JPH04289618A - Lead switch contact material and manufacture thereof - Google Patents

Lead switch contact material and manufacture thereof

Info

Publication number
JPH04289618A
JPH04289618A JP5274691A JP5274691A JPH04289618A JP H04289618 A JPH04289618 A JP H04289618A JP 5274691 A JP5274691 A JP 5274691A JP 5274691 A JP5274691 A JP 5274691A JP H04289618 A JPH04289618 A JP H04289618A
Authority
JP
Japan
Prior art keywords
contact
base material
intermediate layer
thin film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5274691A
Other languages
Japanese (ja)
Inventor
Hideaki Murata
秀明 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP5274691A priority Critical patent/JPH04289618A/en
Publication of JPH04289618A publication Critical patent/JPH04289618A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide lead switch contact material with good adhesion between a contact material and a contact thin film and provide its manufacture. CONSTITUTION:A Ti or Zr intermediate layer is formed on Ni-Fe alloy base material, a contact thin film of periodic table IVa metal nitride, carbide, boride, silicide or alumide is formed thereon, and a Ti or Zr diffusion layer is formed on an interface between the Ni-Fe alloy base material and the intermediate layer, at the least. The diffusion layer is formed by heating the base material at 400 deg.C or higher. The formation of the diffusion layer allows the apparent interface to disappear between the contact base material and the intermediate layer and the entire organization to be continued, so that adhesion between the base material and the intermediate layer as well as between the intermediate layer and the contact thin film thereon is improved to restrain a contact from exhaustion.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はリードスイッチ材料とそ
の製造方法に関し、更に詳しくは、接点基材と接点薄膜
との密着性が優れていて、接点薄膜の剥離が起こりづら
いので接点消耗も抑制されるリードスイッチ接点材料と
それを製造する方法に関する。
[Industrial Application Field] The present invention relates to a reed switch material and a method for manufacturing the same, and more specifically, the present invention relates to a reed switch material and a method for manufacturing the same, and more specifically, the adhesiveness between the contact base material and the contact thin film is excellent, and the contact thin film is difficult to peel off, thereby suppressing contact wear. The present invention relates to a reed switch contact material and a method of manufacturing the same.

【0002】0002

【従来の技術】リードスイッチの封入接点の場合、その
接点材料としては、Au,Ag,Pd,Rh,Ruなど
の貴金属やそれらの合金が主として使用されている。こ
のことは、上記貴金属やそれらの合金がいずれも比抵抗
小,加工性容易であるという性質に加えて、一般に腐食
や酸化が起こりにくい材料であることに基づく。
2. Description of the Related Art In the case of sealed contacts for reed switches, noble metals such as Au, Ag, Pd, Rh, Ru, and alloys thereof are mainly used as contact materials. This is based on the fact that the above-mentioned noble metals and alloys thereof have low resistivity and easy workability, and are generally materials that are difficult to corrode or oxidize.

【0003】しかし、これら貴金属やそれらの合金はい
ずれも高価格であり、しかもその価格が安定していない
という問題がある。このため、接点基材としてCu,C
u合金,Fe,Fe合金,Ni合金のような安価な材料
を用い、この基材の表面を、腐食性,耐酸化性が優れ、
かつ導電性を有するTiNやZrNのようなセラミック
スで被覆して接点薄膜とした構造の接点が提案されてい
る(特開昭56−152115号公報,特開昭56−1
59017号公報,特開昭56−159028号公報な
どを参照)。
[0003] However, these precious metals and their alloys are all expensive, and moreover, there is a problem in that the prices are not stable. For this reason, Cu, C as a contact base material.
Using inexpensive materials such as u alloy, Fe, Fe alloy, and Ni alloy, the surface of this base material has excellent corrosion and oxidation resistance.
In addition, a contact having a structure in which the contact thin film is coated with a conductive ceramic such as TiN or ZrN has been proposed (Japanese Patent Laid-Open Nos. 56-152115, 1983-1).
59017, JP-A-56-159028, etc.).

【0004】このような接点薄膜を構成するセラミック
スとしては、主としてTi,Zrのような周期律表IV
a族金属の、窒化物,炭化物,ホウ化物,ケイ化物,ア
ルミ化物などが知られている。しかしながら、接点基材
の表面に上記したようなセラミックスを直接被覆して接
点薄膜にした材料は、このセラミックスから成る接点薄
膜と接点基材との密着性が必ずしも充分ではなく、その
ため接点薄膜が剥離しやすく、結果として接点消耗が激
しいという問題がある。
[0004] Ceramics constituting such a contact thin film are mainly ceramics from the periodic table IV, such as Ti and Zr.
Nitride, carbide, boride, silicide, aluminide, etc. of group a metals are known. However, with materials in which the contact thin film is formed by directly coating the surface of the contact base material with ceramics as described above, the adhesion between the contact thin film made of ceramic and the contact base material is not necessarily sufficient, and as a result, the contact thin film peels off. However, there is a problem in that the contacts are easily worn out, resulting in severe contact wear.

【0005】このような問題を解決するために、接点基
材と上記接点薄膜の間に所定厚みの中間層を介在させる
ということも行われている。例えば、NiFe合金の基
材の表面に、まず、ZrまたはTiを蒸着して中間層を
形成し、ついで、この中間層の上に、Zrに対してはZ
rNを、Tiに対してはTiNを接点薄膜とする材料が
提案されている(特開昭58−164115号公報参照
)。
[0005] In order to solve such problems, an intermediate layer of a predetermined thickness is interposed between the contact base material and the contact thin film. For example, first, Zr or Ti is deposited on the surface of a NiFe alloy base material to form an intermediate layer, and then Zr or Ti is deposited on top of this intermediate layer.
Materials using rN as a contact thin film and TiN as a contact thin film for Ti have been proposed (see Japanese Patent Laid-Open No. 164115/1983).

【0006】この材料の場合、接点薄膜と接点基材との
密着性は若干高まっているが、しかし、必ずしも満足の
いく良好な密着性であるとはいえない。本発明は、接点
基材,中間層およびセラミックスから成る接点薄膜で構
成されるリードスイッチ接点材料における上記問題を解
決し、接点基材と接点薄膜との密着性が極めて良好であ
り、したがって接点消耗が大いに抑制されたリードスイ
ッチ接点材料とその製造方法の提供を目的とする。
[0006] In the case of this material, the adhesion between the contact thin film and the contact base material is slightly improved, but it cannot necessarily be said that the adhesion is satisfactory and good. The present invention solves the above-mentioned problems in a reed switch contact material composed of a contact base material, an intermediate layer, and a contact thin film made of ceramics, and has extremely good adhesion between the contact base material and the contact thin film, so that contact wear The purpose of the present invention is to provide a reed switch contact material and a method for manufacturing the same, which greatly suppresses this.

【0007】[0007]

【課題を解決するための手段・作用】上記した目的を達
成する為に、本発明においては、NiFe合金から成る
基材と、該基材の表面に形成されたTiまたはZrを主
成分とする中間層と、該中間層の表面に形成され、周期
律表IVa族金属のセラミックスから成る接点薄膜とを
有するリードスイッチ接点材料において、少なくとも前
記基材と前記中間層との界面にはTiまたZrの拡散層
が形成されていることを特徴とするリードスイッチ接点
材料が提供され、また、NiFe合金から成る基材を4
00℃以上の温度に加熱しながら前記基材の表面にTi
またはZrを蒸着して中間層を形成し、ついで、前記中
間層の表面に、周期律表IVa族金属のセラミックスを
接点薄膜として形成することを特徴とするリードスイッ
チ接点材料の製造方法、ならびに、NiFe合金から成
る基材の表面にTiまたはZrを蒸着して中間層を形成
し、ついで全体を400℃以上の温度に加熱して、前記
中間層の表面に周期律表IVa族金属のセラミックスを
蒸着して接点薄膜を形成することを特徴とするリードス
イッチ接点材料の製造方法が提供される。
[Means and effects for solving the problem] In order to achieve the above-mentioned object, the present invention includes a base material made of a NiFe alloy, and a base material formed on the surface of the base material containing Ti or Zr as a main component. In a reed switch contact material having an intermediate layer and a contact thin film formed on the surface of the intermediate layer and made of a ceramic of group IVa metal of the periodic table, at least the interface between the base material and the intermediate layer contains Ti or Zr. A reed switch contact material is provided, characterized in that a diffusion layer of 4 is formed, and the base material made of a NiFe alloy is
Ti is applied to the surface of the base material while heating to a temperature of 00°C or higher.
Alternatively, a method for producing a reed switch contact material, characterized in that an intermediate layer is formed by vapor-depositing Zr, and then a ceramic of a group IVa metal of the periodic table is formed as a contact thin film on the surface of the intermediate layer, and An intermediate layer is formed by vapor depositing Ti or Zr on the surface of a base material made of a NiFe alloy, and then the whole is heated to a temperature of 400° C. or higher, and a ceramic of a group IVa metal of the periodic table is coated on the surface of the intermediate layer. A method for manufacturing a reed switch contact material is provided, which comprises forming a contact thin film by vapor deposition.

【0008】本発明の接点材料は、NiFe合金の基材
と上記中間層との界面に拡散層を形成したことを最大の
特徴とする。この拡散層は、中間層の構成元素であるT
iあるいはZrと接点基材の構成元素であるNi,Fe
とが、後述する方法によって相互に熱拡散して形成され
た合金または金属間化合物から成る層であって、接点基
材と中間層との接合界面における化学組成を連続的に変
化させ、もって接点基材と中間層との間の画然とした境
界を消滅させて、両者の密着性を向上させる働きをする
The main feature of the contact material of the present invention is that a diffusion layer is formed at the interface between the NiFe alloy base material and the intermediate layer. This diffusion layer is composed of T, which is a constituent element of the intermediate layer.
i or Zr and Ni, Fe, which are the constituent elements of the contact base material
is a layer made of an alloy or an intermetallic compound formed by mutual thermal diffusion by the method described below, and the chemical composition at the bonding interface between the contact base material and the intermediate layer is continuously changed, thereby forming a contact point. It works to eliminate the sharp boundary between the base material and the intermediate layer and improve the adhesion between the two.

【0009】本発明の接点材料において、中間層の膜厚
は0.01〜5μm程度とする。あまり厚くすると、中
間層自体の抵抗や内部応力が大きくなり、最表層の接点
層コーティングに特別な配慮を払うことが必要になると
いう問題が生じ、またあまり薄くすると後述の拡散層形
成時にこの中間に位置するTiやZrが少なすぎて効果
がでないからである。
In the contact material of the present invention, the thickness of the intermediate layer is approximately 0.01 to 5 μm. If it is made too thick, the resistance and internal stress of the intermediate layer itself will become large, causing the problem that special consideration must be paid to the outermost contact layer coating.If it is made too thin, this intermediate layer will be coated when forming the diffusion layer (described later). This is because there is too little Ti and Zr located in the area to have any effect.

【0010】この中間層は、接点基材の表面にTiまた
はZrを蒸着して形成される。蒸着の方法としては、常
法の真空蒸着,スパッタリング,イオンプレーティング
などが適用される。中間層の上に蒸着して形成される接
点薄膜は、Ti,Zr,Hfなどの周期律表IVa族金
属の、窒化物,炭化物,ホウ化物,ケイ化物,アルミ化
物の少なくとも1種のセラミックスで構成される。
[0010] This intermediate layer is formed by depositing Ti or Zr on the surface of the contact base material. As the deposition method, conventional vacuum deposition, sputtering, ion plating, etc. are applied. The contact thin film formed by vapor deposition on the intermediate layer is made of a ceramic of at least one of nitrides, carbides, borides, silicides, and alumides of metals from Group IVa of the periodic table, such as Ti, Zr, and Hf. configured.

【0011】これらのうち、中間層がZrで成る場合は
Zrのセラミックス、中間層がTiから成る場合はTi
のセラミックスで接点薄膜を形成すると、この接点薄膜
と中間層との密着性が良好になるので好ましい。また、
形成する接点薄膜の種類に対応して接点薄膜と中間層の
界面に、それぞれ窒素,炭素,ホウ素,ケイ素,アルミ
ニウムを拡散して拡散層を形成すると、密着性の一層の
向上が実現して好適である。
Among these, Zr ceramics are used when the intermediate layer is made of Zr, and Ti is used when the intermediate layer is made of Ti.
It is preferable to form the contact thin film using ceramics, since this improves the adhesion between the contact thin film and the intermediate layer. Also,
It is preferable to form a diffusion layer by diffusing nitrogen, carbon, boron, silicon, or aluminum at the interface between the contact thin film and the intermediate layer, depending on the type of contact thin film to be formed, as this will further improve adhesion. It is.

【0012】この接点薄膜の膜厚は、通常、0.05〜
100μm程度であることが好ましい。この接点薄膜の
蒸着方法としては、例えば、真空蒸着,スパッタリング
,イオンプレーティング,CVD,多層膜の熱処理によ
る合成などの常法が適用される。
[0012] The thickness of this contact thin film is usually 0.05~
The thickness is preferably about 100 μm. As a method for depositing this contact thin film, conventional methods such as vacuum deposition, sputtering, ion plating, CVD, and synthesis by heat treatment of a multilayer film are applied.

【0013】さて、本発明の接点材料における拡散層は
次のようにして形成される。第1の方法は、まず、常用
の成膜装置の中にNiFe合金基材をセットし、これを
400℃以上の温度に加熱した状態で、その表面にTi
またはZrを蒸着する方法である。この加熱されている
接点基材の表面にTiまたはZrが蒸着すると、その蒸
着初期の段階では、TiまたはZrが基材のNiFe合
金と反応して基材表面から内部に拡散し、Ti,Zr,
Ni,Feが混在する拡散層になる。拡散が飽和した時
点から以降は、この拡散層の上にTiまたはZrが単体
金属として層状に蒸着して中間層になる。
Now, the diffusion layer in the contact material of the present invention is formed as follows. The first method is to first set a NiFe alloy base material in a commonly used film forming apparatus, heat it to a temperature of 400°C or higher, and then coat the surface with Ti.
Alternatively, there is a method of vapor depositing Zr. When Ti or Zr is deposited on the surface of the heated contact base material, in the initial stage of the deposition, Ti or Zr reacts with the NiFe alloy of the base material and diffuses from the base material surface to the inside, and Ti, Zr ,
This becomes a diffusion layer in which Ni and Fe are mixed. After the diffusion is saturated, Ti or Zr is deposited as a single metal layer on this diffusion layer to form an intermediate layer.

【0014】拡散の状態、したがって拡散層の厚みは、
接点基材の温度によって規定され、この温度が400℃
未満では上記した拡散は起こらない。しかし、あまり高
い温度にすると、接点基材を劣化させたり、拡散が起こ
りすぎて接点表層にまでNiやFeが露出してしまうと
いう問題が生じてしまうので、接点基材の温度は400
〜700℃に制御することが好ましい。このとき、拡散
層の厚みは0.1〜1μmであり、中間層と接点基材と
の密着性を良好に確保することができる。
The state of diffusion and therefore the thickness of the diffusion layer is
It is defined by the temperature of the contact base material, and this temperature is 400℃
If it is less than that, the above-mentioned diffusion will not occur. However, if the temperature is too high, there will be problems such as deterioration of the contact base material or excessive diffusion, which will expose Ni and Fe to the contact surface layer, so the temperature of the contact base material should be set at 400
It is preferable to control the temperature to 700°C. At this time, the thickness of the diffusion layer is 0.1 to 1 μm, and good adhesion between the intermediate layer and the contact base material can be ensured.

【0015】第2の方法は、同じく成膜装置の中で、接
点基材の表面に所定厚みのZrまたはTiの蒸着層をま
ず形成し、その後、全体を400℃以上の温度に加熱し
てTiまたはZrの接点基材への拡散を進める方法であ
る。このようにして製造された接点材料は、それをガラ
ス封入してリードスイッチとして使用する際に、その接
触抵抗の安定化を図るために、更に、接点薄膜の表面に
Pt,Au,Rh,Ruなどの貴金属またはそれらの合
金を薄く蒸着してもよい。
[0015] The second method is to first form a deposited layer of Zr or Ti to a predetermined thickness on the surface of the contact base material in the same film forming apparatus, and then to heat the whole to a temperature of 400°C or higher. This method promotes the diffusion of Ti or Zr into the contact base material. When the contact material manufactured in this way is sealed in glass and used as a reed switch, in order to stabilize the contact resistance, the surface of the contact thin film is further coated with Pt, Au, Rh, Ru, etc. Noble metals such as or alloys thereof may be thinly deposited.

【0016】[0016]

【実施例】実施例1 52%Ni−Fe合金から成るリードスイッチの接点基
材を真空チャンバにセットし、チャンバ内を約1.0×
10−6Torrにまで真空排気し、基材を650℃に
加熱した状態で、Arイオンによってイオンボンバード
処理を行なって基材表面を洗浄した。
[Example] Example 1 A reed switch contact base material made of 52% Ni-Fe alloy was set in a vacuum chamber, and the inside of the chamber was approximately 1.0×
The substrate was evacuated to 10 −6 Torr and heated to 650° C., and the surface of the substrate was cleaned by ion bombardment with Ar ions.

【0017】ついで、イオンプレーティング法で、基材
表面に0.5μm相当量のZrを蒸着し、基材温度を6
50℃に維持したまま、更にその上にイオンプレーティ
ング法で厚み2μmのZrNを蒸着した。 実施例2 実施例1で用いた接点基材を真空チャンバにセットし、
チャンバ内を約1.0×10−6Torrに真空排気し
たのちArイオンでイオンボンバードして表面を洗浄し
、ついで、常温下で、イオンプレーティング法で基材表
面に0.5μm相当量のZrを蒸着した。
[0017] Next, an amount of Zr equivalent to 0.5 μm was deposited on the surface of the base material by ion plating, and the temperature of the base material was lowered to 6.
While maintaining the temperature at 50° C., ZrN with a thickness of 2 μm was further deposited thereon by ion plating. Example 2 The contact base material used in Example 1 was set in a vacuum chamber,
After evacuating the inside of the chamber to approximately 1.0 x 10-6 Torr, the surface was cleaned by ion bombardment with Ar ions, and then an amount of Zr equivalent to 0.5 μm was deposited on the base material surface by ion plating at room temperature. was deposited.

【0018】その後、基材を650℃に加熱し、その状
態で、イオンプレーティング法によって厚み2μmのZ
rN層を形成した。 実施例3 実施例1で用いたリードスイッチの接点基材を真空チャ
ンバにセットし、チャンバ内を約1.0×10−6To
rrにまで真空排気し、基材を550℃に加熱した状態
で、Arイオンによってイオンボンバード処理を行なっ
て基材表面を洗浄した。
[0018] Thereafter, the base material was heated to 650°C, and in that state, a Z film with a thickness of 2 μm was formed by ion plating.
An rN layer was formed. Example 3 The contact base material of the reed switch used in Example 1 was set in a vacuum chamber, and the inside of the chamber was heated to approximately 1.0 x 10-6 To
The substrate was evacuated to rr and heated to 550° C., and ion bombardment was performed using Ar ions to clean the surface of the substrate.

【0019】ついで、イオンプレーティング法で、基材
表面に0.5μm相当量のTiを蒸着し、基材温度を5
50℃に維持したまま、更にその上にイオンプレーティ
ング法で厚み2μmのTiNを蒸着した。最後に、この
TiNの上に真空蒸着法で厚み0.1μmのRh層を形
成した。 実施例4 実施例1で用いた接点基材を真空チャンバにセットし、
チャンバ内を約1.0×10−6Torrに真空排気し
たのちArイオンでイオンボンバードして表面を洗浄し
、ついで、常温下で、イオンプレーティング法で基材表
面に0.5μm相当量のTiを蒸着した。
Next, an amount of Ti equivalent to 0.5 μm was deposited on the surface of the base material using an ion plating method, and the temperature of the base material was lowered to 5 μm.
While maintaining the temperature at 50° C., TiN with a thickness of 2 μm was further deposited thereon by ion plating. Finally, a Rh layer with a thickness of 0.1 μm was formed on this TiN by vacuum evaporation. Example 4 The contact base material used in Example 1 was set in a vacuum chamber,
After evacuating the inside of the chamber to approximately 1.0 x 10-6 Torr, the surface was cleaned by ion bombardment with Ar ions, and then an amount of Ti equivalent to 0.5 μm was deposited on the substrate surface by ion plating at room temperature. was deposited.

【0020】その後、基材を550℃に加熱し、その状
態で、イオンプレーティング法によって厚み2μmのT
iN層を形成し、更にその上に、真空蒸着によって厚み
0.1μmのRh層を形成した。 比較例1 Zr層を形成することなく、直接、接点基材の表面にイ
オンプレーティング法で厚み2.5μmのZrN層を形
成したことを除いては、実施例1と同様にして接点材料
を製造した。 比較例2 Ti層を形成することなく、直接、接点基材の表面にイ
オンプレーティング法で厚み2.5μmのTiN層を形
成したことを除いては、実施例3と同様にして接点材料
を製造した。 比較例3 接点基材の加熱温度が350℃であったことを除いては
、実施例2と同様にして接点材料を製造した。
[0020] Thereafter, the base material was heated to 550°C, and in that state, a T film with a thickness of 2 μm was formed by ion plating.
An iN layer was formed, and a Rh layer having a thickness of 0.1 μm was further formed thereon by vacuum evaporation. Comparative Example 1 A contact material was prepared in the same manner as in Example 1, except that a 2.5 μm thick ZrN layer was directly formed on the surface of the contact base material by ion plating without forming a Zr layer. Manufactured. Comparative Example 2 A contact material was formed in the same manner as in Example 3, except that a 2.5 μm thick TiN layer was directly formed on the surface of the contact base material by ion plating without forming a Ti layer. Manufactured. Comparative Example 3 A contact material was produced in the same manner as in Example 2, except that the heating temperature of the contact base material was 350°C.

【0021】実施例1〜4,比較例1,3の接点材料に
つき、180°曲げ試験を行なってその表面を走査電顕
で観察して蒸着膜の密着性を調べた。蒸着膜が基材から
剥離しない場合を○,剥離している場合を×として、表
1に示した。また、上記各接点材料をガラス封入してリ
ードスイッチを製造し、30万回の接点開閉を反復して
エージング処理を行ったのちその接触抵抗を測定した。 更に、室温←→500℃の加熱−冷却のヒートサイクル
を100回反復し、接点薄膜における外観割れの有無を
走査電顕で観察した。更に、接点開閉を反復し累積故障
率が50%となる動作回数を測定した。以上の結果を一
括して表1に示した。
The contact materials of Examples 1 to 4 and Comparative Examples 1 and 3 were subjected to a 180° bending test, and the surfaces thereof were observed with a scanning electron microscope to examine the adhesion of the deposited films. Table 1 shows the cases in which the deposited film did not peel off from the base material as ○, and the cases in which it peeled off as ×. In addition, a reed switch was manufactured by enclosing each of the above contact materials in glass, and the contact resistance was measured after aging treatment by repeating the contact opening and closing 300,000 times. Furthermore, a heat cycle of heating and cooling at room temperature←→500°C was repeated 100 times, and the presence or absence of external cracks in the contact thin film was observed using a scanning electron microscope. Furthermore, the number of operations at which the cumulative failure rate reached 50% was measured by repeating the opening and closing of the contacts. The above results are collectively shown in Table 1.

【0022】[0022]

【表1】[Table 1]

【0023】また、実施例1の接点材料と比較例3の接
点材料につき、オージェ電子分光法により、接点薄膜の
表面からの深さ方向における元素濃度分析を行った。そ
の結果を、実施例1,実施例3については図1,図2、
比較例3については図3に示した。これらの図から明ら
かなように、本発明の接点材料では、Zr層(中間層)
,Ti層(中間層)と接点基材(NiFe合金)の間に
拡散層が形成されている。しかし、比較例の接点材料に
はこの拡散層の存在は認められない。これは、基材温度
が350℃と400℃よりも低い温度であったからであ
る。
Element concentration analysis in the depth direction from the surface of the contact thin film was also performed on the contact material of Example 1 and the contact material of Comparative Example 3 by Auger electron spectroscopy. The results are shown in Figures 1 and 2 for Example 1 and Example 3.
Comparative Example 3 is shown in FIG. As is clear from these figures, in the contact material of the present invention, the Zr layer (intermediate layer)
, a diffusion layer is formed between the Ti layer (intermediate layer) and the contact base material (NiFe alloy). However, the existence of this diffusion layer is not observed in the contact material of the comparative example. This is because the substrate temperature was 350°C, lower than 400°C.

【0024】[0024]

【発明の効果】以上の説明で明らかなように、本発明の
接点材料は接点基材と中間層との界面が画然とした境界
面ではなく、これら各層の成分元素が混在する拡散層に
なっているので、互いの密着性は極めて良好である。し
たがって、接点薄膜の剥離に基づく接点消耗が抑制され
るので、工業的価値の高いリードスイッチ接点材料であ
る。
[Effects of the Invention] As is clear from the above explanation, in the contact material of the present invention, the interface between the contact base material and the intermediate layer is not a sharp boundary surface, but a diffusion layer in which the component elements of each layer are mixed. Therefore, their adhesion to each other is extremely good. Therefore, since contact wear due to peeling of the contact thin film is suppressed, it is a reed switch contact material with high industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例1の接点材料のオージェ電子分光法の結
果を示すグラフである。
FIG. 1 is a graph showing the results of Auger electron spectroscopy of the contact material of Example 1.

【図2】実施例3の接点材料のオージェ電子分光法の結
果を示すグラフである。
FIG. 2 is a graph showing the results of Auger electron spectroscopy of the contact material of Example 3.

【図3】比較例3の接点材料のオージェ電子分光法の結
果を示すグラフである。
FIG. 3 is a graph showing the results of Auger electron spectroscopy of the contact material of Comparative Example 3.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  NiFe合金から成る基材と、該基材
の表面に形成されたTiまたはZrを主成分とする中間
層と、該中間層の表面に形成され、周期律表IVa族金
属のセラミックスから成る接点薄膜とを有するリードス
イッチ接点材料において、少なくとも前記基材と前記中
間層との界面にはTiまたはZrの拡散層が形成されて
いることを特徴とするリードスイッチ接点材料。
1. A base material made of a NiFe alloy, an intermediate layer mainly composed of Ti or Zr formed on the surface of the base material, and a base material formed on the surface of the intermediate layer made of a metal of group IVa of the periodic table. 1. A reed switch contact material having a contact thin film made of ceramic, characterized in that a Ti or Zr diffusion layer is formed at least at the interface between the base material and the intermediate layer.
【請求項2】  NiFe合金から成る基材を400℃
以上の温度に加熱しながら前記基材の表面にTiまたは
Zrを蒸着して中間層を形成し、ついで、前記中間層の
表面に、周期律表IVa族金属のセラミックスを接点薄
膜として形成することを特徴とするリードスイッチ接点
材料の製造方法。
[Claim 2] A base material made of NiFe alloy is heated at 400°C.
Forming an intermediate layer by vapor depositing Ti or Zr on the surface of the base material while heating to a temperature above, and then forming a ceramic of a group IVa metal of the periodic table as a contact thin film on the surface of the intermediate layer. A method for manufacturing a reed switch contact material characterized by:
【請求項3】  NiFe合金から成る基材の表面にT
iまたはZrを蒸着して中間層を形成し、ついで全体を
400℃以上の温度に加熱して、前記中間層の表面に周
期律表IVa族金属のセラミックスを蒸着して接点薄膜
を形成することを特徴とするリードスイッチ接点材料の
製造方法。
[Claim 3] T on the surface of the base material made of NiFe alloy.
Forming an intermediate layer by vapor depositing i or Zr, then heating the whole to a temperature of 400° C. or higher, and vapor depositing ceramics of a group IVa metal of the periodic table on the surface of the intermediate layer to form a contact thin film. A method for manufacturing a reed switch contact material characterized by:
JP5274691A 1991-03-18 1991-03-18 Lead switch contact material and manufacture thereof Pending JPH04289618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5274691A JPH04289618A (en) 1991-03-18 1991-03-18 Lead switch contact material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5274691A JPH04289618A (en) 1991-03-18 1991-03-18 Lead switch contact material and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04289618A true JPH04289618A (en) 1992-10-14

Family

ID=12923481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5274691A Pending JPH04289618A (en) 1991-03-18 1991-03-18 Lead switch contact material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04289618A (en)

Similar Documents

Publication Publication Date Title
JPH03119727A (en) Semiconductor device and its manufacture
JPH05507115A (en) Method and structure for forming alpha Ta in thin film form
JPH0750699B2 (en) Manufacturing method of titanium / titanium nitride double layer in high density integrated circuit
JP2012533514A (en) Low emission glass and manufacturing method thereof
JPS5823952B2 (en) shot key barrier device
US7799677B2 (en) Device comprising multi-layered thin film having excellent adhesive strength and method for fabricating the same
JPS59103216A (en) Electric contact
US4035526A (en) Evaporated solderable multilayer contact for silicon semiconductor
JP3304541B2 (en) Method of forming ohmic electrode
JP3086556B2 (en) Heat resistant ohmic electrode on semiconductor diamond layer and method of forming the same
US5068709A (en) Semiconductor device having a backplate electrode
US5597064A (en) Electric contact materials, production methods thereof and electric contacts used these
JPS62222616A (en) Heat-resistant electrode thin film
JPH04289618A (en) Lead switch contact material and manufacture thereof
JPH06310509A (en) Wiring structure of semiconductor integrated circuit
KR930001311A (en) Metal wiring layer formation method of a semiconductor device
JPH08188869A (en) Method of forming thin metallic film of semiconductor element and production of gas sensor
JPH07122724A (en) Ohmic electrode of n-type cubic boron nitride semiconductor and its formation
US3990094A (en) Evaporated solderable multilayer contact for silicon semiconductor
JP2819869B2 (en) Method for manufacturing semiconductor device
JP3288010B2 (en) Method for forming metal wiring of semiconductor device
JPH04322016A (en) Sealed contact material
JPH05217451A (en) Sealed contact material
JPH04237912A (en) Sealed contact
JP2555270B2 (en) Encapsulated contact material and manufacturing method thereof