JPH04289732A - Reactive power compensator - Google Patents

Reactive power compensator

Info

Publication number
JPH04289732A
JPH04289732A JP3054244A JP5424491A JPH04289732A JP H04289732 A JPH04289732 A JP H04289732A JP 3054244 A JP3054244 A JP 3054244A JP 5424491 A JP5424491 A JP 5424491A JP H04289732 A JPH04289732 A JP H04289732A
Authority
JP
Japan
Prior art keywords
power
reactive power
compensator
generator
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3054244A
Other languages
Japanese (ja)
Inventor
Yasunobu Ieda
泰伸 家田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3054244A priority Critical patent/JPH04289732A/en
Publication of JPH04289732A publication Critical patent/JPH04289732A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To compensate reactive power, higher harmonics and reverse power flow at the time of connecting a distributed power supply to a power system. CONSTITUTION:An active-filter type reactive power compensator 13 which is connected to a power system 1 in the same manner as a generator 3 and a group of loads 4 has such a structure that a device for controlling a consumption quantity of reactive power 6 may be added to a dc circuit of the reactive power compensator 13. The device for controlling a consumption quantity of reactive power is constituted of, for example, a step-up chopper circuit and a resistor.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は分散型電源を電力系統に
連系して運転する需要家に設置される無効電力補償装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactive power compensator installed in a customer who operates a distributed power source connected to an electric power system.

【0002】0002

【従来の技術】最近、太陽光や風力などの自然エネルギ
ーを利用した発電技術開発が、進められている。それら
は中・小容量のものが多く、電力系統に対して分散した
電源として連系される。いわゆる分散型電源となる。最
近、これらの分散型電源を電力系統にする場合に、電力
系統に悪影響を与えないように構成するために満たすべ
き技術要件、いわゆる系統連系の技術要件が設定されて
いる。この技術要件の内容の主なものには、(1)連系
点での力率を0.85以上に保つこと、(2)高調波電
流歪率総合5%以下、各次数3%以下とすること、(3
)系統側に電力を流し込まない(いわゆる逆潮流を生じ
ない)こと、等があり、これらを満足するための補償装
置が必要とされている。
[Background Art] Recently, the development of power generation technology using natural energy such as sunlight and wind power has been progressing. Many of them are of medium or small capacity, and are connected to the power grid as a distributed power source. This is a so-called distributed power source. Recently, when these distributed power sources are integrated into a power system, technical requirements have been set that must be met in order to avoid adverse effects on the power system, so-called technical requirements for grid interconnection. The main technical requirements include (1) maintaining the power factor at the interconnection point to 0.85 or higher; (2) ensuring that the overall harmonic current distortion rate is 5% or less and each order is 3% or less. to do, (3
) There is a need for a compensation device to satisfy these requirements, such as not allowing power to flow into the grid (not causing so-called reverse power flow), etc.

【0003】これらについて、連系点での力率を高く保
つには、無効電力補償装置が用いられることが多く、最
近ではパワーエレクトロニクスの進歩により、高調波電
流を補償する機能も有するアクティブフィルタ型の無効
電力補償装置が用いられるようになってきた。しかし、
逆潮流を防止するための補償装置は、新しい技術課題で
あり、現在、有効な構成を模索、検討中である。
In order to maintain a high power factor at the interconnection point, a reactive power compensator is often used, and recently, with advances in power electronics, active filter type devices that also have the function of compensating for harmonic currents are being used. reactive power compensators have come into use. but,
A compensation device for preventing reverse power flow is a new technical issue, and effective configurations are currently being explored and studied.

【0004】一般需要家に設置される分散型電源を有す
るシステム構成の例を第2図に示す。図2において(1
)は、電力系統、(2)は受電しゃ断器、(3)は分散
型電源の発電機、(4)は負荷群、(5)はアクティブ
フィルタ型の無効電力補償装置である。また、受電点に
は計器用変流器(7)と計器用変圧器(8)から、有効
電力、無効電力を計測する計測器(9),(10)を有
している。この例では、発電機(3)と負荷群(4)の
運転状況に対応して、受電点での力率を0.85以上に
保つように無効電力補償装置(5)を運転する。また、
アクティブフィルタ型の無効電力補償装置(5)は計器
用変流器(7)の電流波形を入力することにより高調波
電流波形歪みを補償できる。
FIG. 2 shows an example of a system configuration having a distributed power source installed at a general consumer. In Figure 2, (1
) is a power system, (2) is a power reception breaker, (3) is a distributed power generator, (4) is a load group, and (5) is an active filter type reactive power compensator. Further, the power receiving point has measuring instruments (9) and (10) for measuring active power and reactive power from a measuring current transformer (7) and a measuring transformer (8). In this example, the reactive power compensator (5) is operated to maintain the power factor at the power receiving point at 0.85 or higher in accordance with the operating conditions of the generator (3) and load group (4). Also,
The active filter type reactive power compensator (5) can compensate for harmonic current waveform distortion by inputting the current waveform of the instrument current transformer (7).

【0005】通常の運転では、負荷群(4)の消費する
電力に対して、発電機(3)の出力は、入力である自然
エネルギーをできるだけ有効に使うことを考え、消費電
力を越えない範囲で最大に制御することが多く、この運
転の範囲では逆潮流は発生しない。しかし、例えば、負
荷群(4)の運転容量が急激に減少した場合、発電機(
3)の発電電力が負荷容量を越えてしまい、発電機の出
力制御が働くまでの間、電力系統(1)に電力を流し込
むことになる。この場合、連系点の保護継電器システム
(図2では省略)により、逆潮流が検出され、受電しゃ
断器(2)をトリップさせることになり、システム停止
につながってしまっていた。
[0005] In normal operation, the output of the generator (3) is within a range that does not exceed the power consumed by the load group (4) in order to use the input natural energy as effectively as possible. It is often controlled to the maximum at this operating range, and reverse power flow does not occur within this operating range. However, for example, if the operating capacity of load group (4) suddenly decreases, the generator (
The generated power in step 3) exceeds the load capacity, and the power is poured into the power system (1) until the output control of the generator is activated. In this case, the protective relay system (not shown in FIG. 2) at the interconnection point detected the reverse power flow, causing the power receiving breaker (2) to trip, leading to a system shutdown.

【0006】[0006]

【発明が解決しようとする課題】以上、説明したように
従来考えられている一般需要家に設置される分散型電源
を有するシステムでは、次のような問題点がある。すな
わち、系統連系の技術要件のうち、無効電力及び高調波
については無効電力補償装置で有効に補償できるが、逆
潮流については、負荷の急激な減少等により逆潮流が発
生した時に、それを補償する装置が無いため、保護継電
器システムで逆潮流が検出され、受電しゃ断器をトリッ
プして、全システムを停止せざるを得なかった。
SUMMARY OF THE INVENTION As described above, the conventional system having a distributed power source installed in a general consumer has the following problems. In other words, among the technical requirements for grid interconnection, reactive power and harmonics can be effectively compensated for by a reactive power compensator, but for reverse power flow, when reverse power flow occurs due to a sudden decrease in load, etc., it is difficult to compensate for it. Without a compensating device, the protective relay system detected reverse power flow, tripping the incoming circuit breaker and shutting down the entire system.

【0007】そこで本発明の目的は、以上述べた問題点
を解決し、いかなる場合でも無効電力及び高調波のみな
らず逆潮流についても補償し、系統連系の技術要件を満
足できる無効電力補償装置を提供することにある。 [発明の構成]
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a reactive power compensator that solves the above-mentioned problems, compensates not only reactive power and harmonics but also reverse power flow in any case, and satisfies the technical requirements for grid interconnection. Our goal is to provide the following. [Structure of the invention]

【0008】[0008]

【課題を解決するための手段】本発明は、発電機および
負荷群とともに電力系統に接続されたアクティブフィル
タ型の無効電力補償装置において、その直流回路に有効
電力の消費量を制御する装置を付加した構成とする
[Means for Solving the Problems] The present invention provides an active filter type reactive power compensator connected to a power system together with a generator and a load group, in which a device for controlling active power consumption is added to the DC circuit. The configuration is as follows.

【0
009】
0
009]

【作用】通常運転時、発電機の出力は、負荷群の量に見
合うように構成または制御されている。しかし、何らか
の原因により、負荷群の大幅な脱落が発生した場合、発
電機の出力制御が間に合わず、発電電力が負荷群での消
費電力を越えることになる。この時、この越えた電力を
アクティブフィルタ型の無効電力補償装置の、直流回路
に付加した有効電力を消費する装置により、消費させる
。このことにより、受電点から系統に電力を送り出すこ
との無いようにできる。
Operation: During normal operation, the output of the generator is configured or controlled to match the amount of the load group. However, if a large dropout of a load group occurs for some reason, the output control of the generator will not be able to be done in time, and the generated power will exceed the power consumption of the load group. At this time, this excess power is consumed by a device of the active filter type reactive power compensator that consumes active power added to the DC circuit. This prevents power from being sent to the grid from the power receiving point.

【0010】0010

【実施例】(実施例の構成)以下、本発明の一実施例を
第1図を用いて説明する。
Embodiment (Structure of Embodiment) An embodiment of the present invention will be described below with reference to FIG.

【0011】図1において(1)は電力系統、(2)は
受電しゃ断器、(3)は燃料電池、太陽電池等の発電機
、(4)は負荷群、(5)はアクティブフィルタ型の無
効電力補償装置、(6)は有効電力の消費量を制御する
装置である。この実施例では有効電力の消費量を制御す
る装置として、昇圧チョッパ装置(11)と抵抗器(1
2)の直列回路を用いた構成としている。 (実施例の作用)次に上記実施例の作用を説明する。
In FIG. 1, (1) is the power system, (2) is the power receiving breaker, (3) is the generator such as a fuel cell or solar cell, (4) is the load group, and (5) is the active filter type. The reactive power compensator (6) is a device that controls the amount of active power consumed. In this embodiment, a boost chopper device (11) and a resistor (1
2) The configuration uses a series circuit. (Operation of the embodiment) Next, the operation of the above embodiment will be explained.

【0012】通常、分散型電源を有する一般需要家シス
テムでは、負荷群(4)の消費する電力に対して、発電
機(3)の出力は、入力である自然エネルギーをできる
だけ有効に使うことを考え、消費電力を越えない範囲で
最大に制御する。この時、発電機(3)の運転状態及び
負荷群(4)の運転状態により、電力系統(1)との連
系点での力率及び高調波電流歪みが決まる。これらは、
アクティブフィルタ型の無効電力補償装置(5)により
補償し、系統連系の技術要件のうち、1連系点での力率
を0.85以上に保つこと、2高調波電流歪率総合5%
以下、各次数3%以下とすること、の2点について満足
させることができる。もう一つの系統連系の技術要件の
うち、3系統側に電力を流し込まない(いわゆる逆潮流
)こと、については、通常運転では、これらを満たして
運転条件を設定しているので特に補償する必要がない。
[0012] Normally, in a general consumer system having a distributed power source, the output of the generator (3) is designed to use the input natural energy as effectively as possible with respect to the power consumed by the load group (4). Consider this and control power consumption to the maximum within a range that does not exceed it. At this time, the power factor and harmonic current distortion at the connection point with the power grid (1) are determined by the operating state of the generator (3) and the operating state of the load group (4). these are,
Compensation is performed using an active filter type reactive power compensator (5), and among the technical requirements for grid connection, the power factor at one grid connection point must be maintained at 0.85 or more, and the total two-harmonic current distortion rate should be 5%.
The following two points can be satisfied: each order should be 3% or less. Another technical requirement for grid interconnection is that power should not flow into the three grids (so-called reverse power flow), so it is necessary to compensate in particular because the operating conditions are set to meet these requirements during normal operation. There is no.

【0013】しかし、このシステムの運転時において、
何らかの原因により、負荷群(4)の大幅な脱落が発生
した場合、発電機(3)の出力制御が問に合わず、発電
電力が負荷群(4)での消費電力を超えることになる。 この時、この超えた電力を系統(1)に流出させないよ
うに、抵抗器(12)で消費させる。この抵抗器で消費
する電力の大きさは昇圧チョッパ装置(11)により抵
抗器に印加する電圧を制御することにより、制御する。 このことにより、いかなる場合でも受電点から系統に電
力を送り出すことの無いようにできることになる。
However, when operating this system,
If a large dropout of the load group (4) occurs for some reason, the output control of the generator (3) will not be adequate, and the generated power will exceed the power consumption in the load group (4). At this time, this excess power is consumed by the resistor (12) so as not to flow out to the grid (1). The amount of power consumed by this resistor is controlled by controlling the voltage applied to the resistor by a boost chopper device (11). This makes it possible to prevent power from being sent to the grid from the power receiving point under any circumstances.

【0014】また、この時、アクティブフィルタ型の効
電力補償装置においては直流回路電圧を一定に保つよう
制御しているため、この有効電力の制御の影響は、自動
的に補償され、アクティブフィルタ型の無効電力補償装
置の制御機能にはまったく影響を与えない。
Furthermore, at this time, since the active filter type effective power compensator controls the DC circuit voltage to be kept constant, the influence of this effective power control is automatically compensated for. The control function of the reactive power compensator is not affected at all.

【0015】なお、この抵抗器(12)の時間定格は発
電機(3)の出力制御が動作するまでの短時間でよいた
め、小型なものでよい。昇圧チョッパ装置(11)の制
御方法については、本実施例では、受電点での有効電力
を計測することにより、この受電有効電力の値が設定値
以下にならないように制御することを想定している。(
実施例の効果)
[0015] The time rating of this resistor (12) may be a short time until the output control of the generator (3) is activated, so it may be small. Regarding the control method of the boost chopper device (11), in this embodiment, it is assumed that by measuring the active power at the power receiving point, control is performed so that the value of the received active power does not fall below a set value. There is. (
Effects of Examples)

【0016】以上説明したように、上記実施例ではアク
ティブフィルタ型の無効電力補償装置の直流回路に、昇
圧チョッパ装置と抵抗器の直列回路を用いた有効電力の
消費装置を付加したことにより、いなかる場合でも、系
統連系の技術要件の、1連系点での力率を0.85以上
に保つこと、2系統側に電力を流し込まない(いわゆる
逆潮流を生じない)こと、3高調波電流歪率総合5%以
下、各次数3%以下とすること、を満足する小型で、低
コストな無効電力補償装置が得られることになり、分散
型電源を有する一般需要システムに非常に有効となる。 (他の実施例)
As explained above, in the above embodiment, an active power consumption device using a series circuit of a boost chopper device and a resistor is added to the DC circuit of the active filter type reactive power compensator, so that the Even in cases where the grid is interconnected, the technical requirements for grid connection include maintaining the power factor at one interconnection point at 0.85 or higher, not allowing power to flow into the second grid (not causing so-called reverse power flow), and preventing third harmonics. A small, low-cost reactive power compensator that satisfies the current distortion ratio of 5% or less overall and 3% or less for each order can be obtained, and is extremely effective for general demand systems with distributed power sources. Become. (Other examples)

【0017】以上説明した実施例では、アクティブフィ
ルタ型の無効電力補償装置の直流回路に付加する有効電
力の消費量を制御することのできる装置として、昇圧チ
ョッパ装置と抵抗器の直列回路を用いた構成としている
が、制御の範囲によっては、昇降圧チョッパ装置と抵抗
器でもよいことはいうまでもない。また、補償する有効
電力を制御する方法として、受電点に、受電有効電力を
計測する計測器を付加した構成とし、その値を一定値以
上に保つ制御を想定したが、発電機の発電電力、負荷群
の消費電力を測定し、それらの差分を用いて制御する方
法も適用できることは言うまでもない。
In the embodiment described above, a series circuit of a boost chopper device and a resistor is used as a device capable of controlling the consumption amount of active power added to the DC circuit of an active filter type reactive power compensator. However, depending on the control range, it goes without saying that a buck-boost chopper device and a resistor may also be used. In addition, as a method of controlling the active power to be compensated, we assumed a configuration in which a measuring device for measuring the received active power was added to the power receiving point, and control to maintain the value above a certain value. It goes without saying that a method of measuring the power consumption of a load group and controlling it using the difference between them can also be applied.

【0018】[0018]

【発明の効果】以上述べたように、本発明による無効電
力補償装置を用いれば、いかなる場合でも無効電力及び
高調波のみならず逆潮流についても補償でき、系統連系
の技術要件を満足できる無効電力補償装置を提供できる
ことになる。このことにより、分散型電源を有する一般
需要家システムにおいて、予期出来ない逆潮流の発生な
どで、システムが電力系統から遮断され、全停電になる
ことのない、信頼性の高いシステムを得ることが出来る
ことになる。
As described above, by using the reactive power compensator according to the present invention, not only reactive power and harmonics but also reverse power flow can be compensated for in any case, and the reactive power compensator according to the present invention can be used to compensate for reverse power flow as well as for reactive power and harmonics, and can satisfy the technical requirements for grid interconnection. This means that a power compensation device can be provided. As a result, in general consumer systems with distributed power sources, it is possible to obtain a highly reliable system that will not be cut off from the power grid and cause a total power outage due to unexpected reverse power flow. It will be possible.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例を示す構成図。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】一般需要家に設置される分散型電源を有する従
来のシステムの例を示す構成図。
FIG. 2 is a configuration diagram showing an example of a conventional system having a distributed power source installed in a general consumer.

【符号の説明】[Explanation of symbols]

1…電力系統                   
 2…受電しゃ断器3…発電機           
           4…負荷群5,13…無効電力
補償装置          6…有効電力の消費量を
制御する装置 7…計器用変流器                8
…計器用変圧器9…有効電力を計測する計測器    
10…無効電力を計測する計測器
1...Power system
2... Power receiving breaker 3... Generator
4...Load groups 5, 13...Reactive power compensator 6...Device for controlling active power consumption 7...Measurement current transformer 8
...Instrument transformer 9...Measuring device for measuring active power
10...Measuring instrument for measuring reactive power

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  発電機および負荷群とともに電力系統
に接続されたアクティブフィルタ型の無効電力補償装置
において、この無効電力補償装置の直流回路に、有効電
力の消費量を制御する装置を付加したことを特徴とする
無効電力補償装置。
[Claim 1] In an active filter type reactive power compensator connected to a power system together with a generator and a load group, a device for controlling active power consumption is added to the DC circuit of the reactive power compensator. A reactive power compensator characterized by:
JP3054244A 1991-03-19 1991-03-19 Reactive power compensator Pending JPH04289732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3054244A JPH04289732A (en) 1991-03-19 1991-03-19 Reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3054244A JPH04289732A (en) 1991-03-19 1991-03-19 Reactive power compensator

Publications (1)

Publication Number Publication Date
JPH04289732A true JPH04289732A (en) 1992-10-14

Family

ID=12965133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3054244A Pending JPH04289732A (en) 1991-03-19 1991-03-19 Reactive power compensator

Country Status (1)

Country Link
JP (1) JPH04289732A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6924627B1 (en) 1999-09-13 2005-08-02 Aloys Wobben Method of reactive power regulation and aparatus for producing electrical energy in an electrical network
IT202100011459A1 (en) * 2021-05-05 2022-11-05 Terna S P A SYSTEM FOR DAMPING GRID FREQUENCY VARIATIONS AND/OR GRID VOLTAGE VARIATIONS IN AN ELECTRICITY TRANSMISSION NETWORK

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6924627B1 (en) 1999-09-13 2005-08-02 Aloys Wobben Method of reactive power regulation and aparatus for producing electrical energy in an electrical network
IT202100011459A1 (en) * 2021-05-05 2022-11-05 Terna S P A SYSTEM FOR DAMPING GRID FREQUENCY VARIATIONS AND/OR GRID VOLTAGE VARIATIONS IN AN ELECTRICITY TRANSMISSION NETWORK
WO2022234497A1 (en) * 2021-05-05 2022-11-10 Terna S.P.A. System for damping mains frequency variations and/or mains voltage variations in an electricity transmission network

Similar Documents

Publication Publication Date Title
US9806665B2 (en) Methods and apparatus for controlling operation of photovoltaic power plants
US9935478B2 (en) Managing renewable power generation
US7212421B2 (en) Combination feedback controller and power regulator using same
US5939798A (en) Hybrid energy storage system
JP2008154445A (en) System and method for controlling micro grid
Daehler et al. Requirements and solutions for dynamic voltage restorer, a case study
US8901764B2 (en) Method for controlling a wind farm, wind farm controller, wind farm, computer-readable medium and program element
US20020109411A1 (en) Uninterruptible power generation system
KR20140060401A (en) Stand-alone microgrid control system and method
KR20050120624A (en) Power control interface between a wind farm and a power transmission system
JP2009153333A (en) Distributed power supply system and its control method
JP2001197751A (en) Power supply using natural energy
KR101766433B1 (en) Energy storage system including power conversion apparatus for operation with grid-connected photovoltaic power and charging/discharging power of batterry
Schonberger et al. Autonomous load shedding in a nanogrid using DC bus signalling
JP2009065820A (en) Voltage fluctuation controller for natural energy power generation
JPH1155858A (en) Incoming and transforming station for private use
JP4993972B2 (en) Private power generation system combining storage battery equipment and private power generation equipment and output control method of private power generation equipment in the system
JP2005245136A (en) Reverse-tidal-current-preventing systematically interconnecting system
Haesen et al. Hosting capacity for motor starting in weak grids
JPH04289732A (en) Reactive power compensator
KR102618098B1 (en) Control methods, computer program products, control systems and uses
Agustoni et al. Proposal for a high quality dc network with distributed generation
Usunariz et al. A Modified Control Scheme of Droop‐Based Converters for Power Stability Analysis in Microgrids
JPH04308427A (en) Ac power supplying system
JPH04125038A (en) Dc uninterruptible power supply device