JPH04289459A - Piezoelectric acceleration sensor - Google Patents

Piezoelectric acceleration sensor

Info

Publication number
JPH04289459A
JPH04289459A JP9155791A JP5579191A JPH04289459A JP H04289459 A JPH04289459 A JP H04289459A JP 9155791 A JP9155791 A JP 9155791A JP 5579191 A JP5579191 A JP 5579191A JP H04289459 A JPH04289459 A JP H04289459A
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric element
acceleration sensor
electrode
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9155791A
Other languages
Japanese (ja)
Inventor
Hiroshi Tanaka
洋 田中
Masaru Konno
大 金野
Kikuaki Kamamura
鎌村 企久彰
Osamu Kawai
修 川合
Tatsuo Tada
辰雄 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP9155791A priority Critical patent/JPH04289459A/en
Publication of JPH04289459A publication Critical patent/JPH04289459A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the preparation of a piezoelectric acceleration sensor by simplifying the structure of the piezoelectric element of said acceleration sensor, to provide the piezoelectric element in a both-end support structure to enhance the vibration resistance and impact resistance thereof and to facilitate the temp. compensation due to temp. compensation circuit. CONSTITUTION:A piezoelectric element 2 is formed by alternately laminating piezoelectric ceramic thin plate layers 4a, 4b and three electrode layers 5a, 5b, 5c to achieve structural simplification. Both ends of the piezoelectric element are respectively supported by two supports 3a, 3b. By this constitution, the force applied to the piezoelectric element 2 is dispersed when said element receives an impact. Further, two piezoelectric ceramics thin plate layers 4a, 4b different in the temp. characteristics of a quality coefficient are combined to linearly change the sensor output to a temp. change.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、物体に作用する衝撃や
振動などを圧電素子を用いて電気的に検出する圧電型加
速度センサに係り、特に簡易な構造の圧電型加速度セン
サに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric acceleration sensor that electrically detects shocks, vibrations, etc. acting on an object using a piezoelectric element, and particularly relates to a piezoelectric acceleration sensor having a simple structure.

【0002】0002

【従来の技術】近年、特に自動車等の車輌においては、
高い安全性と快適性及び安定した走行性と操縦性が要求
され、これに答えるべく、例えば衝突事故の際に搭乗者
を保護するためのエアバッグシステム等の乗員保護装置
、或は乗心地を良くしたり、走行及び操縦の安定性を高
めるための電子制御サスペンションシステム等が開発さ
れており、これと並行して加速度センサの必要性が高ま
りつつある。
[Prior Art] In recent years, especially in vehicles such as automobiles,
High safety and comfort as well as stable driving performance and maneuverability are required, and in order to meet these demands, passenger protection devices such as airbag systems to protect passengers in the event of a collision, or ride comfort. Electronically controlled suspension systems and the like have been developed to improve the stability of driving and steering, and at the same time, the need for acceleration sensors is increasing.

【0003】斯かる加速度センサとしては、その動作原
理や形態の違いにより、圧電型、動電型、光電型及びサ
ーボ型等種々の型式のものがある。その中でも、圧電素
子が外力の作用で歪を生じると、その外力に比例した量
の電荷を発生することを利用した圧電型加速度センサは
、構造が簡単で、しかも、小型、軽量且つ堅牢であるこ
とから広く用いられている。
Such acceleration sensors are of various types, such as piezoelectric type, electrodynamic type, photoelectric type, and servo type, depending on their operating principles and configurations. Among these, piezoelectric acceleration sensors utilize the fact that when a piezoelectric element is distorted by the action of an external force, it generates an amount of charge proportional to the external force.The piezoelectric acceleration sensor has a simple structure, and is compact, lightweight, and robust. Therefore, it is widely used.

【0004】ところで従来、片持梁構造の圧電型加速度
センサとしては、例えば特開昭62−24154号公報
に開示されたものがある。これは、セラミックスもしく
は高分子物質よりなり且つ両面が電極で覆われた一対の
圧電素子板の相互間に補強用金属板を固定してなる圧電
素子を、固定部によって被測定物に直接または間接に支
持した構成である。
By the way, as a conventional piezoelectric acceleration sensor having a cantilever structure, there is one disclosed in, for example, Japanese Patent Laid-Open No. 62-24154. In this method, a piezoelectric element is formed by fixing a reinforcing metal plate between a pair of piezoelectric element plates made of ceramics or polymeric substances and covered with electrodes on both sides, and is directly or indirectly attached to the object to be measured using a fixing part. This is a configuration that supports this.

【0005】斯かる構成において、被測定物に加速度が
加わると、当該加速度に応じた慣性力が外力Fとして前
記圧電素子に作用し、その応力によって該圧電素子自身
が撓み、その長手方向に歪が発生する。この歪の発生に
伴って前記圧電素子の予め分極処理を施した電極面に電
荷が発生し、その電荷Qはリード線を介して外部の測定
装置に電圧Vとして供給されて加速度として読み取られ
る。
In such a configuration, when acceleration is applied to the object to be measured, an inertial force corresponding to the acceleration acts on the piezoelectric element as an external force F, and the piezoelectric element itself bends due to the stress, causing distortion in its longitudinal direction. occurs. As this strain occurs, a charge is generated on the electrode surface of the piezoelectric element which has been polarized in advance, and the charge Q is supplied as a voltage V to an external measuring device via a lead wire and read as acceleration.

【0006】ここで、加速度センサに加わる外力Fと、
圧電素子に発生する電荷Qとの関係は次のI式のように
なる。
[0006] Here, the external force F applied to the acceleration sensor is
The relationship with the charge Q generated in the piezoelectric element is expressed by the following equation I.

【0007】 Q=d・F                    
  …(I)(但し、dは圧電歪係数) また、圧電素子に発生する電荷Qと測定装置に供給され
る電圧Vとの関係は、次のII式のようになる。
Q=d・F
...(I) (where d is a piezoelectric strain coefficient) Further, the relationship between the charge Q generated in the piezoelectric element and the voltage V supplied to the measuring device is expressed by the following equation II.

【0008】 V=Q/C                    
  …(II)但し、Cは圧電素子の電気特性を決定す
る静電容量で温度に依存する値であり、誘電率をεr、
圧電素子の電極面積をS、電極間厚みをdとすると、静
電容量Cと、誘電率εr、電極面積S及び電極間厚みd
の関係は次のIII式のようになる。 C=εr S/d                …
(III)ところで、電圧Vに影響する要因の一つに品
質係数がある。これは、例えば角周波数ωの交番電界E
を誘電体に印加した場合、電気変位Dも同じ角周波数で
振動するが、分極の起こる早さは有限であるので電気変
位Dの位相は印加電界の位相より遅れることになる。そ
の遅れ角をδとすると、交番電界の一周期の間にω=π
EDsinδのエネルギー損失が生じる。
[0008]V=Q/C
...(II) However, C is a capacitance that determines the electrical characteristics of the piezoelectric element and is a temperature-dependent value, and the dielectric constant is εr,
If the electrode area of the piezoelectric element is S and the inter-electrode thickness is d, then the capacitance C, the dielectric constant εr, the electrode area S and the inter-electrode thickness d
The relationship is as shown in the following equation III. C=εr S/d...
(III) By the way, one of the factors that affects the voltage V is the quality factor. This is, for example, an alternating electric field E with an angular frequency ω
When applied to a dielectric, the electric displacement D also vibrates at the same angular frequency, but since the speed at which polarization occurs is finite, the phase of the electric displacement D lags behind the phase of the applied electric field. If the delay angle is δ, then ω=π during one period of the alternating electric field
An energy loss of ED sin δ occurs.

【0009】電気変位D=εε0E 但し、E:外部電界、ε0:真空の比誘電率、ε:比誘
電率。
Electrical displacement D=εε0E where E: external electric field, ε0: relative permittivity of vacuum, ε: relative permittivity.

【0010】無損失の場合はεは実数であるが、損失を
伴う場合には複素数となり、複素誘電率という。これを
ε=ε′−jε″とおくと、前述のδとの間にtanδ
=ε″/ε′の関係を生ずる。エネルギ損失はω=πε
′ε0E2tanδとなる。ε″又はtanδが誘電損
失の特性値として使われる。ここで、Q=1/tanδ
を品質係数と呼び、誘電材料の特性値の一つである。
[0010] In the case of no loss, ε is a real number, but in the case of loss, it becomes a complex number, which is called a complex dielectric constant. If we set this as ε=ε′−jε″, tanδ
= ε″/ε′.The energy loss is ω=πε
′ε0E2tanδ. ε″ or tanδ is used as the characteristic value of dielectric loss. Here, Q=1/tanδ
is called the quality factor and is one of the characteristic values of dielectric materials.

【0011】[0011]

【発明が解決しようとする課題】ところで、例えば自動
車用部品として要求される項目の一つに、製造原価が低
いことという要求がある。原価低減の方法としては製品
構造を簡単にすることによって構成部材を減らし、製造
工程を単純にして、その結果として原価が下げられるこ
とが一つの望ましい方法である。しかし、従来の圧電素
子は構造が複雑であり、また、製品構造が複雑であるこ
とは、製造原価アップ以外にも、構成部材が多いことか
ら信頼性の評価を行い難く、変質、劣化し易い構成部材
を除くことができないので、耐久性を向上することが困
難であるという問題をも招く。
[Problems to be Solved by the Invention] By the way, one of the requirements for automobile parts, for example, is that the manufacturing cost be low. One desirable method for reducing costs is to simplify the product structure, thereby reducing the number of component parts and simplifying the manufacturing process, resulting in lower costs. However, conventional piezoelectric elements have a complex structure, and the complexity of the product structure not only increases manufacturing costs, but also makes it difficult to evaluate reliability due to the large number of component parts, making it susceptible to deterioration and deterioration. Since the constituent members cannot be removed, this also poses a problem in that it is difficult to improve durability.

【0012】また、例えば自動車用エアバッグシステム
に用いられる圧電型加速度センサは、自動車の走行中常
に振動・衝撃を受けるのであり、加速度センサを構成す
る圧電素子は耐振動・耐衝撃性を備えたものでなければ
ならないが、従来のものは振動・衝撃に対する耐久性が
必ずしも十分でないという問題もあった。
[0012] Furthermore, piezoelectric acceleration sensors used in automobile airbag systems, for example, are constantly subjected to vibrations and shocks while the car is running, and the piezoelectric elements constituting the acceleration sensor must be resistant to vibrations and shocks. However, conventional ones have had the problem of not necessarily having sufficient durability against vibrations and shocks.

【0013】更に、例えば自動車用エアバッグシステム
に用いられる圧電型加速度センサは、通常、使用温度範
囲が−40℃〜100℃と広域である。圧電セラミック
をはじめとする圧電物質は、外力の作用によって発生す
る電荷量が温度の影響を受けることが知られている。こ
のため、加速度センサとして応用する場合には、温度補
償回路を介することにより温度による出力(発生する電
荷量)の変化を補償する場合が多い。
Furthermore, piezoelectric acceleration sensors used, for example, in automobile airbag systems usually have a wide operating temperature range of -40°C to 100°C. It is known that in piezoelectric materials such as piezoelectric ceramics, the amount of charge generated by the action of external force is affected by temperature. Therefore, when applied as an acceleration sensor, changes in output (generated charge amount) due to temperature are often compensated for through a temperature compensation circuit.

【0014】しかしながら、加速度センサの出力が温度
に対して直線的に変化する場合には、やはり温度に対し
て一定の傾きを示す温度補償回路を組み合わせることで
目的を達するが、加速度センサの出力が温度に対して曲
線的に変化する場合に、これを補償することは極めて困
難である。例えば、使用温度範囲の高温側で品質係数が
小さくなる場合には(図12)、加速度センサとしての
出力も同じ温度域で同様に低下している(図13)。ま
た、使用温度範囲の中ほどで品質係数が大きく凹状を示
す場合には(図14)、加速度センサとしての出力も同
様に大きく凹状を示している(図15)。これらに対し
て、品質係数が温度に対して直線的に変化する場合には
(図10)、加速度センサとしての出力も同様に、温度
に対して直線的に変化する(図11)。
However, if the output of the acceleration sensor changes linearly with temperature, the objective is achieved by combining a temperature compensation circuit that shows a constant slope with respect to temperature, but the output of the acceleration sensor changes linearly with temperature. This is extremely difficult to compensate for when it varies curvilinearly with temperature. For example, when the quality factor decreases on the high temperature side of the operating temperature range (FIG. 12), the output as an acceleration sensor also decreases in the same temperature range (FIG. 13). Further, when the quality factor shows a large concave shape in the middle of the operating temperature range (FIG. 14), the output as an acceleration sensor also shows a large concave shape (FIG. 15). On the other hand, if the quality factor changes linearly with temperature (FIG. 10), the output as an acceleration sensor also changes linearly with temperature (FIG. 11).

【0015】本発明は上記事情に鑑みてなされたもので
、構造が簡素で耐久性に優れ、耐振動性及び耐衝撃性に
優れ、且つ温度補償を容易に行うことのできる圧電型加
速度センサを提供することを目的としている。
The present invention has been made in view of the above circumstances, and provides a piezoelectric acceleration sensor that has a simple structure, excellent durability, excellent vibration resistance and shock resistance, and can easily perform temperature compensation. is intended to provide.

【0016】[0016]

【課題を解決するための手段】前述の課題を解決するた
めこの発明は、加速度を受けたときに歪を生じ、これに
応じて発生する電荷量から加速度を感知する圧電素子を
有する圧電型加速度センサにおいて、前記圧電素子が、
複数の薄板状の圧電性物質と複数の薄膜状の電極材料と
を積層してなる。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a piezoelectric type acceleration device having a piezoelectric element that generates distortion when subjected to acceleration and senses acceleration from the amount of charge generated in response to the distortion. In the sensor, the piezoelectric element
It is formed by laminating a plurality of thin plate-like piezoelectric substances and a plurality of thin film-like electrode materials.

【0017】[0017]

【作用】前記圧電素子が複数の薄板状の圧電性物質と複
数の薄膜状の電極材料とを積層してなるので、構造は簡
単であり、製造工程が少なくなる。
[Operation] Since the piezoelectric element is formed by laminating a plurality of thin plate-like piezoelectric substances and a plurality of thin film-like electrode materials, the structure is simple and the number of manufacturing steps is reduced.

【0018】[0018]

【実施例】以下、本発明の実施例を図面に基づき説明す
る。
Embodiments Hereinafter, embodiments of the present invention will be explained based on the drawings.

【0019】図16は本発明の第1の実施例に係る圧電
型加速度センサの断面図であり、同図中1は圧電型加速
度センサで、圧電素子2とこの圧電素子2を支持する支
持体3a,3bとベース部6と金属ケース7とからなる
FIG. 16 is a sectional view of a piezoelectric acceleration sensor according to the first embodiment of the present invention, in which 1 is a piezoelectric acceleration sensor, and a piezoelectric element 2 and a support for supporting the piezoelectric element 2 are shown. 3a, 3b, a base portion 6, and a metal case 7.

【0020】圧電素子2は、図20に示すように、一対
の薄板状の圧電セラミック層(圧電性物質)4a,4b
と、電極層(電極材料)5a,5b,5cとからなる。 圧電性物質としては、例えば以下のような物質がある。
As shown in FIG. 20, the piezoelectric element 2 includes a pair of thin plate-shaped piezoelectric ceramic layers (piezoelectric material) 4a and 4b.
and electrode layers (electrode materials) 5a, 5b, and 5c. Examples of piezoelectric substances include the following substances.

【0021】圧電セラミック層4a,4bは互いに同一
形状である。圧電セラミック層4a,4bは長方形状を
なす。圧電セラミック層4a,4bと、白金、パラジウ
ム、銀、ニッケル又はこれらの合金等よりなる薄膜状の
電極層5a,5b,5cとを交互に接合して圧電素子2
が形成される。この圧電素子2は、例えば厚さ0.1〜
0.6mm、好ましくは0.15〜0.3mm、幅は1
.0〜5.0mm、好ましくは1.8〜3.5mm、長
さは6.0〜15.0mm、好ましくは7.9〜8.6
mmである。
The piezoelectric ceramic layers 4a and 4b have the same shape. The piezoelectric ceramic layers 4a and 4b have a rectangular shape. The piezoelectric element 2 is formed by alternately bonding piezoelectric ceramic layers 4a, 4b and thin film electrode layers 5a, 5b, 5c made of platinum, palladium, silver, nickel, or an alloy thereof.
is formed. This piezoelectric element 2 has a thickness of, for example, 0.1 to
0.6mm, preferably 0.15-0.3mm, width 1
.. 0-5.0 mm, preferably 1.8-3.5 mm, length 6.0-15.0 mm, preferably 7.9-8.6
It is mm.

【0022】図17に示す圧電素子において、圧電セラ
ミック層4aに接合された電極層5aの一端部は図16
に示すように切り欠いてあり、圧電セラミック層4aの
一端部が露出している。図18は圧電素子2を図16の
逆方向から見た断面図であり、圧電セラミック層4bに
接合された電極層5cの一端部も図18に示すように切
り欠いてあり、圧電セラミック層4bの一端部が露出し
ている。図20に示すように平面視で電極層5aの切欠
部の位置は、電極層5cの切欠部に対して非対称である
。図19は図17のB−B線に沿う断面図であり、電極
層5bの両端部が切り欠いてあり、圧電セラミック層4
bの両端部が露出している。
In the piezoelectric element shown in FIG. 17, one end of the electrode layer 5a bonded to the piezoelectric ceramic layer 4a is shown in FIG.
As shown in FIG. 2, the piezoelectric ceramic layer 4a is cut out and one end portion of the piezoelectric ceramic layer 4a is exposed. FIG. 18 is a sectional view of the piezoelectric element 2 seen from the opposite direction of FIG. 16, and one end of the electrode layer 5c bonded to the piezoelectric ceramic layer 4b is also cut away as shown in FIG. One end is exposed. As shown in FIG. 20, the position of the notch of the electrode layer 5a is asymmetrical with respect to the notch of the electrode layer 5c in plan view. FIG. 19 is a cross-sectional view taken along the line B-B in FIG. 17, in which both ends of the electrode layer 5b are cut out, and the piezoelectric ceramic layer 4
Both ends of b are exposed.

【0023】圧電素子2は、その長手方向両端側が、ガ
ラス等のシールされた絶縁体8を介してベース部6を貫
通した支持体3a,3bに支持された両端支持構造とな
っている。支持体3a,3bの一端はそれぞれ二股状に
形成され、支持体3aの一端は電極5aに、支持体3b
の一端は電極5cにそれぞれ接続されており、支持体3
a,3bの他端側は絶縁体8を介して、ベース部6を貫
通して外方へ延出して図示しない温度補償回路に接続さ
れている。各支持体3a,3bはそれぞれ電極端子とし
て、それぞれの電極からの電荷を出力として伝える機能
をも有している。
The piezoelectric element 2 has a both-end support structure in which both ends in the longitudinal direction are supported by supports 3a and 3b passing through the base portion 6 via a sealed insulator 8 such as glass. One end of the supports 3a, 3b is formed into a bifurcated shape, one end of the support 3a is connected to the electrode 5a, and one end of the support 3b is connected to the electrode 5a.
One end of each is connected to the electrode 5c, and the support 3
The other ends of a and 3b extend outward through the base portion 6 via an insulator 8, and are connected to a temperature compensation circuit (not shown). Each of the supports 3a and 3b also has the function of acting as an electrode terminal and transmitting the charge from each electrode as an output.

【0024】支持体3a,3bと電極層5a,5cの接
続は、半田付け、導電性接着剤による接着又は差込み(
圧入)等の方法により行なわれる。電極層5a,5cに
切欠部がなく、支持体3a,3bの二股の両側が電極層
5a,5cにそれぞれ接触すると、圧電素子2の両側面
に発生した電荷が中和し、打消し合ってしまうため、片
側は電極層5a,5cの一部を切り欠いているのである
The supports 3a, 3b and the electrode layers 5a, 5c may be connected by soldering, adhesion with a conductive adhesive, or by insertion (
This is done by methods such as press-fitting. When the electrode layers 5a and 5c have no notches and both sides of the bifurcated supports 3a and 3b contact the electrode layers 5a and 5c, the charges generated on both sides of the piezoelectric element 2 are neutralized and cancel each other out. For storage purposes, a portion of the electrode layers 5a and 5c is cut out on one side.

【0025】圧電セラミック層4a,4b間の薄膜状の
電極層5bは、支持体3a,3bと接触したり、導電性
接着剤等を電極層5a(5c)と支持体3a(3b)と
の間に盛った時、はみ出して導電性接着剤と電極層5b
とが接触しないように、両端部を切り欠いてある。図示
しない温度補償回路は、インピーダンス変換、出力増幅
及び温度補償を目的とする回路から構成されている。ま
た、圧電素子2は、金属製平板状のベース部6に抵抗溶
接、半田付又は圧接等の手段で固定された金属ケース7
内に収容され、真空中又はN2等の不活性ガス雰囲気中
におかれる。金属ケース7内の雰囲気は乾燥空気でも良
く、またシリコンオイル等のような液体でもよい。片持
梁構造が両端支持構造になったことと、これに伴い補強
用金属板等が無くなったことを除き、検出動作原理は前
述した従来のものと同じである。
The thin film electrode layer 5b between the piezoelectric ceramic layers 4a, 4b is in contact with the supports 3a, 3b, or by applying a conductive adhesive or the like between the electrode layer 5a (5c) and the support 3a (3b). When placed in between, the conductive adhesive and electrode layer 5b protrude
Both ends are cut out to prevent contact. A temperature compensation circuit (not shown) is composed of a circuit whose purpose is impedance conversion, output amplification, and temperature compensation. Furthermore, the piezoelectric element 2 is fixed to a metal case 7 by resistance welding, soldering, pressure welding, etc. to a flat metal base part 6.
The device is housed in a vacuum or in an inert gas atmosphere such as N2. The atmosphere inside the metal case 7 may be dry air or may be a liquid such as silicone oil. The principle of detection operation is the same as the conventional one described above, except that the cantilever structure has been changed to a structure supported at both ends, and the reinforcing metal plate and the like have been eliminated accordingly.

【0026】以上の構成は温度補償回路を有しない圧電
型加速度センサにも適用されることはいうまでもない。
It goes without saying that the above configuration can also be applied to a piezoelectric acceleration sensor that does not have a temperature compensation circuit.

【0027】従来の圧電型加速度センサと異なる新規な
点は、複数の薄板状の圧電物質である圧電セラミック層
4a,4bと複数の薄膜状の電極材料である電極層5a
,5b,5cとを交互に積層したことである。ここで圧
電素子2は後述する方法によって製造される。
The novel points different from conventional piezoelectric acceleration sensors are a plurality of piezoelectric ceramic layers 4a and 4b made of thin plate-like piezoelectric materials and a plurality of electrode layers 5a made of a plurality of thin film-like electrode materials.
, 5b, and 5c are alternately stacked. Here, the piezoelectric element 2 is manufactured by a method described later.

【0028】本実施例の圧電素子2は従来のものと比べ
て構造が単純であるため製造が簡易になると同時に、圧
電素子2の構成部材が減ることによって、例えば温度、
湿度などに影響を受け易い材料の使用を減らし得る。即
ち、従来の圧電素子では衝撃に耐えるだけの強度を与え
るためにセラミック板に補強用の金属板を接着剤を使っ
て接合していたが、金属板や接着剤は線膨張率がセラミ
ックと異なる場合が多く、温度が変化する環境では、熱
応力を生じ疲労破損するおそれがあり、また接着剤は吸
湿劣化することが考えられるのに対し、本実施例におい
ては、圧電セラミック層4a,4b同士を接合している
電極層5bは非常に薄くまた線膨張率の小さいものを使
用するので上記のような問題が生ずることはない。また
、2個の支持体3a,3bを用いて圧電素子2の重量を
2個所(両端)で受け止め、また圧電素子2の固定基盤
であるベース部6に衝撃が加わったとき、その力は支持
体3a,3bの両方に分散して伝えられる。このため衝
撃力が圧電素子2の一個所に集中して破損に至ることが
少なく、また片持梁構造の圧電素子が固定部を上に圧電
素子を下にして落下した場合のような、引張応力だけが
働くような場合も考えられず、耐衝撃性が向上する。
The piezoelectric element 2 of this embodiment has a simpler structure than the conventional one, so it is easier to manufacture, and at the same time, since the number of constituent members of the piezoelectric element 2 is reduced, for example, temperature,
It is possible to reduce the use of materials that are sensitive to humidity and the like. In other words, in conventional piezoelectric elements, a reinforcing metal plate is bonded to a ceramic plate using adhesive to give it enough strength to withstand impact, but the linear expansion coefficient of the metal plate and adhesive is different from that of ceramic. In many cases, in an environment where the temperature changes, thermal stress may be generated and fatigue damage may occur, and the adhesive may deteriorate due to moisture absorption.However, in this embodiment, the piezoelectric ceramic layers 4a and 4b are Since the electrode layer 5b connecting the two is very thin and has a small coefficient of linear expansion, the above-mentioned problem does not occur. In addition, the two supports 3a and 3b are used to absorb the weight of the piezoelectric element 2 at two places (both ends), and when an impact is applied to the base part 6, which is the fixed base of the piezoelectric element 2, the force is absorbed by the support. It is distributed and transmitted to both bodies 3a and 3b. For this reason, the impact force is less likely to concentrate in one place on the piezoelectric element 2 and lead to damage, and it is also possible to prevent the impact force from being concentrated in one place on the piezoelectric element 2, resulting in damage. It is impossible to imagine a case where only stress acts, and the impact resistance is improved.

【0029】また、本実施例の圧電素子2の製造方法は
次のとおりである。
The method for manufacturing the piezoelectric element 2 of this embodiment is as follows.

【0030】ドクターブレード法により成形され、乾燥
された圧電セラミックシートの片面上に導電インキ層を
スクリーン印刷法にて積層し、このシートの複数枚を導
電インキ層が対向しないように重ね、シートの導電イン
キ層が積層されていない面上に、別に用意した両面に導
電インキ層をスクリーン印刷法にて印刷したシートを重
ね、ホットプレスすることにより熱圧着して複数層の圧
電セラミック層と1又は複数の中間電極層とからなる積
層体を作り、これを脱脂、焼成して積層体の焼結体を得
、分極処理し、最終的な素子の大きさに切断するという
10工程で成立する。
A conductive ink layer is laminated by a screen printing method on one side of a piezoelectric ceramic sheet formed by a doctor blade method and dried, and a plurality of sheets are stacked so that the conductive ink layers do not face each other. On the surface on which the conductive ink layer is not laminated, a separately prepared sheet with conductive ink layers printed on both sides using a screen printing method is stacked, and hot pressed to bond with heat to form a plurality of piezoelectric ceramic layers and one or more layers. It is completed in 10 steps: creating a laminate consisting of a plurality of intermediate electrode layers, degreasing and firing it to obtain a sintered body of the laminate, subjecting it to polarization treatment, and cutting it into the final size of the device.

【0031】図21〜図26に、本発明の第2の実施例
を示す。本実施例は上述した第1の実施例と較べ、圧電
素子12の構成のみ異なる。
A second embodiment of the present invention is shown in FIGS. 21 to 26. This embodiment differs from the first embodiment described above only in the configuration of the piezoelectric element 12.

【0032】圧電素子12は、図26に示すように、一
対の薄板状の圧電セラミック層(圧電性物質)4a,4
bと、電極層(電極材料)15a,15b,15c,1
5dと、接着剤層9とから成る。その他の作用等は第1
の実施例と全く同じであるので、ここでは圧電素子12
について、圧電素子2と相違する部分のみ説明を行う。
As shown in FIG. 26, the piezoelectric element 12 includes a pair of thin plate-shaped piezoelectric ceramic layers (piezoelectric material) 4a, 4.
b, and electrode layers (electrode materials) 15a, 15b, 15c, 1
5d and an adhesive layer 9. Other effects etc. are the first
The piezoelectric element 12 is used here because it is exactly the same as the embodiment of
Only the parts that are different from the piezoelectric element 2 will be explained.

【0033】圧電セラミック層4aはその両面に薄板状
の電極層15a,15bが接合されており、圧電セラミ
ック層4bはその両面に薄板状の電極層15c,15d
が接合されている。この2枚の電極層が接合された圧電
セラミック層4a,4bを接着剤層9等で接合して、圧
電素子12が形成される。薄板状の電極層15bと15
dとは接着剤層9を介して接しているが、接着時加圧接
着するため、電極層15bと15dは電気的に導通され
ている。図21,23,24,25に、電極層15a,
15b,15c,15dの形状を示す。これらの電極層
の支持体3a,3bとの接触面は、第1の実施例と同様
に、圧電素子12の片面のみから電荷が取り出せる形状
となっている。薄板状の電極層15b,15dは、長方
形部分と、若干の張出し部15b1,15d1とを有し
ている。これは静電容量を大きくする目的と、支持体3
a,3bと接触させない目的、また導電性接着剤9が圧
電セラミック層4a,4bの両側にまたがって塗られて
も、薄板状電極層15b,15dと接触させない目的か
らこのような形状とした。
The piezoelectric ceramic layer 4a has thin plate-shaped electrode layers 15a and 15b bonded to both sides, and the piezoelectric ceramic layer 4b has thin plate-shaped electrode layers 15c and 15d bonded to both sides thereof.
are joined. The piezoelectric ceramic layers 4a and 4b, to which the two electrode layers are bonded, are bonded together using an adhesive layer 9 or the like to form a piezoelectric element 12. Thin plate-like electrode layers 15b and 15
Although the electrode layers 15b and 15d are in contact with each other through the adhesive layer 9, the electrode layers 15b and 15d are electrically connected because they are bonded under pressure during bonding. 21, 23, 24, 25, the electrode layer 15a,
The shapes of 15b, 15c, and 15d are shown. The contact surfaces of these electrode layers with the supports 3a and 3b are shaped so that charges can be extracted from only one side of the piezoelectric element 12, as in the first embodiment. The thin plate-shaped electrode layers 15b and 15d have a rectangular portion and some overhanging portions 15b1 and 15d1. This is for the purpose of increasing the capacitance and for supporting 3
This shape was adopted to prevent contact with the thin electrode layers 15b and 15d even if the conductive adhesive 9 is applied across both sides of the piezoelectric ceramic layers 4a and 4b.

【0034】張出し部15b1,15d1の反対側に張
出し部を設けないのは、圧電セラミック層4a,4bの
両側面の薄板状の電極層(15aと15b、15cと1
5d)の間に位置ずれが生じた時でも、容量が変化しな
いよう考慮したものである。
The reason for not providing an overhanging portion on the opposite side of the overhanging portions 15b1 and 15d1 is that the thin plate-like electrode layers (15a and 15b, 15c and 1
This is designed to prevent the capacitance from changing even if a positional shift occurs between 5d and 5d).

【0035】上述した第2の実施例の圧電素子12の製
造方法は、次のとおりである。
The method for manufacturing the piezoelectric element 12 of the second embodiment described above is as follows.

【0036】スリップ作成後、ドクターブレード法によ
って成形されたシートを切断、乾燥、脱脂、焼成して薄
板状の焼結体とし、これを平面研削して両面を面出しし
、両面に電極剤ペーストをスクリーン印刷し、これを焼
き付けした後に分極処理をし、更にこれらの2枚を接着
剤により接着し、更に最終的な素子の大きさに切断する
という11工程から成っていた。なお、平面研削工程は
、焼結体の出来次第では省略できる。
After making the slip, the sheet formed by the doctor blade method is cut, dried, degreased, and fired to form a thin plate-like sintered body, which is surface ground to expose both sides, and electrode material paste is applied to both sides. The process consisted of 11 steps: screen printing, baking, polarizing, bonding the two sheets with adhesive, and cutting to the final size of the device. Note that the surface grinding step can be omitted depending on the completion of the sintered body.

【0037】図27〜図33に本発明の第3の実施例を
示す。本実施例は、第2の実施例に較べ圧電素子22の
構造のみ異なる。
A third embodiment of the present invention is shown in FIGS. 27 to 33. This embodiment differs from the second embodiment only in the structure of the piezoelectric element 22.

【0038】圧電素子22は、図等33に示すように一
対の薄板状の圧電セラミック層(圧電性物質)24a,
24bと、電極層(電極材料)25a,25b,25c
,25dと、補強用金属板19と、接着剤層29a,2
9bとから成る。
As shown in FIG. 33, the piezoelectric element 22 includes a pair of thin plate-shaped piezoelectric ceramic layers (piezoelectric material) 24a,
24b, and electrode layers (electrode materials) 25a, 25b, 25c
, 25d, the reinforcing metal plate 19, and the adhesive layer 29a, 2
9b.

【0039】圧電セラミック層4aはその両面に薄板状
の電極層25a,25bが接合されており、圧電セラミ
ック層4bはその両面に薄板状の電極層25c,25d
が接合されている。これらの2枚の電極層25a,25
b,25c,25dが接合された圧電セラミック層4a
,4bの間に補強用の金属板19をはさんで、それぞれ
接着剤層29a,29bで接着する。電極層25bと、
補強用金属板19と電極層25dとの電気的導通は第2
の実施例と同様に保たれる。
The piezoelectric ceramic layer 4a has thin plate-shaped electrode layers 25a and 25b bonded to both sides thereof, and the piezoelectric ceramic layer 4b has thin plate-shaped electrode layers 25c and 25d bonded to both sides thereof.
are joined. These two electrode layers 25a, 25
Piezoelectric ceramic layer 4a to which b, 25c, and 25d are joined
, 4b, and the reinforcing metal plate 19 is sandwiched between them and bonded with adhesive layers 29a and 29b, respectively. An electrode layer 25b,
Electrical continuity between the reinforcing metal plate 19 and the electrode layer 25d is established through the second
is kept similar to the example.

【0040】図31及び図32は、異なる形状の補強用
金属板19,19′具体例を示す。
FIGS. 31 and 32 show specific examples of reinforcing metal plates 19, 19' having different shapes.

【0041】第3の実施例の圧電素子の製造方法は第2
の実施例の場合とほぼ同様であり、分極処理をした2枚
のシートをはり合わせるとき、その2枚を補強用金属板
を挾んで接着剤により接着する工程のみ異なる。
The method for manufacturing the piezoelectric element of the third embodiment is as follows.
This embodiment is almost the same as the embodiment described above, and differs only in the process of sandwiching the reinforcing metal plate between the two polarized sheets and bonding them together with an adhesive.

【表1】[Table 1]

【0042】更に、従来、品質係数の温度変化のために
、図示しない温度補償回路による温度補償が困難な場合
があったが、品質係数の温度特性が異なる圧電セラミッ
ク材料からなる圧電セラミック薄板層(シート又は焼結
体の薄板)4a,4bの組合せを調節して、温度変化に
対する感度の変化を調節し又はセンサ出力を直線的に変
化させることにより、温度補償回路による温度補償が実
現できる。例えば、図4に示すような温度が上昇するに
つれて品質係数が小さくなる割合の大きな圧電セラミッ
ク材料と、図5に示すようなこの割合の小さな圧電セラ
ミック材料からなるシート又は焼結体の薄板を複数枚組
み合わせて図6に示すように、温度の上昇につれて品質
係数が小さくなる割合を所望の割合に調節することがで
きる。また、図7に示すような高温側で品質係数が急上
昇する圧電セラミック材料と、図8に示すような高温側
で品質係数が急に低下する圧電セラミック材料からなる
シート又は焼結体の薄板を複数枚組み合わせて図9に示
すような温度変化に対して品質係数が直線的に変化する
ように調節することができる。
Furthermore, in the past, temperature compensation using a temperature compensation circuit (not shown) was sometimes difficult due to temperature changes in the quality factor; however, piezoelectric ceramic thin plate layers ( Temperature compensation can be realized by the temperature compensation circuit by adjusting the combination of the sheets or thin plates 4a and 4b of the sintered body to adjust the change in sensitivity to temperature changes or to linearly change the sensor output. For example, a plurality of sheets or sintered thin plates made of a piezoelectric ceramic material whose quality factor decreases as the temperature increases as shown in FIG. 4 and a piezoelectric ceramic material whose quality factor decreases as the temperature increases as shown in FIG. As shown in FIG. 6, the rate at which the quality factor decreases as the temperature increases can be adjusted to a desired rate. In addition, sheets or thin plates of sintered bodies made of piezoelectric ceramic materials whose quality coefficient rapidly decreases at high temperatures as shown in Figure 7 and piezoelectric ceramic materials whose quality coefficient rapidly decreases at high temperatures as shown in Figure 8 are used. By combining a plurality of sheets, it is possible to adjust the quality factor so that it changes linearly with respect to temperature changes as shown in FIG.

【0043】図1〜3に、本発明の第4の実施例として
、圧電素子32を支持する支持体13a,13bの形状
を変えた実施例を示す。図中、35a〜35cは電極層
である。
FIGS. 1 to 3 show a fourth embodiment of the present invention in which the shapes of supports 13a and 13b for supporting a piezoelectric element 32 are changed. In the figure, 35a to 35c are electrode layers.

【0044】図34は、本発明の第5の実施例として、
圧電素子を支持する支持体23a,23bの形状を変え
た実施例を示し、図35はこれを上から見た図である。 この場合の主感度方向は図34の上下方向となる。図中
、23a,23bは圧電素子両端を抱持する支持体であ
る。
FIG. 34 shows, as a fifth embodiment of the present invention,
An embodiment in which the shapes of the supports 23a and 23b that support the piezoelectric elements are changed is shown, and FIG. 35 is a top view of this embodiment. The main sensitivity direction in this case is the vertical direction in FIG. In the figure, 23a and 23b are supports that hold both ends of the piezoelectric element.

【0045】図36は、本発明の第6実施例を示し、図
37はこれを上から見た図である。図中、33a,33
bは曲線部をもたない支持体である。
FIG. 36 shows a sixth embodiment of the present invention, and FIG. 37 is a top view of this. In the figure, 33a, 33
b is a support having no curved portion.

【0046】図38は、本発明の第7の実施例を示し、
図39はこれを上方向から見た図である。図中、43a
,43bは鉤形に曲がった支持体である。図40は本発
明の第8の実施例を示し、図41はこれを上方向から、
図42は右方向から見た図である。図中53a1,53
a2,53b1,53b2は、素子両端をそれぞれ挾み
つけるタイプの支持体である。
FIG. 38 shows a seventh embodiment of the present invention,
FIG. 39 is a view of this from above. In the figure, 43a
, 43b is a support bent into a hook shape. FIG. 40 shows an eighth embodiment of the present invention, and FIG. 41 shows this from above.
FIG. 42 is a view seen from the right direction. 53a1, 53 in the figure
a2, 53b1, and 53b2 are supports of a type that clamp both ends of the element, respectively.

【0047】[0047]

【発明の効果】以上のように本願発明の圧電型加速度セ
ンサによれば、前記圧電素子が複数の薄板状の圧電性物
質と複数の薄膜状の電極材料とを積層してなり、構造が
簡単なものであるから、製造工程が少なくなり、製造が
容易になり且つコスト低減を図ることができる。また、
補強用金属板を用いない場合、耐久性がより向上する。
As described above, according to the piezoelectric acceleration sensor of the present invention, the piezoelectric element is formed by laminating a plurality of thin plate-like piezoelectric substances and a plurality of thin film-like electrode materials, and the structure is simple. Therefore, the number of manufacturing steps is reduced, manufacturing becomes easier, and costs can be reduced. Also,
Durability is further improved when a reinforcing metal plate is not used.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第4実施例に係る圧電型加速度センサ
の縦断面図
FIG. 1 is a vertical cross-sectional view of a piezoelectric acceleration sensor according to a fourth embodiment of the present invention.

【図2】図1のII−II線に沿う断面図[Fig. 2] Cross-sectional view taken along line II-II in Fig. 1

【図3】第4
の実施例に係る圧電素子の断面図
[Figure 3] Fourth
A cross-sectional view of a piezoelectric element according to an example of

【図4】第1の実施例
による品質係数と温度との関係を示す曲線図
[Fig. 4] Curve diagram showing the relationship between quality factor and temperature according to the first embodiment

【図5】第1の実施例による品質係数と温度との関係を
示す曲線図
[Fig. 5] Curve diagram showing the relationship between quality factor and temperature according to the first embodiment

【図6】第1の実施例による品質係数と温度との関係を
示す曲線図
[Fig. 6] Curve diagram showing the relationship between quality factor and temperature according to the first embodiment

【図7】他の実施例による品質係数と温度との関係を示
す曲線図
[Figure 7] Curve diagram showing the relationship between quality factor and temperature according to another example

【図8】他の実施例による品質係数と温度との関係を示
す曲線図
[Figure 8] Curve diagram showing the relationship between quality factor and temperature according to another example

【図9】他の実施例による品質係数と温度との関係を示
す曲線図
[Figure 9] Curve diagram showing the relationship between quality factor and temperature according to another example

【図10】品質係数と温度との関係を示す曲線図[Figure 10] Curve diagram showing the relationship between quality factor and temperature

【図1
1】出力電圧と温度との関係を示す曲線図
[Figure 1
1] Curve diagram showing the relationship between output voltage and temperature

【図12】品
質係数と温度との関係を示す曲線図
[Figure 12] Curve diagram showing the relationship between quality factor and temperature

【図13】出力電圧
と温度との関係を示す曲線図
[Figure 13] Curve diagram showing the relationship between output voltage and temperature

【図14】品質係数と温度
との関係を示す曲線図
[Figure 14] Curve diagram showing the relationship between quality factor and temperature

【図15】出力電圧と温度との関
係を示す曲線図
[Figure 15] Curve diagram showing the relationship between output voltage and temperature

【図16】本発明の第1の実施例に係る
圧電型加速度センサの縦断面図
FIG. 16 is a vertical cross-sectional view of a piezoelectric acceleration sensor according to the first embodiment of the present invention.

【図17】図16のA−A線に沿う断面図[Fig. 17] Cross-sectional view taken along line A-A in Fig. 16

【図18】図
16のセンサを反対方向から見た縦断面図
[Fig. 18] Vertical cross-sectional view of the sensor shown in Fig. 16 viewed from the opposite direction.

【図19】図
17のB−B線に沿う断面のうち圧電素子部分の図
[Fig. 19] A diagram of the piezoelectric element portion in the cross section taken along the line B-B in Fig. 17.

【図20】第1の実施例に係る圧電素子の断面図FIG. 20 is a cross-sectional view of the piezoelectric element according to the first example.

【図2
1】本発明の第2の実施例に係る圧電型加速度センサの
縦断面図
[Figure 2
1] Vertical cross-sectional view of a piezoelectric acceleration sensor according to a second embodiment of the present invention

【図22】図21のA−A線に沿う断面図[Fig. 22] Cross-sectional view taken along line A-A in Fig. 21

【図23】図
21のセンサを反対方向から見た縦断面図
[Figure 23] Longitudinal cross-sectional view of the sensor in Figure 21 viewed from the opposite direction.

【図24】図
22のB−B線に沿う断面のうち圧電素子部分の図
[Fig. 24] A diagram of the piezoelectric element portion in the cross section taken along the line BB in Fig. 22.

【図25】図22のC−C線に沿う断面のうち圧電素子
部分の図
[Fig. 25] A diagram of the piezoelectric element portion in the cross section taken along the line C-C in Fig. 22.

【図26】第2の実施例に係る圧電素子の断面図FIG. 26 is a cross-sectional view of a piezoelectric element according to a second embodiment.

【図2
7】本発明の第3の実施例に係る圧電型加速度センサの
縦断面図
[Figure 2
7] Vertical cross-sectional view of a piezoelectric acceleration sensor according to a third embodiment of the present invention

【図28】図27のA−A線に沿う断面図[Fig. 28] Cross-sectional view taken along line A-A in Fig. 27

【図29】図
27のセンサを反対方向から見た縦断面図
[Fig. 29] Vertical cross-sectional view of the sensor shown in Fig. 27 viewed from the opposite direction.

【図30】図
28のB−B線に沿う断面のうち圧電素子部分の図
[Fig. 30] A diagram of the piezoelectric element portion in the cross section taken along the line BB in Fig. 28.

【図31】第3の実施例に係る補強用金属板の形状を示
す図
FIG. 31 is a diagram showing the shape of a reinforcing metal plate according to the third embodiment.

【図32】第3の実施例に係る補強用金属板の他の形状
を示す図
FIG. 32 is a diagram showing another shape of the reinforcing metal plate according to the third embodiment.

【図33】第3実施例に係る圧電素子の断面図[Fig. 33] Cross-sectional view of a piezoelectric element according to a third example

【図34
】本発明の第5の実施例に係る圧電素子の支持構造を示
す縦断面図
[Figure 34
]A vertical cross-sectional view showing a support structure for a piezoelectric element according to a fifth embodiment of the present invention.

【図35】図34の圧電素子を上方から見た図[Figure 35] View of the piezoelectric element in Figure 34 from above

【図36
】本発明の第6の実施例に係る圧電素子の支持構造を示
す縦断面図
[Figure 36
]A vertical cross-sectional view showing a support structure for a piezoelectric element according to a sixth embodiment of the present invention.

【図37】図36の圧電素子を上方から見た図[Figure 37] View of the piezoelectric element in Figure 36 from above

【図38
】本発明の第7の実施例に係る圧電素子の支持構造を示
す縦断面図
[Figure 38
]A vertical cross-sectional view showing a support structure for a piezoelectric element according to a seventh embodiment of the present invention.

【図39】図38の圧電素子を上方から見た図[Figure 39] View of the piezoelectric element in Figure 38 from above

【図40
】本発明の第8の実施例に係る圧電素子の支持構造を示
す縦断面図
[Figure 40
]A vertical cross-sectional view showing a support structure for a piezoelectric element according to an eighth embodiment of the present invention.

【図41】図40の圧電素子を上方から見た図[Figure 41] View of the piezoelectric element in Figure 40 viewed from above

【図42
】図40の圧電素子を右側から見た図
[Figure 42
] View of the piezoelectric element in Figure 40 from the right side

【符号の説明】[Explanation of symbols]

2  圧電素子 3a,3b  支持体 2 Piezoelectric element 3a, 3b Support body

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  加速度を受けたときに歪を生じ、これ
に応じて発生する電荷量から加速度を感知する圧電素子
を有する圧電型加速度センサにおいて、前記圧電素子が
、複数の薄板状の圧電性物質と複数の薄膜状の電極材料
とを積層してなることを特徴とする圧電型加速度センサ
1. A piezoelectric acceleration sensor having a piezoelectric element that generates strain when subjected to acceleration and senses acceleration from the amount of charge generated in response to the strain, the piezoelectric element comprising a plurality of thin plate-like piezoelectric elements. A piezoelectric acceleration sensor characterized by being formed by laminating a substance and a plurality of thin film electrode materials.
JP9155791A 1991-01-22 1991-02-27 Piezoelectric acceleration sensor Pending JPH04289459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9155791A JPH04289459A (en) 1991-01-22 1991-02-27 Piezoelectric acceleration sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2280991 1991-01-22
JP3-22809 1991-01-22
JP9155791A JPH04289459A (en) 1991-01-22 1991-02-27 Piezoelectric acceleration sensor

Publications (1)

Publication Number Publication Date
JPH04289459A true JPH04289459A (en) 1992-10-14

Family

ID=12093021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9155791A Pending JPH04289459A (en) 1991-01-22 1991-02-27 Piezoelectric acceleration sensor

Country Status (1)

Country Link
JP (1) JPH04289459A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960011429A (en) * 1994-09-06 1996-04-20 프랭크 에이. 오울플링 Acceleration sensor and electric terminal used for it
KR100479934B1 (en) * 2002-07-16 2005-04-07 (주) 래트론 Accelerometer for low frequency vibration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960011429A (en) * 1994-09-06 1996-04-20 프랭크 에이. 오울플링 Acceleration sensor and electric terminal used for it
KR100479934B1 (en) * 2002-07-16 2005-04-07 (주) 래트론 Accelerometer for low frequency vibration

Similar Documents

Publication Publication Date Title
EP0616221B1 (en) Acceleration sensor
US4649313A (en) Piezoelectric displacement element
US20070277618A1 (en) Piezoelectric sensor
US6744181B1 (en) Acceleration sensor
US5991988A (en) Method of manufacturing a piezoelectric element
KR20010042311A (en) Strain-sensitive resistor
JP3466197B2 (en) Acceleration sensor
JP3262048B2 (en) Piezoelectric resonator and electronic component using the same
US5289074A (en) Piezo-electric device type actuator
US6786095B2 (en) Acceleration sensor
JPH04289459A (en) Piezoelectric acceleration sensor
US6121615A (en) Infrared radiation sensitive device
JP4466610B2 (en) Acceleration sensor and method of manufacturing acceleration sensor
US6807859B2 (en) Acceleration sensor
JPS63274206A (en) Chip type piezoelectric element
EP0896226A1 (en) Acceleration sensor
JP3203523B2 (en) Acceleration sensor
JP2000275126A (en) Force sensor circuit
KR100217983B1 (en) Piezoelectric element and manufacturing method of the same
JP3353237B2 (en) Piezoelectric power supply
JPH0961455A (en) Acceleration sensor
JP2918727B2 (en) Piezo actuator
JPH0526780Y2 (en)
JPH06249706A (en) Piezoelectric oscillation sensor
JP2002040042A (en) Piezoelectric sensor and manufacturing method thereof