JPH04290436A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04290436A
JPH04290436A JP5483291A JP5483291A JPH04290436A JP H04290436 A JPH04290436 A JP H04290436A JP 5483291 A JP5483291 A JP 5483291A JP 5483291 A JP5483291 A JP 5483291A JP H04290436 A JPH04290436 A JP H04290436A
Authority
JP
Japan
Prior art keywords
film
insulating film
wiring layer
psg
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5483291A
Other languages
Japanese (ja)
Inventor
Hidetoshi Nishio
英俊 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5483291A priority Critical patent/JPH04290436A/en
Publication of JPH04290436A publication Critical patent/JPH04290436A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a semiconductor device manufacturing method which facilitates formation of a layer insulating film suitable for levelling the surface of a wiring layer having unevenness without causing leakage. CONSTITUTION:A compression stress insulating film 16 having a thickness not less than 100nm is formed on a wiring layer 14 having unevenness and a PSG film 18 having a thickness not larger than 300nm is formed on the compression stress insulating film 16 by using tetraethyl orthosilicate and ozone to level the surface.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は凹凸のある配線層を平坦
化するように絶縁膜を形成する半導体装置の製造方法に
関する。近年の半導体装置においては、素子の高集積化
、高速化への要求が益々厳しくなってきている。このた
め多層配線が多く用いられているが、配線層を多層化す
るためには凹凸のある配線層を平坦化する必要がある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device in which an insulating film is formed to planarize an uneven wiring layer. In recent years, in semiconductor devices, demands for higher integration and higher speed of elements have become increasingly severe. For this reason, multilayer wiring is often used, but in order to have multiple wiring layers, it is necessary to flatten the uneven wiring layer.

【0002】0002

【従来の技術】従来の半導体装置の製造方法では配線層
の段差を緩和するためには、有機SOG又は無機SOG
により層間絶縁膜を形成して平坦化する方法や、カバレ
ージの優れたTEOS(テトラエチルオルソシリケート
、Si(OC2H5)4))及びO3(オゾン)を用い
た酸化膜を形成して平坦化する方法が提案されている。 しかしながら、TEOSとO3により形成された酸化膜
を用いた平坦化方法では、形成された酸化膜にクラック
が入ったり、酸化膜自身の膜質が従来の酸化膜より劣る
ため、リークが発生しやすいことが問題となっていた。
[Prior Art] In conventional semiconductor device manufacturing methods, organic SOG or inorganic SOG is used to reduce the level difference in wiring layers.
There are two methods: a method of forming an interlayer insulating film and planarizing it, and a method of forming and planarizing an oxide film using TEOS (tetraethyl orthosilicate, Si(OC2H5)4)) and O3 (ozone), which have excellent coverage. Proposed. However, in the planarization method using an oxide film formed by TEOS and O3, leaks are likely to occur because cracks appear in the formed oxide film and the quality of the oxide film itself is inferior to that of conventional oxide films. was a problem.

【0003】0003

【発明が解決しようとする課題】このように、従来の方
法では、TEOSとO3により形成された酸化膜は段差
を平坦化するためには有効であるが、クラックの発生や
膜質に起因するリークが発生しやすく実際の半導体装置
の層間絶縁膜として用いることができないという問題が
あった。
[Problems to be Solved by the Invention] As described above, in the conventional method, the oxide film formed by TEOS and O3 is effective for flattening the step, but it is difficult to prevent leakage due to the occurrence of cracks and film quality. There was a problem in that it was not possible to use it as an interlayer insulating film of an actual semiconductor device because it was easy to cause this.

【0004】本発明の目的は、リークが発生することな
く凹凸のある配線層を平坦化するのに適した層間絶縁膜
を形成するのに適した半導体装置の製造方法を提供する
ことにある。
An object of the present invention is to provide a method for manufacturing a semiconductor device suitable for forming an interlayer insulating film suitable for flattening an uneven wiring layer without causing leakage.

【0005】[0005]

【課題を解決するための手段】上記目的は、凹凸のある
配線層上に圧縮ストレス絶縁膜を形成し、前記圧縮スト
レス絶縁膜上にテトラエチルオルソシリケート及びオゾ
ンを用いてPSG膜を形成して表面を平坦化することを
特徴とする半導体装置の製造方法によって達成される。
[Means for Solving the Problems] The above object is to form a compressive stress insulating film on an uneven wiring layer, and to form a PSG film on the compressive stress insulating film using tetraethyl orthosilicate and ozone to form a surface of the compressive stress insulating film. This is achieved by a method for manufacturing a semiconductor device characterized by flattening the surface.

【0006】上記目的は、凹凸のある配線層上に圧縮ス
トレス絶縁膜を形成し、前記圧縮ストレス絶縁膜上にテ
トラエチルオルソシリケート及びオゾンを用いてPSG
膜を形成し、前記PSG膜上にSOG膜を形成し、次い
で、前記PSG膜及びSOG膜をエッチングして平坦化
することを特徴とする半導体装置の製造方法によって達
成される。
[0006] The above object is to form a compressive stress insulating film on an uneven wiring layer, and to apply PSG on the compressive stress insulating film using tetraethyl orthosilicate and ozone.
This is achieved by a method for manufacturing a semiconductor device, which comprises forming a film, forming an SOG film on the PSG film, and then etching and planarizing the PSG film and the SOG film.

【0007】[0007]

【作用】本発明によれば、凹凸のある配線層上に圧縮ス
トレス絶縁膜を形成した後に、テトラエチルオルソシリ
ケート及びオゾンを用いてPSG膜を形成して平坦化し
たので、PSG膜にクラックが生ずることなく、凹凸の
ある配線層を平坦化することができる。
[Operation] According to the present invention, after forming a compressive stress insulating film on an uneven wiring layer, a PSG film is formed using tetraethyl orthosilicate and ozone to flatten it, so that cracks do not occur in the PSG film. It is possible to flatten an uneven wiring layer without causing any unevenness.

【0008】[0008]

【実施例】本発明の第1の実施例による半導体装置の製
造方法を図1を用いて説明する。半導体基板10上の絶
縁膜12で覆われた部分に、スパッタ法により金属を約
700nm堆積した後、フォトリソグラフィによりパタ
ーニングして配線層14を形成する(図1(a))。パ
ターニングにより配線層14には大きな凹凸が形成され
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of manufacturing a semiconductor device according to a first embodiment of the present invention will be described with reference to FIG. After about 700 nm of metal is deposited by sputtering on the portion covered with the insulating film 12 on the semiconductor substrate 10, it is patterned by photolithography to form the wiring layer 14 (FIG. 1(a)). Large irregularities are formed in the wiring layer 14 by patterning.

【0009】次に、全面に圧縮ストレスのある圧縮スト
レス絶縁膜16を約100nm形成する(図1(b))
。圧縮ストレス絶縁膜16としては酸化膜、窒化膜、酸
化窒化膜等の下地に対して圧縮方向の力が作用する膜を
用いる。圧縮ストレス絶縁膜16は、積層されるPSG
膜のクラックを防止するために、膜厚が100nm以上
で500nm以下であることが望ましい。
Next, a compressive stress insulating film 16 having a compressive stress of about 100 nm is formed on the entire surface (FIG. 1(b)).
. As the compressive stress insulating film 16, a film such as an oxide film, a nitride film, an oxynitride film, etc., on which a force in a compressive direction acts on the underlying layer is used. The compressive stress insulating film 16 is made of laminated PSG.
In order to prevent cracks in the film, it is desirable that the film thickness is 100 nm or more and 500 nm or less.

【0010】次に、TEOS(テトラエチルオルソシリ
ケート、Si(OC2H5)4))及びO3(オゾン)
を用いて、圧縮ストレス絶縁膜16上にノンドープPS
GからなるPSG膜18を約300nm成長させる。こ
のようにすることにより配線層14の間隔の狭い部分は
埋込まれて平坦化される(図1(c))。このようにし
て形成した半導体装置に対して、450℃の窒素アニー
ルを3時間行った後、500℃の窒素アニールを30分
間行って、加速負荷試験を行ったが、PSG膜18にク
ラック等の異常は発生しなかった。したがって、本実施
例によれば、PSG膜18にクラックが生ずることなく
、凹凸のある配線層14を平坦化することができる。な
お、配線層14の凸部上のPSG膜18の膜厚が300
nm以下であれば、配線層14の凹部上でもPSG膜1
8の膜厚が1.2μm程度と厚くなり過ぎることがなく
クラックを生じない。
Next, TEOS (tetraethyl orthosilicate, Si(OC2H5)4)) and O3 (ozone)
is used to deposit non-doped PS on the compressive stress insulating film 16.
A PSG film 18 made of G is grown to a thickness of about 300 nm. By doing so, the narrowly spaced portions of the wiring layer 14 are buried and planarized (FIG. 1(c)). The semiconductor device thus formed was subjected to an accelerated load test by performing nitrogen annealing at 450°C for 3 hours and then at 500°C for 30 minutes. No abnormality occurred. Therefore, according to this embodiment, the uneven wiring layer 14 can be flattened without cracking the PSG film 18. Note that the thickness of the PSG film 18 on the convex portion of the wiring layer 14 is 300 mm.
If it is less than nm, the PSG film 1 can be
The film thickness of No. 8 is about 1.2 μm, which is not too thick and does not cause cracks.

【0011】本発明の第2の実施例による半導体装置の
製造方法を図2及び図3を用いて説明する。第1の実施
例と同一の構成要素には同一の符号を付して説明を省略
する。半導体基板10上の絶縁膜12で覆われた部分に
、スパッタ法により金属を約700nm堆積した後、フ
ォトリソグラフィによりパターニングして配線層14を
形成する(図2(a))。本実施例ではパターニングさ
れた配線層14の間隔が第1の実施例より広い部分が存
在する。
A method of manufacturing a semiconductor device according to a second embodiment of the present invention will be explained with reference to FIGS. 2 and 3. Components that are the same as those in the first embodiment are given the same reference numerals and their explanations will be omitted. After about 700 nm of metal is deposited by sputtering on the portion covered with the insulating film 12 on the semiconductor substrate 10, it is patterned by photolithography to form the wiring layer 14 (FIG. 2(a)). In this embodiment, there are parts where the intervals between the patterned wiring layers 14 are wider than in the first embodiment.

【0012】次に、全面に圧縮ストレスのある圧縮スト
レス絶縁膜16を約100nm形成する(図2(b))
。次に、TEOS(テトラエチルオルソシリケート、S
i(OC2H5)4)及びO3(オゾン)を用いて、圧
縮ストレス絶縁膜16上にノンドープPSGからなるP
SG膜18を約1000nm成長させる(図2(c))
。PSG膜18を形成しても、図2(c) に示すよう
に、配線層14の間隔の広い部分は平坦化されずに細か
い凹凸が残ることになる。
Next, a compressive stress insulating film 16 having a compressive stress of about 100 nm is formed on the entire surface (FIG. 2(b)).
. Next, TEOS (tetraethyl orthosilicate, S
Using i(OC2H5)4) and O3 (ozone), P made of non-doped PSG is deposited on the compressive stress insulating film 16.
Grow the SG film 18 to about 1000 nm (FIG. 2(c))
. Even if the PSG film 18 is formed, as shown in FIG. 2(c), the widely spaced portions of the wiring layer 14 are not planarized and fine irregularities remain.

【0013】次に、SOGを全面に約300nm塗布し
てSOG膜20を形成し、PSG膜18の細かい凹凸を
平坦化する(図3(a))。次に、SOG膜20とPS
G膜18がほぼ同じエッチング速度になるようなエッチ
ング条件で、配線層14上の最終的な厚さが約300n
m以下になるまで、エッチングバックする。このように
することにより配線層14の間隔の広い部分も埋込まれ
てほぼ完全に平坦化される(図3(b))。なお、配線
層14の凸部上のPSG膜18の膜厚を300nm以下
にすれば、配線層14の凹部上でもPSG膜18の膜厚
が1.2μm程度と厚くなり過ぎることがなくクラック
を生じない。
Next, an SOG film 20 is formed by applying SOG to a thickness of about 300 nm over the entire surface, and the fine irregularities of the PSG film 18 are flattened (FIG. 3(a)). Next, the SOG film 20 and PS
Under etching conditions such that the G film 18 has approximately the same etching rate, the final thickness on the wiring layer 14 is approximately 300 nm.
Etch back until the thickness becomes less than m. By doing so, even the wide-spaced portions of the wiring layer 14 are buried and almost completely flattened (FIG. 3(b)). Note that if the thickness of the PSG film 18 on the convex portions of the wiring layer 14 is set to 300 nm or less, the thickness of the PSG film 18 on the concave portions of the wiring layer 14 will be about 1.2 μm, which will prevent cracks from becoming too thick. Does not occur.

【0014】このように本実施例によれば、配線層14
に間隔が広い部分があってもPSG膜18にクラックを
生じさせることなく平坦化することができる。本発明は
上記実施例に限らず種々の変形が可能である。例えば、
上記第1及び第2の実施例ではPSG膜に不純物がドー
プされたいないノンドープPSGを用いたが、TEOS
とO3を用いてPSG膜18を形成する際に、PH3、
TMP(トリメチルフォスファイト、P(OCH3)3
)、TMOP(PO(OCH3)3)等のリンソースも
用いてリンがドープされたPSG膜を形成してもよい。
As described above, according to this embodiment, the wiring layer 14
Even if there are parts with wide intervals, the PSG film 18 can be flattened without causing cracks. The present invention is not limited to the above embodiments, and various modifications are possible. for example,
In the first and second embodiments described above, non-doped PSG, which is not doped with impurities, was used in the PSG film, but TEOS
When forming the PSG film 18 using PH3 and O3,
TMP (trimethylphosphite, P(OCH3)3
), TMOP (PO(OCH3)3), or other phosphorus sources may be used to form a PSG film doped with phosphorus.

【0015】また、上記第2の実施例では細かい凹凸を
平坦化するのにSOGを用いたが、PSG膜とエッチン
グレートが同じで細かい凹凸を平坦化できれば、他の材
料、例えば、レジスト等を用いてもよい。
In addition, in the second embodiment, SOG was used to flatten the fine irregularities, but if the etching rate is the same as that of the PSG film and the fine irregularities can be flattened, other materials such as resist may be used. May be used.

【0016】[0016]

【発明の効果】以上の通り、本発明によれば、PSG膜
にクラックが生ずることなく、凹凸のある配線層を平坦
化することができる。
As described above, according to the present invention, an uneven wiring layer can be flattened without causing cracks in the PSG film.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の第1の実施例による半導体装置の製造
方法の工程断面図である。
FIG. 1 is a process cross-sectional view of a method for manufacturing a semiconductor device according to a first embodiment of the present invention.

【図2】本発明の第2の実施例による半導体装置の製造
方法の工程断面図である。
FIG. 2 is a process cross-sectional view of a method for manufacturing a semiconductor device according to a second embodiment of the present invention.

【図3】本発明の第2の実施例による半導体装置の製造
方法の工程断面図である。
FIG. 3 is a process cross-sectional view of a method for manufacturing a semiconductor device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…半導体基板 12…絶縁膜 14…配線層 16…圧縮ストレス絶縁膜 18…PSG膜 20…SOG膜 10...Semiconductor substrate 12...Insulating film 14...Wiring layer 16...Compressive stress insulation film 18...PSG film 20...SOG film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  凹凸のある配線層上に圧縮ストレス絶
縁膜を形成し、前記圧縮ストレス絶縁膜上にテトラエチ
ルオルソシリケート及びオゾンを用いてPSG膜を形成
して表面を平坦化することを特徴とする半導体装置の製
造方法。
1. A compressive stress insulating film is formed on the uneven wiring layer, and a PSG film is formed using tetraethyl orthosilicate and ozone on the compressive stress insulating film to flatten the surface. A method for manufacturing a semiconductor device.
【請求項2】  凹凸のある配線層上に圧縮ストレス絶
縁膜を形成し、前記圧縮ストレス絶縁膜上にテトラエチ
ルオルソシリケート及びオゾンを用いてPSG膜を形成
し、前記PSG膜上にSOG膜を形成し、次いで、前記
PSG膜及びSOG膜をエッチングして平坦化すること
を特徴とする半導体装置の製造方法。
2. A compressive stress insulating film is formed on the uneven wiring layer, a PSG film is formed using tetraethyl orthosilicate and ozone on the compressive stress insulating film, and an SOG film is formed on the PSG film. A method for manufacturing a semiconductor device, characterized in that the PSG film and the SOG film are then etched and planarized.
JP5483291A 1991-03-19 1991-03-19 Manufacture of semiconductor device Pending JPH04290436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5483291A JPH04290436A (en) 1991-03-19 1991-03-19 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5483291A JPH04290436A (en) 1991-03-19 1991-03-19 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04290436A true JPH04290436A (en) 1992-10-15

Family

ID=12981621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5483291A Pending JPH04290436A (en) 1991-03-19 1991-03-19 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04290436A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195391A (en) * 1995-01-17 1996-07-30 Nippondenso Co Ltd Semiconductor device and manufacture thereof
US7084079B2 (en) 2001-08-10 2006-08-01 International Business Machines Corporation Method for low temperature chemical vapor deposition of low-k films using selected cyclosiloxane and ozone gases for semiconductor applications

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195391A (en) * 1995-01-17 1996-07-30 Nippondenso Co Ltd Semiconductor device and manufacture thereof
US7084079B2 (en) 2001-08-10 2006-08-01 International Business Machines Corporation Method for low temperature chemical vapor deposition of low-k films using selected cyclosiloxane and ozone gases for semiconductor applications

Similar Documents

Publication Publication Date Title
JP2640174B2 (en) Semiconductor device and manufacturing method thereof
US5435888A (en) Enhanced planarization technique for an integrated circuit
KR100265256B1 (en) Semiconductor device and fabrication process thereof
EP0893824A2 (en) Method of forming a trench isolation structure utilizing composite oxide films
JPH05206128A (en) Method for formation of metal interlayer insulating film in semiconductor device
JPH0629287A (en) Flattening method of semiconductor substrate
JPH06181209A (en) Manufacture of semiconductor device
US5366850A (en) Submicron planarization process with passivation on metal line
US5393709A (en) Method of making stress released VLSI structure by the formation of porous intermetal layer
JP3077990B2 (en) Method for manufacturing semiconductor device
JP2000223573A (en) Integrated circuit element having flat inter-level dielectric layer
US5904558A (en) Fabrication process of semiconductor device
JPH04290436A (en) Manufacture of semiconductor device
KR20010021305A (en) Method of making an integrated circuit device having a planar interlevel dielectric layer
KR100301530B1 (en) Mehtod for forming inter layer insulting film in the semiconductor device
JPH06124948A (en) Wiring forming method
JPH03194932A (en) Manufacture of semiconductor device
JPH0645313A (en) Manufacture of semiconductor device
JPS6376351A (en) Formation of multilayer interconnection
US5920791A (en) Method of manufacturing intermetal dielectrics for sub-half-micron semiconductor devices
JPS63302537A (en) Manufacture of integrated circuit
KR100437541B1 (en) Method for forming isolation layer of semiconductor device using two-step gap filling processes
JPH01135044A (en) Semiconductor device
JP2942063B2 (en) Method for manufacturing semiconductor device
JPH0621043A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010213