JPH04288719A - Surface acoustic wave device - Google Patents

Surface acoustic wave device

Info

Publication number
JPH04288719A
JPH04288719A JP3295091A JP3295091A JPH04288719A JP H04288719 A JPH04288719 A JP H04288719A JP 3295091 A JP3295091 A JP 3295091A JP 3295091 A JP3295091 A JP 3295091A JP H04288719 A JPH04288719 A JP H04288719A
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
electrode
input
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3295091A
Other languages
Japanese (ja)
Other versions
JP3013464B2 (en
Inventor
Koichiro Misu
幸一郎 三須
Shiyuuzou Wakou
修三 和高
Tsutomu Nagatsuka
勉 永塚
Tomonori Kimura
友則 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3032950A priority Critical patent/JP3013464B2/en
Publication of JPH04288719A publication Critical patent/JPH04288719A/en
Application granted granted Critical
Publication of JP3013464B2 publication Critical patent/JP3013464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To reduce the increase of a loss caused by the deviation of transmission lines by arranging shield electrodes so as to cancel the deviation of the transmission lines for surface acoustic waves caused by passage through a pair of input/output terminals. CONSTITUTION:A shield electrode 10a has structure symmetric to an axis vertical to a shield electrode 10b and the propagating direction of surface acoustic waves, and the shield electrodes 10a and 10b are arranged while making a pair of input/output terminals each other and inclining them respectively reversely to the propagating direction of surface acoustic waves. The surface acoustic waves excited by an input side comb-shaped electrode 2 are made incident through propagation lines 8 obliquely to the shield electrode 10a, refracted on the end face, reach the end face, refracted again and propagated along propagation lines 9, and the surface acoustic waves made incident on the shield electrode 10b and reach through a path, which is deviated opposite to the shield electrode 10a, to an output side comb-shaped electrode 3. Therefore, the propagating direction of the surface acoustic waves made incident to the output side comb-shaped electrode 3 is made coincident to the propagating direction of the surface acoustic waves excited at the input side comb-shaped electrode 2.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、圧電体基板に、電気
信号を弾性表面波に変換する入力側電極と、上記入力側
電極により励振された弾性表面波を再び電気信号に変換
する出力側電極とを形成して構成された、フィルタ、遅
延線、および、共振器等の機能を有する弾性表面波装置
に関するものである。
[Industrial Application Field] This invention provides a piezoelectric substrate with an input side electrode for converting an electric signal into a surface acoustic wave, and an output side for converting the surface acoustic wave excited by the input side electrode back into an electric signal. The present invention relates to a surface acoustic wave device having functions such as a filter, a delay line, and a resonator, which is configured by forming an electrode.

【0002】0002

【従来の技術】図5は、例えば実開昭63−97920
号公報、あるいは、特開昭57−135517号公報に
示された従来の弾性表面波装置を示す図である。図中、
1は圧電体基板であり、圧電体基板1の表面に入力側す
だれ状電極2、出力側すだれ状電極3とを構成している
。4は接地されたシールド電極であり、入力側すだれ状
電極2と出力側すだれ状電極3との間の圧電体基板1表
面に形成されている。
[Prior Art] Fig. 5 shows, for example,
1 is a diagram showing a conventional surface acoustic wave device disclosed in Japanese Patent Laid-Open No. 57-135517. In the figure,
1 is a piezoelectric substrate, and an input side interdigital electrode 2 and an output side interdigital electrode 3 are formed on the surface of the piezoelectric substrate 1. Reference numeral 4 denotes a grounded shield electrode, which is formed on the surface of the piezoelectric substrate 1 between the input side interdigital electrode 2 and the output side interdigital electrode 3.

【0003】入力側すだれ状電極2は、入力された電気
信号を弾性表面波に変換する。この弾性表面波への変換
を行う時に、入力側すだれ状電極の構成によって変換効
率に周波数特性をもたせることができる。出力側すだれ
状電極3は、入力側すだれ状電極2によって励振された
弾性表面波を受信し、再び、電気信号に変換する。この
場合にも、出力側すだれ状電極3の構成によって交換効
率に周波数特性をもたせることができる。このように、
入力側すだれ状電極2、および、出力側すだれ状電極3
における電気信号と弾性表面波との変換を介することに
よって、弾性表面波装置は様々な周波数特性のフィルタ
、遅延線、および、共振器等の機能を有することができ
る。
[0003] The input-side interdigital electrode 2 converts an input electrical signal into a surface acoustic wave. When converting into a surface acoustic wave, the conversion efficiency can have frequency characteristics depending on the configuration of the input-side interdigital electrode. The output-side interdigital electrode 3 receives the surface acoustic wave excited by the input-side interdigital electrode 2, and converts it into an electric signal again. In this case as well, the configuration of the output-side interdigital electrode 3 allows the exchange efficiency to have frequency characteristics. in this way,
Input side interdigital electrode 2 and output side interdigital electrode 3
Through the conversion between an electric signal and a surface acoustic wave, the surface acoustic wave device can have functions such as filters, delay lines, and resonators with various frequency characteristics.

【0004】シールド電極4がない場合には、図6に示
す等価回路のように、入力側すだれ状電極2と出力側す
だれ状電極3との間に、弾性表面波を介さないで、電気
的に直接結合する成分がある。このような電気的に直接
結合する成分は、入力すだれ状電極2と出力側すだれ状
電極3との間に存在するわずかな静電容量5によって、
弾性表面波への変換を介さないで、上記静電容量5を介
して出力側すだれ状電極3に直接結合するスプリアス成
分と考えることができる。このような不要なスプリアス
成分は電気的に結合する成分であるため、入力側すだれ
状電極2と出力側すだれ状電極3との間を弾性表面波の
伝搬速度で伝搬してくる弾性表面波と、入力側すだれ状
電極2から出力側すだれ状電極3に至るまでの所要時間
が著しく異なる。このため、弾性表面波を介して出力側
すだれ状電極3に伝搬してくる信号と、電気的に直接結
合するスプリアス成分とは、周波数に対する位相の変化
量が大きく異なるため、上記信号と上記スプリアス成分
とは、互いに干渉して弾性表面波装置の所要の特性を実
現できない。
If there is no shield electrode 4, as shown in the equivalent circuit shown in FIG. There are components that bind directly to Such a component that is directly electrically coupled is caused by the slight capacitance 5 existing between the input interdigital electrode 2 and the output interdigital electrode 3.
It can be considered as a spurious component that is directly coupled to the output-side interdigital electrode 3 via the capacitance 5 without being converted into a surface acoustic wave. Since such unnecessary spurious components are components that are electrically coupled, the surface acoustic wave propagating between the input-side interdigital electrode 2 and the output-side interdigital electrode 3 at the propagation speed of the surface acoustic wave , the time required from the input side interdigital electrode 2 to the output side interdigital electrode 3 is significantly different. For this reason, the signal propagating to the output side interdigital electrode 3 via the surface acoustic wave and the electrically directly coupled spurious component have a large difference in phase change with respect to frequency. The components interfere with each other, making it impossible to achieve the desired characteristics of the surface acoustic wave device.

【0005】上記の問題点を解決するため、従来のこの
種の弾性表面波装置では、入力側すだれ状電極2と出力
側すだれ状電極3との間に、図5、および図7に示すよ
うな接地したシールド電極4を構成していた。このシー
ルド電極4は、すだれ状電極を構成する金属薄膜と同じ
材質で構成され、入力側すだれ状電極2と出力側すだれ
状電極3との間に接地面を構成することにより、図7に
示す等価回路のように、それぞれ、入力側すだれ状電極
2と接地面との静電容量6、および、出力側すだれ状電
極3と接地面との静電容量7とすることができる。この
結果、入力側すだれ状電極2と出力側すだれ状電極3と
の間に存在していた静電容量5は極めて小さい値となり
、入力側すだれ状電極2と出力側すだれ状電極3との間
の弾性表面波を介さない電気的な結合が低減する。
In order to solve the above-mentioned problems, in the conventional surface acoustic wave device of this type, a transducer is provided between the input side interdigital electrode 2 and the output side interdigital electrode 3 as shown in FIGS. 5 and 7. This constituted a grounded shield electrode 4. This shield electrode 4 is made of the same material as the metal thin film that constitutes the interdigital electrode, and by forming a ground plane between the input side interdigital electrode 2 and the output side interdigital electrode 3, as shown in FIG. As in the equivalent circuit, the capacitance 6 between the input-side interdigital electrode 2 and the ground plane, and the electrostatic capacitance 7 between the output-side interdigital electrode 3 and the ground plane can be respectively set. As a result, the capacitance 5 that existed between the input side interdigital electrode 2 and the output side interdigital electrode 3 becomes an extremely small value, and the capacitance 5 between the input side interdigital electrode 2 and the output side interdigital electrode 3 becomes extremely small. Electrical coupling not via surface acoustic waves is reduced.

【0006】このとき、シールド電極4の構造は、シー
ルド電極4端面における弾性表面波の反射により、入力
側すだれ状電極2とシールド電極4との間、および、シ
ールド電極4と出力側すだれ状電極3との間に弾性表面
波の多重反射が生じないようにするために、図5に示し
たように、弾性表面波が伝搬する2か所の端面を、弾性
表面波の伝搬方向に垂直な方向に対して、傾斜させた構
造、すなわち、多くの場合には平行四辺形としていた。
At this time, the structure of the shield electrode 4 is such that reflection of surface acoustic waves at the end face of the shield electrode 4 causes a gap between the input side interdigital electrode 2 and the shield electrode 4 and between the shield electrode 4 and the output side interdigital electrode. In order to prevent multiple reflections of surface acoustic waves from occurring between surface acoustic waves and The structure was tilted with respect to the direction, that is, in many cases, it was a parallelogram.

【0007】[0007]

【発明が解決しようとする課題】しかし、従来のこの種
の弾性表面波装置のシールド電極においては、弾性表面
波の伝搬経路が、図8に示すように、弾性表面波の伝搬
する2か所のシールド電極4の端面への斜め入射に伴う
屈折のために、シールド電極4に入射する前の弾性表面
波の伝搬経路8とシールド電極4から伝搬してきた弾性
表面波の伝搬経路9とが間隔dだけずれる。このように
、屈折のために弾性表面波の位相速度の方向と群速度の
方向が異なり、シールド電極4から伝搬してきた弾性表
面波は、出力側すだれ状電極3に対して間隔dだけずれ
て入射するため、従来のこの種の弾性表面波装置では、
この弾性表面波の位相速度の方向と群速度の方向のずれ
による損失が増大し、所要の特性を実現できないという
問題点があった。
[Problems to be Solved by the Invention] However, in the conventional shield electrode of this type of surface acoustic wave device, the propagation path of the surface acoustic wave is divided into two locations where the surface acoustic wave propagates, as shown in FIG. Due to the refraction caused by oblique incidence on the end face of the shield electrode 4, the propagation path 8 of the surface acoustic wave before entering the shield electrode 4 and the propagation path 9 of the surface acoustic wave propagating from the shield electrode 4 are separated by a distance. It shifts by d. In this way, the direction of the phase velocity and the direction of the group velocity of the surface acoustic wave are different due to refraction, and the surface acoustic wave propagating from the shield electrode 4 is shifted by the distance d with respect to the output side interdigital electrode 3. In conventional surface acoustic wave devices of this type,
There is a problem in that loss increases due to the deviation between the phase velocity direction and the group velocity direction of the surface acoustic wave, making it impossible to achieve desired characteristics.

【0008】また、例えば特開昭58−43607号公
報に示されている弾性表面波フィルタの製造方法によれ
ば、弾性表面波装置は電気信号と弾性表面波とを変換す
るトランスジューサとしてアルミなどの金属のいわゆる
すだれ状電極を用いており、電極寸法がミクロン程度に
微細化してくると、圧電体基板上にすだれ状電極などを
形成する製造工程において、チャージがすだれ状電極の
狭いギャップを通して放電しすだれ状電極の破損が生じ
る。そこで、製造時には圧電体基板上のスクライブ領域
またはダイシング領域に放電防止用パターンを設けてお
き、後にこの放電防止用パターンを切断などにより除去
する作業を行っていた。
[0008] Furthermore, according to a method for manufacturing a surface acoustic wave filter disclosed in, for example, Japanese Unexamined Patent Publication No. 58-43607, a surface acoustic wave device uses a transducer made of aluminum or the like for converting an electric signal and a surface acoustic wave. Metal interdigital electrodes are used, and as the electrode dimensions become finer to the micron level, charges are discharged through the narrow gaps of the interdigital electrodes during the manufacturing process of forming interdigital electrodes on piezoelectric substrates. Damage to the interdigital electrodes occurs. Therefore, during manufacturing, a discharge prevention pattern is provided in a scribe area or a dicing area on a piezoelectric substrate, and the discharge prevention pattern is later removed by cutting or the like.

【0009】この発明は、係る問題点を解決するために
なされたものであり、シールド電極における弾性表面波
の伝搬方向のずれをなくすことにより、ずれによる損失
の低減を図り、かつ、スプリアス成分の低減された所要
の特性の弾性表面波装置を得ることを目的とする。また
、製造時のチャージによる電極の破損を防止でき、かつ
、使用時の切断が不必要で形成位置の自由度があり、か
つ、製造工数を削減できる弾性表面波装置を得ることを
目的とする。
[0009] The present invention was made in order to solve this problem, and by eliminating the deviation in the propagation direction of surface acoustic waves in the shield electrode, it is possible to reduce the loss due to the deviation, and also to reduce the spurious component. The object is to obtain a surface acoustic wave device with reduced required characteristics. Another objective is to obtain a surface acoustic wave device that can prevent damage to the electrodes due to charging during manufacturing, eliminates the need for cutting during use, provides flexibility in formation position, and reduces manufacturing man-hours. .

【0010】0010

【課題を解決するための手段】請求項1の弾性表面波装
置は、圧電体基板に形成され、電気信号を弾性表面波に
変換する入力側電極と、上記入力側電極により励振され
た弾性表面波を再び電気信号に変換する出力側電極と、
上記入力側電極と出力側電極との間の弾性表面波の伝搬
経路に形成され、上記入力側電極と出力側電極との電気
的結合を抑制するシールド電極とを有する弾性表面波装
置において、上記シールド電極を、弾性表面波のシール
ド電極への対応する入出力点における接線が互いに平行
となる一対の入出力端を上記接線を弾性表面波の伝搬方
向に対して傾斜させて複数配置し、それぞれの一対の入
出力端の通過による弾性表面波の伝搬経路のずれを相殺
するように構成したものである。
[Means for Solving the Problems] A surface acoustic wave device according to claim 1 includes an input side electrode formed on a piezoelectric substrate and converting an electric signal into a surface acoustic wave, and an elastic surface excited by the input side electrode. an output electrode that converts the waves back into electrical signals;
In the surface acoustic wave device, the surface acoustic wave device includes a shield electrode formed in a propagation path of a surface acoustic wave between the input side electrode and the output side electrode, and suppressing electrical coupling between the input side electrode and the output side electrode. A plurality of shield electrodes are arranged with a pair of input/output ends such that tangent lines at corresponding input/output points of the surface acoustic wave to the shield electrode are parallel to each other, and the tangent lines are inclined with respect to the propagation direction of the surface acoustic wave. The structure is such that the shift in the propagation path of the surface acoustic wave due to passage through the pair of input and output ends is canceled out.

【0011】また、請求項2の弾性表面波装置は、圧電
体基板に形成され、電気信号を弾性表面波に変換する入
力側電極と、上記入力側電極により励振された弾性表面
波を再び電気信号に変換する出力側電極と、上記入力側
電極と出力側電極との間の弾性表面波の伝搬経路に形成
され、上記入力側電極と出力側電極との電気的結合を抑
制する複数のシールド電極と、上記シールド電極と上記
入力側電極を構成する接地側導体とを接続する第1の高
抵抗線路と、上記第1の高抵抗線路が接続されていない
上記シールド電極と上記出力側電極を構成する接地側導
体とを接続する第2の高抵抗線路とを備えたものである
The surface acoustic wave device according to claim 2 further includes an input side electrode formed on a piezoelectric substrate and converting an electric signal into a surface acoustic wave, and an input side electrode that converts the surface acoustic wave excited by the input side electrode into electricity again. A plurality of shields are formed in the propagation path of surface acoustic waves between an output side electrode that converts into a signal, and the input side electrode and the output side electrode, and suppress electrical coupling between the input side electrode and the output side electrode. a first high-resistance line connecting the electrode, the shield electrode and a ground conductor constituting the input-side electrode; and a first high-resistance line connecting the shield electrode and the output-side electrode to which the first high-resistance line is not connected. and a second high-resistance line that connects the constituent ground-side conductors.

【0012】0012

【作用】請求項1の弾性表面波装置によれば、弾性表面
波のシールド電極への対応する入出力点における接線が
互いに平行となる一対の入出力端を上記接線を弾性表面
波の伝搬方向に対して傾斜させて複数配置し、それぞれ
の一対の入出力端の通過による弾性表面波の伝搬経路の
ずれを相殺するように構成したシールド電極に弾性表面
波が入射すると、シールド電極への入出力端で屈折して
伝搬する弾性表面波の要素は、最初の一対の入出力端の
通過による伝搬経路のずれが順次通過する一対の入出力
端の通過による伝搬経路のずれにより相殺されてシール
ド電極に入射する以前の伝搬方向と一致する方向に修正
されて出力側電極へ到達するため、シールド電極への入
出力端で屈折せずに伝搬する弾性表面波の要素を合致し
た経路で出力側電極へ到達させることができる。これに
より弾性表面波の要素である位相速度の方向と群速度の
方向のずれによる損失の増加を低減する。
According to the surface acoustic wave device of claim 1, a pair of input and output ends in which tangents at corresponding input and output points to the shield electrode of the surface acoustic wave are parallel to each other, and the tangents are connected in the propagation direction of the surface acoustic wave. When a surface acoustic wave is incident on a plurality of shield electrodes arranged at an angle relative to each other and configured to cancel out the shift in the propagation path of the surface acoustic wave due to the passage of each pair of input and output ends, the incidence on the shield electrode is The surface acoustic wave element that is refracted and propagated at the output end is shielded because the deviation in the propagation path caused by passing through the first pair of input and output ends is canceled out by the deviation in the propagation path caused by passing through the successive pair of input and output ends. Since the propagation direction is corrected to match the propagation direction before entering the electrode and reaches the output side electrode, the surface acoustic wave elements that propagate without being refracted at the input and output ends of the shield electrode are transmitted along the matching path to the output side. It can be made to reach the electrode. This reduces the increase in loss due to the deviation between the direction of phase velocity and the direction of group velocity, which are elements of surface acoustic waves.

【0013】また、請求項2の弾性表面波装置によれば
、シールド電極と入力側電極を構成する接地側導体とを
接続する第1の高抵抗線路と、シールド電極と出力側電
極を構成する接地側導体とを接続する第2の高抵抗線路
が製造時に入出力電極部分のチャージを逃すので製造時
のチャージによる入力側電極および出力側電極の破損を
防止し、かつ、高抵抗であるため使用時の切断を不要と
できる。さらに、使用時の切断が不必要であるため、第
1の高抵抗線路と第2の高抵抗線路の形成位置に自由度
がある。
According to the surface acoustic wave device of claim 2, the first high-resistance line connects the shield electrode and the ground conductor constituting the input electrode, and the shield electrode and the output electrode constitute the first high resistance line. The second high-resistance line that connects the ground conductor releases the charge from the input and output electrodes during manufacturing, which prevents damage to the input and output electrodes due to charges during manufacturing, and because it has high resistance. Cutting during use is not necessary. Furthermore, since there is no need for cutting during use, there is flexibility in the formation positions of the first high resistance line and the second high resistance line.

【0014】[0014]

【実施例】実施例1.図1は、この発明の弾性表面波装
置の一実施例を示す構成図であり、基本的なシールド電
極の構成の場合である。1〜3は従来のこの種の弾性表
面波装置と同様であり、10aは片側のシールド電極、
10bはシールド電極10aと弾性表面波の伝搬方向に
垂直な軸に関して対称な構造のシールド電極である。こ
こで、シールド電極10aとシールド電極10bは一対
の入出力端が互いに平行で弾性表面波の伝搬方向に対し
てそれぞれ逆向きに傾斜させて配置されたものである。
[Example] Example 1. FIG. 1 is a block diagram showing an embodiment of the surface acoustic wave device of the present invention, and shows a basic shield electrode structure. 1 to 3 are similar to conventional surface acoustic wave devices of this type, and 10a is a shield electrode on one side;
10b is a shield electrode having a structure symmetrical to the shield electrode 10a with respect to an axis perpendicular to the propagation direction of surface acoustic waves. Here, a pair of input and output ends of the shield electrode 10a and the shield electrode 10b are arranged parallel to each other and inclined in opposite directions with respect to the propagation direction of the surface acoustic wave.

【0015】次に動作について、図2を用いて説明する
。図2は、図1に示した実施例に動作の説明のための弾
性表面波の伝搬経路を合わせて示したものである。8は
入力側すだれ状電極2で励振されて、最初のシールド電
極10aに入射する弾性表面波の伝搬経路であり、9は
上記シールド電極10aから伝搬してきた弾性表面波の
伝搬経路である。また、9は同時に他方のシールド電極
10bに入射する弾性表面波の伝搬経路でもある。11
は他方のシールド電極10bから出力側すだれ状電極3
に伝搬する弾性表面波の伝搬経路である。
Next, the operation will be explained using FIG. 2. FIG. 2 shows the embodiment shown in FIG. 1 along with a propagation path of surface acoustic waves for explaining the operation. 8 is a propagation path of a surface acoustic wave excited by the input-side interdigital electrode 2 and incident on the first shield electrode 10a, and 9 is a propagation path of a surface acoustic wave propagated from the shield electrode 10a. Further, 9 is also a propagation path of a surface acoustic wave that simultaneously enters the other shield electrode 10b. 11
is from the other shield electrode 10b to the output side interdigital electrode 3
This is the propagation path of surface acoustic waves that propagate to .

【0016】入力側すだれ状電極2で励振された弾性表
面波は、伝搬経路8を経て最初のシールド電極10aに
斜めに入射する。このとき、シールド電極10aに入射
する前と後とで弾性表面波の伝搬速度が異なるため、シ
ールド電極10aの端面にて弾性表面波が屈折する。そ
して、シールド電極10aの端面に達して再び屈折し、
伝搬経路9に沿って伝搬する。このとき、従来のこの種
の弾性表面波装置に多く見られるように、シールド電極
10aの形状が平行四辺形の場合、すなわち、シールド
電極10aの2か所の端面が互いに平行な場合には、シ
ールド電極10aへ入射前の伝搬経路8とシールド電極
10aから伝搬してきた伝搬経路9とは、互いに平行で
あり、かつ、位置が間隔dずれているのは従来のこの種
の弾性表面波装置と同様である。
The surface acoustic wave excited by the input-side interdigital electrode 2 passes through the propagation path 8 and obliquely enters the first shield electrode 10a. At this time, since the propagation speed of the surface acoustic wave is different before and after the surface acoustic wave enters the shield electrode 10a, the surface acoustic wave is refracted at the end face of the shield electrode 10a. Then, it reaches the end face of the shield electrode 10a and is refracted again.
It propagates along the propagation path 9. At this time, when the shape of the shield electrode 10a is a parallelogram, as is often seen in conventional surface acoustic wave devices of this type, that is, when the two end faces of the shield electrode 10a are parallel to each other, The propagation path 8 before entering the shield electrode 10a and the propagation path 9 propagating from the shield electrode 10a are parallel to each other, and their positions are shifted by a distance d, unlike in conventional surface acoustic wave devices of this type. The same is true.

【0017】しかし、この発明に係る弾性表面波装置で
は、さらに、弾性表面波の伝搬経路8、および、伝搬経
路9に垂直な軸に対して、最初に弾性表面波が入射した
シールド電極10aと対称な構造のシールド電極10b
を設けている。このとき、シールド電極10bへ入射し
た弾性表面波の伝搬経路は、最初のシールド電極10a
へ入射した弾性表面波の伝搬経路と反対方向へずれる経
路を経て、出力側すだれ状電極3へ至る。したがって、
出力側すだれ状電極3に入射する弾性表面波の伝搬方向
は、入力側すだれ状電極2で励振された弾性表面波の伝
搬方向と一致し、シールド電極10での弾性表面波の屈
折による伝搬方向のずれは、互いに弾性表面波の伝搬方
向に垂直な軸に対称な構造のシールド電極10a、10
bを用いることにより、解消される。
However, in the surface acoustic wave device according to the present invention, the shield electrode 10a on which the surface acoustic wave is first incident, and the axis perpendicular to the propagation path 8 and the propagation path 9 of the surface acoustic wave. Shield electrode 10b with symmetrical structure
has been established. At this time, the propagation path of the surface acoustic wave incident on the shield electrode 10b is the first shield electrode 10a.
It reaches the output-side interdigital electrode 3 through a path that is deviated in the opposite direction to the propagation path of the surface acoustic wave incident on the surface acoustic wave. therefore,
The propagation direction of the surface acoustic wave incident on the output side interdigital electrode 3 coincides with the propagation direction of the surface acoustic wave excited by the input side interdigital electrode 2, and the propagation direction due to refraction of the surface acoustic wave at the shield electrode 10. The difference between the shield electrodes 10a and 10, which have a structure symmetrical to each other with respect to an axis perpendicular to the propagation direction of surface acoustic waves.
This can be solved by using b.

【0018】なお、弾性表面波が伝搬するシールド電極
の入出力端は、直線ではなく曲線の場合でも、弾性表面
波のシールド電極への対応する入出力点における接線が
互いに平行となる一対の入出力端であればよく、上記接
線を弾性表面波の伝搬方向に対して傾斜させて複数配置
し、それぞれの一対の入出力端の通過による弾性表面波
の伝搬経路のずれを相殺するように構成すれば上記実施
例1と同様の効果を得ることができる。また、シールド
電極の一対の入出力端の通過による弾性表面波の伝搬経
路のずれ量は圧電体基板とシールド電極の材質を一定と
した場合には一対の入出力端の間隔および弾性表面波の
伝搬方向に対する入出力端接線の傾斜角度の関数となる
ため、これらにより設定できる。次にシールド電極の構
成例を示す。
[0018] Even if the input and output ends of the shield electrode through which the surface acoustic wave propagates are not straight lines but curves, there is a pair of input and output ends in which the tangents at the corresponding input and output points of the surface acoustic wave to the shield electrode are parallel to each other. It may be any output end, and a plurality of them are arranged so that the tangent line is inclined with respect to the propagation direction of the surface acoustic wave, and the configuration is such that the deviation of the propagation path of the surface acoustic wave due to passage of each pair of input and output ends is canceled out. By doing so, the same effect as in the first embodiment can be obtained. In addition, when the materials of the piezoelectric substrate and the shield electrode are constant, the amount of deviation in the propagation path of the surface acoustic wave due to the passage of the pair of input and output ends of the shield electrode is determined by the distance between the pair of input and output ends and the amount of deviation of the surface acoustic wave Since it is a function of the inclination angle of the input/output end tangent to the propagation direction, it can be set using these. Next, an example of the structure of the shield electrode will be shown.

【0019】実施例2.図3は上記実施例1におけるシ
ールド電極の他の実施例を示す構成図である。ここでは
シールド電極の部分のみを示している。
Example 2. FIG. 3 is a configuration diagram showing another embodiment of the shield electrode in the first embodiment. Only the shield electrode portion is shown here.

【0020】なお、この発明はこれらに限らず、3個以
上の複数個のシールド電極で構成した場合にも適用でき
る。さらに、上記実施例1および実施例2は、それぞれ
1個の入力側すだれ状電極と1個の出力側すだれ状電極
とからなる弾性表面波装置の例について説明したが、複
数個の入力側すだれ状電極と、複数個の出力側すだれ状
電極とからなる弾性表面波装置にも適用できる。
[0020] The present invention is not limited to these, but can also be applied to a structure composed of three or more shield electrodes. Furthermore, in the first and second embodiments described above, examples of surface acoustic wave devices including one input-side interdigital electrode and one output-side interdigital electrode have been described, but a plurality of input-side interdigital The present invention can also be applied to a surface acoustic wave device comprising a shaped electrode and a plurality of output-side interdigital electrodes.

【0021】実施例3.図4はこの発明の弾性表面波装
置の他の実施例を示す構成図であり、図1に示した実施
例の構成において適用した例を示す。図において、12
はシールド電極10aと入力側すだれ状電極2を構成す
る接地側導体とを接続する第1の高抵抗線路、13は上
記第1の高抵抗線路12が接続されていないシールド電
極10bと出力側すだれ状電極3を構成する接地側導体
とを接続する第2の高抵抗線路である。
Example 3. FIG. 4 is a block diagram showing another embodiment of the surface acoustic wave device of the present invention, and shows an example in which the structure of the embodiment shown in FIG. 1 is applied. In the figure, 12
13 is a first high-resistance line connecting the shield electrode 10a and the ground conductor constituting the input-side interdigital transducer 2, and 13 is the output-side interdigital interdigitator and the shield electrode 10b to which the first high-resistance line 12 is not connected. This is a second high-resistance line that connects the ground-side conductor constituting the shaped electrode 3.

【0022】上記の構成によれば、第1の高抵抗線路1
2および第2の高抵抗線路13はそれぞれ接地導体どお
しを高抵抗で接続するものであり製造時にチャージを逃
す。さらに、シールド電極10aとシールド電極10b
とは分離されていて入力側すだれ状電極2と出力側すだ
れ状電極3の結合を生じさせないため使用時の切断が不
要であり、したがって形成位置に自由度がある。
According to the above configuration, the first high resistance line 1
2 and the second high-resistance line 13 connect the ground conductors with each other with high resistance, and allow charge to escape during manufacturing. Furthermore, the shield electrode 10a and the shield electrode 10b
Since the input-side interdigital electrode 2 and the output-side interdigital electrode 3 are separated from each other and do not cause coupling between the input-side interdigital electrode 2 and the output-side interdigital electrode 3, there is no need for cutting during use, and therefore there is a degree of freedom in the formation position.

【0023】[0023]

【発明の効果】以上のように請求項1の弾性表面波装置
によれは、シールド電極を、一対の入出力端を複数配置
し、それぞれの一対の入出力端の通過による弾性表面波
の伝搬回路のずれを相殺するように構成したので、弾性
表面波の伝搬経路のずれによる損失の増加が低減された
、入力側電極と出力側電極との電気的結合が抑制された
弾性表面波装置を得られる効果がある。また、請求項2
の弾性表面波装置によれば、第1の高抵抗線路と第2の
高抵抗線路は製造時のチャージによる入力側電極および
出力側電極の破損を防止し、かつ、使用時の切断が不必
要であるので、弾性表面波装置の電極パターン設計の自
由度が増すとともに製造工数を削減できる効果がある。
As described above, according to the surface acoustic wave device of claim 1, the shield electrode is arranged with a plurality of pairs of input and output ends, and the surface acoustic wave propagates by passing through each pair of input and output ends. The surface acoustic wave device is configured to cancel circuit deviations, thereby reducing the increase in loss due to deviations in the propagation path of the surface acoustic wave, and suppressing electrical coupling between the input side electrode and the output side electrode. There are benefits to be gained. Also, claim 2
According to this surface acoustic wave device, the first high-resistance line and the second high-resistance line prevent damage to the input-side electrode and output-side electrode due to charging during manufacturing, and do not require cutting during use. Therefore, there is an effect that the degree of freedom in designing the electrode pattern of the surface acoustic wave device is increased and the number of manufacturing steps can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明による弾性表面波装置の実施例1を示
す構成図である。
FIG. 1 is a configuration diagram showing a first embodiment of a surface acoustic wave device according to the present invention.

【図2】この発明による弾性表面波装置の実施例1によ
る弾性表面波の伝搬方向を示す説明図である。
FIG. 2 is an explanatory diagram showing the propagation direction of surface acoustic waves according to Example 1 of the surface acoustic wave device according to the present invention.

【図3】この発明による弾性表面波装置の実施例2を示
すシールド電極の構成図である。
FIG. 3 is a configuration diagram of a shield electrode showing a second embodiment of the surface acoustic wave device according to the present invention.

【図4】この発明による弾性表面波装置の実施例3を示
す構成図である。
FIG. 4 is a configuration diagram showing a third embodiment of a surface acoustic wave device according to the present invention.

【図5】従来のこの種の弾性表面波装置を示す構成図で
ある。
FIG. 5 is a configuration diagram showing a conventional surface acoustic wave device of this type.

【図6】シールド電極を有しない弾性表面波装置におけ
る入力側すだれ状電極と出力側すだれ状電極との間の電
気的な結合を示す等価回路図である。
FIG. 6 is an equivalent circuit diagram showing electrical coupling between an input-side interdigital electrode and an output-side interdigital electrode in a surface acoustic wave device without a shield electrode.

【図7】シールド電極を有する弾性表面波装置における
入力側すだれ状電極と出力側すだれ状電極との間の電気
的な結合を示す等価回路図である。
FIG. 7 is an equivalent circuit diagram showing electrical coupling between an input side interdigital electrode and an output side interdigital electrode in a surface acoustic wave device having a shield electrode.

【図8】従来のこの種の弾性表面波装置の弾性表面波の
伝搬方向を示す説明図である。
FIG. 8 is an explanatory diagram showing the propagation direction of surface acoustic waves in a conventional surface acoustic wave device of this type.

【符号の説明】[Explanation of symbols]

1  圧電体基板 2  入力側すだれ状電極 3  出力側すだれ状電極 4  シールド電極 5  静電容量 6  静電容量 7  静電容量 8  伝搬経路 9  伝搬径路 10  シールド電極 10a  シールド電極 10b  シールド電極 11  伝搬経路 12  第1の高抵抗線路 13  第2の高抵抗線路 1 Piezoelectric substrate 2 Input side interdigital electrode 3 Output side interdigital electrode 4 Shield electrode 5 Capacitance 6 Capacitance 7. Capacitance 8 Propagation path 9 Propagation path 10 Shield electrode 10a Shield electrode 10b Shield electrode 11 Propagation path 12 First high resistance line 13 Second high resistance line

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  圧電体基板に形成され、電気信号を弾
性表面波に変換する入力側電極と、上記入力側電極によ
り励振された弾性表面波を再び電気信号に変換する出力
側電極と、上記入力側電極と出力側電極との間の弾性表
面波の伝搬経路に形成され、上記入力側電極と出力側電
極との電気的結合を抑制するシールド電極とを有する弾
性表面波装置において、上記シールド電極を、弾性表面
波のシールド電極への対応する入出力点における接線が
互いに平行となる一対の入出力端を上記接線を弾性表面
波の伝搬方向に対して傾斜させて複数配置し、それぞれ
の一対の入出力端の通過による弾性表面波の伝搬経路の
ずれを相殺するように構成したことを特徴とする弾性表
面波装置。
1. An input side electrode that is formed on a piezoelectric substrate and converts an electric signal into a surface acoustic wave; an output side electrode that converts the surface acoustic wave excited by the input side electrode back into an electric signal; A surface acoustic wave device comprising a shield electrode formed in a propagation path of a surface acoustic wave between an input side electrode and an output side electrode, and suppressing electrical coupling between the input side electrode and the output side electrode. A plurality of electrodes are arranged with a pair of input/output ends such that the tangents at the corresponding input/output points to the surface acoustic wave shield electrode are parallel to each other, and the tangents are inclined with respect to the propagation direction of the surface acoustic wave. 1. A surface acoustic wave device characterized in that the surface acoustic wave device is configured to cancel a deviation in a propagation path of a surface acoustic wave caused by passage through a pair of input and output ends.
【請求項2】  圧電体基盤に形成され、電気信号を弾
性表面波に変換する入力側電極と、上記入力側電極によ
り励振された弾性表面波を再び電気信号に変換する出力
側電極と、上記入力側電極と出力側電極との間の弾性表
面波の伝搬経路に形成され、上記入力側電極と出力側電
極との電気的結合を抑制する複数のシールド電極と、上
記シールド電極と上記入力側電極を構成する接地側導体
とを接続する第1の高抵抗線路と、上記第1の高抵抗線
路が接続されていない上記シールド電極と上記出力側電
極を構成する接地側導体とを接続する第2の高抵抗線路
とを備えたことを特徴とする弾性表面波装置。
2. An input side electrode formed on a piezoelectric substrate and converting an electric signal into a surface acoustic wave; an output side electrode converting the surface acoustic wave excited by the input side electrode back into an electric signal; a plurality of shield electrodes formed in a propagation path of surface acoustic waves between the input side electrode and the output side electrode to suppress electrical coupling between the input side electrode and the output side electrode; and the shield electrode and the input side electrode. A first high-resistance line that connects a ground-side conductor that constitutes an electrode, and a first high-resistance line that connects the shield electrode to which the first high-resistance line is not connected and a ground-side conductor that constitutes the output electrode. 2. A surface acoustic wave device comprising: 2 high resistance lines.
JP3032950A 1991-02-27 1991-02-27 Surface acoustic wave device Expired - Lifetime JP3013464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3032950A JP3013464B2 (en) 1991-02-27 1991-02-27 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3032950A JP3013464B2 (en) 1991-02-27 1991-02-27 Surface acoustic wave device

Publications (2)

Publication Number Publication Date
JPH04288719A true JPH04288719A (en) 1992-10-13
JP3013464B2 JP3013464B2 (en) 2000-02-28

Family

ID=12373223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3032950A Expired - Lifetime JP3013464B2 (en) 1991-02-27 1991-02-27 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP3013464B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004054102A1 (en) * 2002-12-10 2004-06-24 Nortel Networks Limited Surface wave devices with low passband ripple
WO2006118039A1 (en) * 2005-04-27 2006-11-09 Matsushita Electric Industrial Co., Ltd. Antenna sharing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5178669A (en) * 1974-12-28 1976-07-08 Toko Inc DANSEIHYOMENHAFUIRUTAANO SEIZOHOHO
JPS5183444A (en) * 1975-01-18 1976-07-22 Toko Inc DANSEIHYOMENHAFUIRUTAA
JPS5572337U (en) * 1978-11-08 1980-05-19
JPS62181036U (en) * 1986-05-09 1987-11-17

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5178669A (en) * 1974-12-28 1976-07-08 Toko Inc DANSEIHYOMENHAFUIRUTAANO SEIZOHOHO
JPS5183444A (en) * 1975-01-18 1976-07-22 Toko Inc DANSEIHYOMENHAFUIRUTAA
JPS5572337U (en) * 1978-11-08 1980-05-19
JPS62181036U (en) * 1986-05-09 1987-11-17

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004054102A1 (en) * 2002-12-10 2004-06-24 Nortel Networks Limited Surface wave devices with low passband ripple
US6856214B2 (en) * 2002-12-10 2005-02-15 Nortel Networks Limited Surface wave devices with low passband ripple
US7023300B2 (en) * 2002-12-10 2006-04-04 Chun-Yun Jian Surface wave devices with low passband ripple
WO2006118039A1 (en) * 2005-04-27 2006-11-09 Matsushita Electric Industrial Co., Ltd. Antenna sharing device
JP2006311041A (en) * 2005-04-27 2006-11-09 Matsushita Electric Ind Co Ltd Antenna duplexer
EP1883159A1 (en) * 2005-04-27 2008-01-30 Matsushita Electric Industrial Co., Ltd. Antenna sharing device
EP1883159A4 (en) * 2005-04-27 2009-12-23 Panasonic Corp Antenna sharing device
US7733196B2 (en) 2005-04-27 2010-06-08 Panasonic Corporation Antenna sharing device

Also Published As

Publication number Publication date
JP3013464B2 (en) 2000-02-28

Similar Documents

Publication Publication Date Title
US3872410A (en) Surface wave filter for tv if stage
US5838217A (en) Longitudinally coupling acoustic surface wave double mode filter utilizing end-face reflecting waves
CA1047615A (en) Surface acoustic wave filter
US7023300B2 (en) Surface wave devices with low passband ripple
KR100654867B1 (en) Surface acoustic wave apparatus
US5223762A (en) Surface acoustic wave filter
US4609891A (en) Staggered SAW resonator for differential detection
JPH03222512A (en) Polarized type saw resonator filter
KR100778226B1 (en) Elastic-wave filter and communication device equipped with the elastic-wave filter
US3988703A (en) Acoustic surface wave device having split-isolated or split-connected multistrip coupler
EP0044732A2 (en) Acoustic surface wave transducer with improved inband frequency characteristics
JP3918433B2 (en) Horizontal double mode SAW filter
EP0827274B1 (en) Surface acoustic wave resonator filter
JPH04288719A (en) Surface acoustic wave device
JP3305475B2 (en) Elastic wave element
US5434466A (en) Acoustic wave filter with reduced bulk-wave scattering loss and method
US3968461A (en) Acoustic surface-wave devices
US6147574A (en) Unidirectional surface acoustic wave transducer and transversal-type saw filter having the same
US4375624A (en) Surface wave acoustic device with compensation for spurious frequency response modes
JP4155104B2 (en) Surface acoustic wave device
JP2000312125A (en) Surface acoustic wave unit
US4205280A (en) Surface wave device with suppressed boundary-reflected waves
US9190980B2 (en) Elastic wave filter
JP2004516703A (en) Transversal mode coupled resonator filter
JPH0241925B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 12