JPH04290429A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04290429A
JPH04290429A JP5501091A JP5501091A JPH04290429A JP H04290429 A JPH04290429 A JP H04290429A JP 5501091 A JP5501091 A JP 5501091A JP 5501091 A JP5501091 A JP 5501091A JP H04290429 A JPH04290429 A JP H04290429A
Authority
JP
Japan
Prior art keywords
substrate
carbon atoms
ion
implanted
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5501091A
Other languages
Japanese (ja)
Inventor
Shigeo Onishi
茂夫 大西
Masayuki Sato
雅幸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP5501091A priority Critical patent/JPH04290429A/en
Publication of JPH04290429A publication Critical patent/JPH04290429A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To reduce a crystalline defect of a Si substrate by performing reactionary ion etching on an SiO2 film provided on an Si substrate while using specific gas. CONSTITUTION:Reactionary ion etching is performed on an SiO2 film provided on an Si substrate by using reaction gas containing at least one of fluorine hydrocarbon having at least three carbon atoms. Fluorine hydrocarbon having at least three carbon atoms contains C3F8, C4F8. For instance, C3F8 and C4F8 are ionized, and the larger the number of carbon atoms is, the larger the molecular weight of a generated ion seed is while having improved stability. Even if ion seeds are implanted up to the Si substrate by overetching, the depth of implantation of the ion seeds to be implanted becomes shallow. Further, since the impurities such as C, F to be introduced are few, crystalline defects of an Si substrate decrease.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は半導体装置の製造方法
に関する。詳しくはSi基板上に設けられたSiO2膜
の反応性イオンエッチング法(RIE法)の改良法に関
し特にSi基板の結晶欠陥を減少させる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device. More specifically, the present invention relates to a method for improving reactive ion etching (RIE) of a SiO2 film provided on a Si substrate, and particularly to a method for reducing crystal defects in a Si substrate.

【0002】0002

【従来の技術及び課題】MOSデバイスのような半導体
装置において微細なコンタクトーホールを形成するのに
、通常RIE法を利用している。すなわち図1の(a)
と(b)に示すようにSi基板1の上に、SiO2膜2
とパターンレジスト層3を設け4の矢印に示す方向にR
IE法でエッチングしてコンタクトホール5を作製する
。このとき、RIE法の反応ガスとして、例えば、CH
F3/CF4/Ar(40/5/60SCCM)のよう
な混合ガスが用いられる。その結果放電して加速された
イオン種CF3+などが、Si基板上に設けられたSi
O2膜に打ちこまれてエッチングが行われSiO2膜が
除かれる。しかしその際オーバーエッチングが起こりC
F3+がSi基板にまで打込まれ、そのため分解生成物
のC、Fなどの不純物がSi基板内に導入されてSi基
板に結晶欠陥部6が生じ、コンタクト抵抗および接合リ
ーク特性を劣化させる。したがって、この欠陥を低減さ
せることが要望されている。
2. Description of the Related Art The RIE method is usually used to form fine contact holes in semiconductor devices such as MOS devices. In other words, (a) in Figure 1
As shown in (b), a SiO2 film 2 is placed on the Si substrate 1.
A patterned resist layer 3 is provided and R is applied in the direction shown by the arrow 4.
A contact hole 5 is created by etching using the IE method. At this time, for example, CH
A gas mixture such as F3/CF4/Ar (40/5/60 SCCM) is used. As a result, ion species such as CF3+, which are discharged and accelerated, are transferred to the Si substrate provided on the Si substrate.
The SiO2 film is removed by being etched into the O2 film. However, over-etching occurs at this time.C
F3+ is implanted into the Si substrate, and therefore impurities such as C and F, which are decomposition products, are introduced into the Si substrate, causing crystal defects 6 in the Si substrate and deteriorating contact resistance and junction leakage characteristics. Therefore, it is desired to reduce this defect.

【0003】0003

【課題を解決するための手段】上記のような問題点を解
決するために、この発明は半導体装置のSi基板上に設
けられたSiO2膜に対し、少なくとも3個の炭素原子
を有するフッ素化炭化水素を少なくとも1つ含有する反
応ガスを用いて反応性イオンエッチングを行うことから
なる半導体装置の製造方法を提供するものである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a fluorinated carbide film having at least three carbon atoms for a SiO2 film provided on a Si substrate of a semiconductor device. The present invention provides a method for manufacturing a semiconductor device, which comprises performing reactive ion etching using a reactive gas containing at least one hydrogen element.

【0004】この発明において、Si基板上に設けられ
たSiO2膜には、CVD法で積層される高温酸化膜(
HTO膜)、BPSG膜(ホウ素−リンケイ酸ガラス膜
)、NSG膜(ノンドープトガラス膜)、PSG、BS
Gなどが含まれる。
In this invention, the SiO2 film provided on the Si substrate is coated with a high-temperature oxide film (
HTO film), BPSG film (boron-phosphosilicate glass film), NSG film (non-doped glass film), PSG, BS
Includes G.

【0005】この発明において、少なくとも3個の炭素
原子を有するフッ素化炭化水素には、C3F8、C4F
8などが含まれる。またこれらのフッ素化炭化水素は、
単独もしくは複数で用いられ、その外、Ar、Heなど
のガスを希釈のために添加してもよい。
In this invention, the fluorinated hydrocarbons having at least 3 carbon atoms include C3F8, C4F
8 etc. are included. In addition, these fluorinated hydrocarbons
They may be used alone or in combination, and gases such as Ar and He may be added for dilution.

【0006】従来主に使われているCF4と、本願発明
で用いる例えばC3F8とC4F8は下記のようにイオ
ン化されるが炭素原子数が大きいほど生成するイオン種
の分子量が大きくかつ安定性が向上する。したがってオ
ーバーエッチングでSi基板にまでイオン種が打こまれ
ても、従来用いられているCF4よりもC3F8とC4
F8の方が、生成するイオン種の打こまれる深さが浅く
なるとともに導入されるC、Fなどの不純物が少ないの
でSi基板の結晶欠陥が減少する。特にC4F8ガスは
分子中に2重結合を有しておりさらに分子量も大きく、
一般にプラズマ中での安定性が良い。 CF4+e →CF3++F・+2e
CF4, which has been mainly used in the past, and C3F8 and C4F8, which are used in the present invention, are ionized as shown below, and the larger the number of carbon atoms, the larger the molecular weight of the generated ion species and the better the stability. . Therefore, even if ion species are implanted into the Si substrate due to over-etching, C3F8 and C4
In F8, the implantation depth of generated ion species is shallower, and fewer impurities such as C and F are introduced, so crystal defects in the Si substrate are reduced. In particular, C4F8 gas has double bonds in its molecules and has a large molecular weight.
Generally stable in plasma. CF4+e →CF3++F・+2e

【化1】[Chemical formula 1]

【0007】[0007]

【化2】[Case 2]

【0008】[0008]

【実施例】Si基板上に常圧の条件下で厚みが9000
ÅのBPSG膜を堆積させ、その上にパターンレジスト
を作製した。次にC4F8/CH2F2(15:10S
CCM)の混合ガスを反応ガスとして用いて5mTor
rの条件下でRIEエッチングを行った。
[Example] The thickness was 9000 mm on a Si substrate under normal pressure conditions.
A BPSG film having a thickness of 1.5 Å was deposited, and a patterned resist was formed thereon. Next, C4F8/CH2F2 (15:10S
5mTor using a mixed gas of CCM) as a reaction gas.
RIE etching was performed under conditions of r.

【0009】一方、比較従来例として反応ガスとしてC
HF3/CF4/Ar(40:5:60SCCM)を用
いる以外は上記と同じ条件下でRIEエッチングを行っ
た。
On the other hand, as a comparative conventional example, C was used as the reaction gas.
RIE etching was performed under the same conditions as above except that HF3/CF4/Ar (40:5:60 SCCM) was used.

【0010】生成物のSi基板にイオン種が打込まれた
深さをTEM法で測定したところ前者が約150Åで後
者が約500Åであった。また前者の本願発明の方法で
得られたSi基板の方が結晶欠陥が著しく低いことを示
していた。
When the depth at which the ion species were implanted into the product Si substrate was measured by TEM method, the former was about 150 Å and the latter was about 500 Å. It was also shown that the former Si substrate obtained by the method of the present invention had significantly lower crystal defects.

【0011】[0011]

【発明の効果】この発明のRIE法エッチングによれば
、Si基板へのイオン種の打込みが減少してイオンが打
込まれる深さが浅くなり、またC、Fなどの不純物のS
i基板への導入が少なくなり、Si基板の結晶欠陥が少
なくなる。
Effects of the Invention According to the RIE etching of the present invention, the number of ion species implanted into the Si substrate is reduced, the depth to which the ions are implanted becomes shallow, and the S of impurities such as C and F is reduced.
The introduction into the i-substrate is reduced, and the number of crystal defects in the Si substrate is reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】半導体製造時のエッチング工程説明図である。FIG. 1 is an explanatory diagram of an etching process during semiconductor manufacturing.

【符号の説明】[Explanation of symbols]

1  Si基板 2  BPSG膜 3  パターンレジスト層 4  エッチングの方向 5  コンタクトホール 6  結晶欠陥部 1 Si substrate 2 BPSG film 3 Pattern resist layer 4 Etching direction 5 Contact hole 6 Crystal defect part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  半導体装置のSi基板上に設けられた
SiO2膜に対し、少なくとも3個の炭素原子を有する
フッ素化炭化水素を少なくとも1つ含有する反応ガスを
用いて反応性イオンエッチングを行うことからなる半導
体装置の製造方法。
1. Performing reactive ion etching on a SiO2 film provided on a Si substrate of a semiconductor device using a reactive gas containing at least one fluorinated hydrocarbon having at least three carbon atoms. A method for manufacturing a semiconductor device comprising:
JP5501091A 1991-03-19 1991-03-19 Manufacture of semiconductor device Pending JPH04290429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5501091A JPH04290429A (en) 1991-03-19 1991-03-19 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5501091A JPH04290429A (en) 1991-03-19 1991-03-19 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04290429A true JPH04290429A (en) 1992-10-15

Family

ID=12986689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5501091A Pending JPH04290429A (en) 1991-03-19 1991-03-19 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04290429A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10177992A (en) * 1996-12-16 1998-06-30 Sharp Corp Taper etching method of micro contact hole
US8269931B2 (en) 2009-09-14 2012-09-18 The Aerospace Corporation Systems and methods for preparing films using sequential ion implantation, and films formed using same
US8946864B2 (en) 2011-03-16 2015-02-03 The Aerospace Corporation Systems and methods for preparing films comprising metal using sequential ion implantation, and films formed using same
US9324579B2 (en) 2013-03-14 2016-04-26 The Aerospace Corporation Metal structures and methods of using same for transporting or gettering materials disposed within semiconductor substrates

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10177992A (en) * 1996-12-16 1998-06-30 Sharp Corp Taper etching method of micro contact hole
US8269931B2 (en) 2009-09-14 2012-09-18 The Aerospace Corporation Systems and methods for preparing films using sequential ion implantation, and films formed using same
US9048179B2 (en) 2009-09-14 2015-06-02 The Aerospace Corporation Systems and methods for preparing films using sequential ion implantation, and films formed using same
US8946864B2 (en) 2011-03-16 2015-02-03 The Aerospace Corporation Systems and methods for preparing films comprising metal using sequential ion implantation, and films formed using same
US9324579B2 (en) 2013-03-14 2016-04-26 The Aerospace Corporation Metal structures and methods of using same for transporting or gettering materials disposed within semiconductor substrates

Similar Documents

Publication Publication Date Title
US6620733B2 (en) Use of hydrocarbon addition for the elimination of micromasking during etching of organic low-k dielectrics
KR940000913B1 (en) In-situ photoresist capping process for plasma etching
US20020111036A1 (en) Unique process chemistry for etching organic low-k materials
JPS6365625A (en) Etching
JPH0613349A (en) Dry etching method
US10431472B2 (en) Gas composition for dry etching and dry etching method
DE68928977T2 (en) Dry etching with hydrogen bromide or bromine
US6569776B2 (en) Method of removing silicon nitride film formed on a surface of a material with a process gas containing a higher-order fluorocarbon in combination with a lower-order fluorocarbon
JPH09191002A (en) Plasma etching method
US6372634B1 (en) Plasma etch chemistry and method of improving etch control
US6461969B1 (en) Multiple-step plasma etching process for silicon nitride
JPH11243084A (en) Oxide-film etching method
JPH05304119A (en) Etching method for polysilicon film
US6069087A (en) Highly selective dry etching process
JPH04290429A (en) Manufacture of semiconductor device
JPH0594974A (en) Dry etching method
JPH04237125A (en) Dry-etching method
US6828250B1 (en) Process for etching vias in organosilicate glass materials without causing RIE lag
US4465553A (en) Method for dry etching of a substrate surface
US7001692B2 (en) Method of forming a mask having nitride film
KR100431822B1 (en) Method for forming contact in semiconductor device
JP3383939B2 (en) Dry etching method
WO2020085469A1 (en) Dry etching gas composition containing sulfur-containing fluorocarbon compound, and dry etching method using said dry etching gas composition
JPH0661190A (en) Dry etching method
JPS61179540A (en) Oxide etching and etchant used therefor