal elements, nitrogen atoms, or oxygen atoms introduced, have a hard carbon film thickness of about 2 to 30% compared to non-doped ones.
It is possible to increase the thickness by three times, thereby preventing the occurrence of pinholes during device fabrication, and dramatically improving the mechanical strength of the device. Further, in the case of a nitrogen atom or an oxygen atom, the same effect as in the case of a group IV element of the periodic table as described below can be obtained. Similarly, periodic table I
When group V elements, chalcogen elements, or halogen elements are introduced, the stability of the hard carbon film is dramatically improved, and the hardness of the film is also improved, making it possible to produce highly reliable elements. These effects can be obtained because Group IV elements and chalcogen elements reduce the active double bonds present in the hard carbon film, and in the case of halogen elements, 1) abstraction for hydrogen The reaction promotes the decomposition of the raw material gas and reduces dangling bonds in the film, and 2) during the film formation process, the halogen element X pulls out hydrogen in the C-H bond and replaces it, forming a C-X bond. enters the film and increases the bond energy (C-H and C-
This is because the bond energy between X is larger between C and X). In order to use these elements as constituent elements of the film, in addition to hydrocarbon gas and hydrogen as raw material gases, elements from group III, group IV, and group V of the periodic table must be added as dopants to the film. In order to contain elements, alkali metal elements, alkaline earth metal elements, nitrogen atoms, oxygen atoms, chalcogen elements, or halogen elements, compounds (or molecules) containing these elements or atoms (hereinafter referred to as "other gases (sometimes referred to as "compounds") are used. Here, as a compound containing a group III element of the periodic table, for example, B
(OC2H5)3,B2H6,BCl3,BBr3,B
F3, Al(O-i-C3H7)3, (CH3)3Al
, (C2H5)3Al, (i-C4H9)3Al, Al
Cl3, Ga(O-i-C3H7)3, (CH3)3G
a, (C2H5)3Ga, GaCl3, GaBr3, (
Examples include O-i-C3H7)3In and (C2H5)3In. Examples of compounds containing Group IV elements of the periodic table include Si3H8, (C2H5)3SiH, SiF4, Si
H2Cl2, SiCl4, Si(OCH3)4, Si(
OC2H5)4, Si(OC3H7)4, GeCl4,
GeH4, Ge(OC2H5)4, Ge(C2H5)4
, (CH3)4Sn, (C2H5)4Sn, SnCl4
etc. Compounds containing Group V elements of the periodic table include:
For example, PH3, PF3, PF5, PCl2F3, PCl
3, PCl2F, PBr3, PO(OCH3)3, P(
C2H5)3, POCl3, AsH3, AsCl3, A
sBr3, AsF3, AsF5, AsCl3, SbH3
, SbF3, SbCl3, Sb(OC2H5)3, etc. As a compound containing an alkali metal atom, for example, L
iO-i-C3H7, NaO-i-C3H7, KO-i
-C3H7 etc. Examples of compounds containing alkaline earth metal atoms include Ca(OC2H5)3, Mg(OC
2H5)2, (C2H5)2Mg, etc. Examples of compounds containing nitrogen atoms include nitrogen gas, inorganic compounds such as ammonia, organic compounds having functional groups such as amino groups and cyano groups, and nitrogen-containing heterocycles. Examples of compounds containing oxygen atoms include oxygen gas, ozone, water (steam), hydrogen peroxide, carbon monoxide, carbon dioxide, suboxide, nitrogen monoxide, nitrogen dioxide, dinitrogen trioxide, and dinitrogen pentoxide. , inorganic compounds such as nitrogen trioxide, hydroxyl groups, aldehyde groups, acyl groups, ketone groups, nitro groups, nitroso groups, sulfone groups, ether bonds, ester bonds, peptide bonds,
Examples include organic compounds having a functional group or bond such as a heterocycle containing oxygen, and metal alkoxides. Examples of compounds containing chalcogen elements include H2S, (C
H3)(CH2)4S(CH2)4CH3,CH2=C
HCH2SCH2CH=CH2, C2H5SC2H5,
C2H5SCH3, thiophene, H2Se, (C2H5
)2Se, H2Te, etc. Examples of compounds containing halogen elements include fluorine, chlorine, bromine, iodine, hydrogen fluoride, carbon fluoride, chlorine fluoride, bromine fluoride, iodine fluoride, hydrogen chloride, bromine chloride, iodine chloride, and hydrogen bromide. , inorganic compounds such as iodine bromide and hydrogen iodide, and organic compounds such as alkyl halides, aryl halides, halogenated styrene, halogenated polymethylene, and haloform. A hard carbon film suitable as a liquid crystal driving MIM element has a film thickness of 100 to 8000 Å and a specific resistance of 106 to 1013 Ω depending on the driving conditions.
Advantageously in the cm range. In addition, considering the margin between drive voltage and withstand voltage (dielectric breakdown voltage), it is desirable that the film thickness be 200 Å or more, and color unevenness due to the step difference (cell gap difference) between the pixel part and the thin film two-terminal element part should be avoided. In order to prevent this from becoming a practical problem, the film thickness should be 6.
Since it is desirable that the thickness is 000 Å or less, the thickness of the hard carbon film is 200 to 6000 Å, and the specific resistance is 5 × 10 6 to
More preferably, it is 1013 Ω·cm. The number of device defects due to pinholes in hard carbon films increases as the film thickness decreases, and becomes especially noticeable below 300 Å (
The defect rate exceeds 1%), and the uniformity of the in-plane distribution of film thickness (and thus the uniformity of device characteristics) cannot be ensured (
The accuracy of film thickness control is limited to about 30 Å, and the variation in film thickness exceeds 10%), so it is more desirable that the film thickness is 300 Å or more. Further, in order to prevent the hard carbon film from peeling off due to stress and to drive at a lower duty ratio (preferably 1/1000 or less), the film thickness is more preferably 4000 Å or less. Taking all of these into account, the thickness of the hard carbon film is 30
0~4000Å, specific resistivity 107~1011Ω・cm
It is more preferable that

【0011】[0011]

【実施例】実施例1 ポリアリレートフィルム上に、おもにSi−(OR)4
からなる有機ケイ素化合物(Rはメチル、エチル、プロ
ピル、ブチル等の有機基)を2000Åの厚さにスピン
コートし、80℃で乾燥後、さらにもう一度スピンコー
トと乾燥を繰り返した後、以下の条件でプラズマ処理を
行った。 プラズマ発生手段:RF容量結合型、平行平板内部電極
式 基板位置        :RF電極上圧力     
       :0.1Torrガス        
    :Ar 電力            :0.5w/cm2  
    時間            :60min処
理温度        :150℃ プラズマ処理前後のFTIRスペクトルを比較すると、
プラズマ処理によって950/cm付近のSi−OHに
基づく吸収が減少し、1050/cm付近のSi−O−
Siに基づく吸収が明確になっている。すなわち、プラ
ズマ処理により150℃という低温で、プラスチック基
板上にSi−O−Siのネットワークを有する絶縁性薄
膜の形成が可能であった。次にこの基板上にITO薄膜
をスパッタリング法により約1000Å厚に堆積後、パ
ターン化して画素電極を形成した。次に、薄膜2端子素
子を次のようにして設けた。まず、Alを蒸着法により
約1000Å厚に堆積後、パターン化して下部電極を形
成し、その上に絶縁層として、硬質炭素膜をプラズマC
VD法により約1000Å厚に堆積した後、ドライエッ
チングによりパターン化した。さらに、この上にNiを
EB蒸着法により約1000Å厚に堆積後パターン化し
て上部電極を形成した。 実施例2 ポリアリレートフィルム上に、Si−(CH4)4を含
む有機ケイ素化合物を4000Åの厚さにスピンコート
とし、80℃で乾燥後、さらに、主にSi−(OR)4
からなる有機ケイ素化合物を2000Åの厚さにスピン
コートし、80℃で乾燥させた後、実施例1と同様な条
件でプラズマ処理を行った。第1層の絶縁性薄膜は膜中
にSi−CH3結合を含んでいるため、膜が柔軟性をも
ち、膜中のストレスが小さい。そのため、一度に厚膜を
形成できるが、基板の剛性を高めることができない。一
方、第2層の絶縁層は膜厚は薄いが、剛性が高い。これ
ら第1層及び第2層の絶縁性薄膜を組み合わせることで
、膜厚の厚い、剛性の高い絶縁性薄膜を形成することが
可能となった。次に、実施例1と同様な方法で薄膜2端
子素子を形成した。以上に述べた実施例1及び2による
薄膜2端子素子は、膜はがれ、基板の変形、基板のカー
ルは見られなかった。また、200時間の連続駆動でも
素子の劣化は見られなかった。
[Example] Example 1 Mainly Si-(OR)4 on polyarylate film
(R is an organic group such as methyl, ethyl, propyl, butyl) was spin-coated to a thickness of 2000 Å, dried at 80°C, and then spin-coated and dried once again, under the following conditions. plasma treatment was performed. Plasma generation means: RF capacitive coupling type, parallel plate internal electrode type Substrate position: Pressure above RF electrode
:0.1Torr gas
:Ar Power: 0.5w/cm2
Time: 60min Treatment temperature: 150℃ Comparing the FTIR spectra before and after plasma treatment,
Plasma treatment reduces absorption based on Si-OH around 950/cm, and Si-O- around 1050/cm
Absorption based on Si is clear. That is, it was possible to form an insulating thin film having a Si-O-Si network on a plastic substrate at a low temperature of 150° C. by plasma treatment. Next, an ITO thin film was deposited on this substrate to a thickness of about 1000 Å by sputtering, and then patterned to form a pixel electrode. Next, a thin film two-terminal element was provided as follows. First, Al was deposited to a thickness of about 1000 Å by vapor deposition, and then patterned to form a lower electrode, and a hard carbon film was placed on top of it as an insulating layer using plasma carbon.
After being deposited to a thickness of about 1000 Å by the VD method, it was patterned by dry etching. Furthermore, Ni was deposited on this layer to a thickness of about 1000 Å by EB evaporation, and then patterned to form an upper electrode. Example 2 An organosilicon compound containing Si-(CH4)4 was spin-coated onto a polyarylate film to a thickness of 4000 Å, and after drying at 80°C, an organic silicon compound containing mainly Si-(OR)4 was spin-coated onto a polyarylate film.
After spin-coating an organosilicon compound consisting of the following to a thickness of 2000 Å and drying at 80° C., plasma treatment was performed under the same conditions as in Example 1. Since the first layer of insulating thin film contains Si--CH3 bonds, the film has flexibility and stress in the film is small. Therefore, although a thick film can be formed at one time, the rigidity of the substrate cannot be increased. On the other hand, the second insulating layer is thin but has high rigidity. By combining these first and second layer insulating thin films, it has become possible to form a thick and highly rigid insulating thin film. Next, a thin film two-terminal element was formed in the same manner as in Example 1. In the thin film two-terminal devices according to Examples 1 and 2 described above, no film peeling, no deformation of the substrate, and no curling of the substrate were observed. Moreover, no deterioration of the element was observed even after continuous driving for 200 hours.

【0012】0012

【効果】本発明は、以上説明したように構成されている
ため、基板の変形、カール等がなく、かつ低コスト、軽
量化を達成できる。また、薄膜積層デバイスを、絶縁層
に硬質炭素膜を用いたMIM素子にした場合は次のよう
な特徴を有する。 1)  プラズマCVD法などの気相合成法で作製され
るため、製膜条件によって物性が広範に制御でき、従っ
てデバイス設計上の自由度が大きい。 2)  硬質でしかも厚膜にできるため、機械的損傷を
受けにくく、また厚膜化によりピンホールが減少する。 3)  室温付近の低温においても良質な膜を形成でき
るので、基板材料に制約がない。 4)  膜厚、膜質の均一性に優れているため、薄膜デ
バイス用として適している。 5)  誘電率が低いので、高度の微細加工技術を必要
としないため、素子の大面積化に有利である。従って、
本発明の薄膜積層デバイス用プラスチック基板を用いた
MIM素子は液晶表示用スイッチング素子として好適で
ある。
[Effects] Since the present invention is configured as described above, there is no deformation or curling of the substrate, and it is possible to achieve low cost and light weight. Further, when the thin film stacked device is made into an MIM element using a hard carbon film as an insulating layer, it has the following characteristics. 1) Since it is produced by a vapor phase synthesis method such as plasma CVD, the physical properties can be controlled over a wide range by changing the film forming conditions, and therefore there is a large degree of freedom in device design. 2) Since it is hard and can be made into a thick film, it is less susceptible to mechanical damage, and pinholes are reduced by making the film thicker. 3) Since high-quality films can be formed even at low temperatures near room temperature, there are no restrictions on the substrate material. 4) Excellent uniformity in film thickness and film quality, making it suitable for thin film devices. 5) Since the dielectric constant is low, advanced microfabrication technology is not required, which is advantageous for increasing the area of the device. Therefore,
The MIM element using the plastic substrate for thin film laminated devices of the present invention is suitable as a switching element for liquid crystal display.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明において、基板上に絶縁性薄膜を形成す
る方法を工程順に(a)、(b)、(c)、(d)で示
す。(a)はスピン・オン塗布をする前のプラスチック
基板断面図、(b)は第1回目のスピン・オン塗布、乾
燥を行った後の断面図、(c)は第2回目のスピン・オ
ン塗布、乾燥を行った後の断面図、(d)はプラズマ処
理により塗膜が絶縁性薄膜に変化している様子を示す断
面図である。
FIG. 1 shows a method of forming an insulating thin film on a substrate in the order of steps in the present invention (a), (b), (c), and (d). (a) is a cross-sectional view of the plastic substrate before spin-on coating, (b) is a cross-sectional view after the first spin-on coating and drying, and (c) is a cross-sectional view of the plastic substrate after the second spin-on coating. A cross-sectional view after coating and drying, and (d) a cross-sectional view showing how the coating film is transformed into an insulating thin film by plasma treatment.

【図2】第3の本発明に対応するMIM素子の1例を示
す断面図である。
FIG. 2 is a cross-sectional view showing an example of an MIM element according to the third aspect of the present invention.

【図3】本発明の薄膜積層デバイス用ブラスチック基板
を用いたMIM素子をスイッチング素子として用いた液
晶表示装置の概略図である。
FIG. 3 is a schematic diagram of a liquid crystal display device using an MIM element using the plastic substrate for a thin film laminated device of the present invention as a switching element.

【図4】a,bはMIM素子のI−V特性曲線、lnI
−√v特性曲線をそれぞれ示す。
[Figure 4] a, b are the IV characteristic curves of the MIM device, lnI
−√v characteristic curves are shown respectively.

【図5】本発明のMIM素子の絶縁層に使用した硬質炭
素膜のIRスペクトルのガウス分布を示す。
FIG. 5 shows the Gaussian distribution of the IR spectrum of the hard carbon film used as the insulating layer of the MIM device of the present invention.

【図6】本発明のMIM素子の絶縁層に使用した硬質炭
素膜をラマン分光法で分光した分析結果を示すスペクト
ル図である。
FIG. 6 is a spectrum diagram showing the results of Raman spectroscopy analysis of the hard carbon film used as the insulating layer of the MIM element of the present invention.

【図7】本発明のMIM素子の絶縁層に使用した硬質炭
素膜をIR吸収法で分析した分析結果を示すスペクトル
図である。
FIG. 7 is a spectrum diagram showing the results of an IR absorption analysis of the hard carbon film used for the insulating layer of the MIM element of the present invention.

【図8】本発明のプラズマ処理装置の1例を示す概略図
である。
FIG. 8 is a schematic diagram showing an example of a plasma processing apparatus of the present invention.

【符号の説明】 1      プラスチツク基板 1´    プラスチツク基板 2      硬質炭素膜 3      液晶 4      画素電極 4´    共通電極 5      能動素子(MIM素子)6      
第2導体(バスライン)(上部電極)7      第
1導体(下部電極) 8      配向膜 9      ギャップ材 11      プラスチック基板 12−1  第1回目のスピン・オン塗布により形成さ
れた第1層目の塗膜 12−2  第1層目の塗膜をプラズマ処理して得られ
た第1層目の絶縁性薄膜 13−1  第2回目のスピン・オン塗布により形成さ
れた第2層目の塗膜 13−2  第2層目の塗膜をプラズマ処理して得られ
た第2層目の絶縁性薄膜 14      フィラー 101      アース電極 102      RF電極 103      被処理材(被処理基板)104  
    RF電源 105      バイアス電源
[Explanation of symbols] 1 Plastic substrate 1' Plastic substrate 2 Hard carbon film 3 Liquid crystal 4 Pixel electrode 4' Common electrode 5 Active element (MIM element) 6
Second conductor (bus line) (upper electrode) 7 First conductor (lower electrode) 8 Alignment film 9 Gap material 11 Plastic substrate 12-1 First layer coating formed by first spin-on coating 12-2 First layer insulating thin film obtained by plasma treatment of the first layer coating 13-1 Second layer coating 13- formed by second spin-on coating 2 Second layer insulating thin film 14 obtained by plasma processing the second layer coating film Filler 101 Earth electrode 102 RF electrode 103 Processed material (processed substrate) 104
RF power supply 105 Bias power supply

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  少なくとも片面に絶縁性薄膜を形成し
た薄膜積層デバイス用プラスチック基板において、前記
絶縁性薄膜が金属有機化合物よりなる被膜形成材料をス
ピン・オン塗布法により2層以上の塗膜を形成後、プラ
ズマ処理を受けた2層以上の塗膜からなるものであるこ
とを特徴とする薄膜積層デバイス用プラスチック基板。
1. A plastic substrate for a thin film laminated device having an insulating thin film formed on at least one side, wherein the insulating thin film is formed by forming two or more layers of a film-forming material made of a metal-organic compound by a spin-on coating method. 1. A plastic substrate for a thin film laminated device, characterized in that it is made of two or more coating films that have been subjected to plasma treatment.
【請求項2】  前記絶縁性薄膜が異なる性質をもつ2
層以上の層からなるものである請求項1記載の薄膜積層
デバイス用プラスチック基板。
2. The insulating thin film has different properties.
The plastic substrate for a thin film laminated device according to claim 1, which is composed of more than one layer.
【請求項3】  請求項1または2記載の基板上に薄膜
二端子素子を積層してなる薄膜積層デバイス。
3. A thin film laminated device comprising a thin film two-terminal element laminated on the substrate according to claim 1 or 2.
【請求項4】  前記薄膜二端子素子中の絶縁膜が硬質
炭素膜である請求項3記載の薄膜積層デバイス。
4. The thin film laminated device according to claim 3, wherein the insulating film in the thin film two-terminal element is a hard carbon film.
JP3080757A 1991-03-19 1991-03-19 Plastic substrate for thin film laminated device and thin film laminated device using the same Pending JPH04290481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3080757A JPH04290481A (en) 1991-03-19 1991-03-19 Plastic substrate for thin film laminated device and thin film laminated device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3080757A JPH04290481A (en) 1991-03-19 1991-03-19 Plastic substrate for thin film laminated device and thin film laminated device using the same

Publications (1)

Publication Number Publication Date
JPH04290481A true JPH04290481A (en) 1992-10-15

Family

ID=13727286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3080757A Pending JPH04290481A (en) 1991-03-19 1991-03-19 Plastic substrate for thin film laminated device and thin film laminated device using the same

Country Status (1)

Country Link
JP (1) JPH04290481A (en)

Similar Documents

Publication Publication Date Title
JP3090979B2 (en) Thin film laminated device with substrate and method of manufacturing the same
JPH05313210A (en) Thin-film laminated device
JP3074209B2 (en) Thin film laminated device with substrate
JPH04290481A (en) Plastic substrate for thin film laminated device and thin film laminated device using the same
JPH04278918A (en) Plastic substrate for thin film laminating device and device for thin film lamination using this device
JPH04298722A (en) Thin film laminated device with substrate and production thereof
JPH04223431A (en) Plastic film substrate for thin film laminated device and the device using the substrate
JP2986933B2 (en) Thin film stacking device
JPH04331917A (en) Liquid crystal display device
JPH04113324A (en) Liquid crystal display device
JPH04299318A (en) Plastic substrate of thin-film laminated device and thin-film laminated device formed by using the substrate
JPH04348090A (en) Thin film multilayered device fitted with base
JPH04290480A (en) Thin film laminated device substrate and thin film laminated device using the same
JPH04283724A (en) Liquid crystal display device
JP3009520B2 (en) Plastic substrate for thin film laminated device and thin film laminated device using the same
JPH04299312A (en) Liquid crystal display device
JPH0486810A (en) Liquid crystal display device
JPH04242717A (en) Plastic substrate for thin film lamination device and device for thin film lamination using same
JPH0486808A (en) Liquid crystal display device
JPH03238424A (en) Liquid crystal display device
JP2989285B2 (en) Thin film laminated device with substrate
JPH04245229A (en) Thin film two-terminal element
JP2994056B2 (en) Thin-film two-terminal element
JPH06175117A (en) Sin film forming plastic substrate and mim element formed by using the substrate
JPH04198916A (en) Thin-film laminated device