JPH04288141A - Nuclear magnetic resonance imaging - Google Patents

Nuclear magnetic resonance imaging

Info

Publication number
JPH04288141A
JPH04288141A JP3052608A JP5260891A JPH04288141A JP H04288141 A JPH04288141 A JP H04288141A JP 3052608 A JP3052608 A JP 3052608A JP 5260891 A JP5260891 A JP 5260891A JP H04288141 A JPH04288141 A JP H04288141A
Authority
JP
Japan
Prior art keywords
pulse
time
magnetic resonance
relaxation time
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3052608A
Other languages
Japanese (ja)
Inventor
Atsushi Takane
淳 高根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3052608A priority Critical patent/JPH04288141A/en
Publication of JPH04288141A publication Critical patent/JPH04288141A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve faster photographing with a quicker measuring time of longitudinal relaxation time T1, lateral relaxation time T2 and a magnetization Mo value used for a calculation value image of a magnetic resonance imaging. CONSTITUTION:RE (high frequency) pulse for excitation is applied to a spin system in vivo by a repetition frequency TR and an inclined magnetic field for slice selection, an inclined magnetic field for phase encoding and the like are applied. The TR is made shorter sufficiently than the T1 and T2 and a spin causes a normal precession motion at the TR. Under such a condition, a echo (FED) signal is detected from the elapse time t10 and t20 after the generation of the RF pulse calculated starting from the generation of the RF pulse and the retrograde time r1t and t2t before the generation of the RF pulse calculated starting from the moment of the subsequent RF pulse. A hypercomplex equation with T1, T2 and the Mo value as unknown number is computed from echo signal values S10 and S20 and S2t and S1t detected.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は核磁気共鳴(NMR)イ
メージング法に係り、特に高速撮影に適した縦緩和時間
T1,横緩和時間T2,スピンの磁化Moの計測技術に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to nuclear magnetic resonance (NMR) imaging, and particularly to a technique for measuring longitudinal relaxation time T1, transverse relaxation time T2, and spin magnetization Mo, which is suitable for high-speed imaging.

【0002】0002

【従来の技術】NMRイメージング装置は生体分野等で
利用され、その画像形成要素として、生体のスピン系を
RFパルス(高周波パルス)で励起させた時に生じる縦
緩和時間T1,横緩和時間T2等が重要なパラメータと
なる。
[Prior Art] NMR imaging devices are used in the biological field, etc., and their image forming elements include longitudinal relaxation time T1, transverse relaxation time T2, etc. that occur when the spin system of a living body is excited with an RF pulse (high frequency pulse). This is an important parameter.

【0003】従来、縦緩和時間T1,横緩和時間T2を
測定するには、スピンエコー法(SE法),インバージ
ョンリカバリー法(IR法)を用いていたが、緩和を測
定するためにRFパルスの繰り返し周期TRを長くする
必要があるため、計測時間が長くかかった。
Conventionally, spin echo method (SE method) and inversion recovery method (IR method) have been used to measure longitudinal relaxation time T1 and transverse relaxation time T2, but in order to measure relaxation, RF pulse Since it was necessary to lengthen the repetition period TR, the measurement time took a long time.

【0004】以上を考慮して、最近では特開昭60−1
49953号公報に開示されるように、撮影領域のスピ
ンの定常歳差状態(SSFP;Steady−stat
e−Free  Precession)のエコー信号
(FID信号)を検出し、この検出値から横緩和時間T
2を計算式より求める等、計測の高速化が提案されてい
る。
[0004] Considering the above, recently Japanese Patent Application Laid-Open No. 1983-1
As disclosed in Japanese Patent No. 49953, the steady-state precession state (SSFP) of the spin of the imaging region is
Detect the echo signal (FID signal) of e-Free Precession, and calculate the transverse relaxation time T from this detected value.
2 has been proposed to speed up the measurement, such as finding it from a calculation formula.

【0005】上記公報における発明は、RFパルスの繰
り返し周期TRを緩和時間よりも充分に短くして、その
RFパルスの発生直後及び直前に表われる信号S+とS
−の比に関する計算式より、横緩和時間T2を算出して
いる。
The invention disclosed in the above publication makes the repetition period TR of the RF pulse sufficiently shorter than the relaxation time, and the signals S+ and S which appear immediately before and immediately before the generation of the RF pulse are
The transverse relaxation time T2 is calculated from the calculation formula regarding the ratio of -.

【0006】[0006]

【発明が解決しようとする課題】以上のように、従来は
SSFPの信号をとらえて緩和時間を算出するとしても
、横緩和時間T2のみであった。ところで、磁気共鳴イ
メージング画像の精度向上を図るためには、縦緩和時間
T1,横緩和時間T2の双方或いはこれに加えて磁化M
oを用いて計算値画像を合成することが必要である。 従って、T2のみならずT1やMoの計測も計算により
高速に求めることが望まれる。
As described above, in the past, even if the relaxation time was calculated by capturing the SSFP signal, only the transverse relaxation time T2 was calculated. By the way, in order to improve the precision of magnetic resonance imaging images, it is necessary to change both the longitudinal relaxation time T1 and the transverse relaxation time T2, or in addition to them, the magnetization M.
It is necessary to synthesize the calculated value image using o. Therefore, it is desirable to calculate not only T2 but also T1 and Mo at high speed.

【0007】本発明は以上の点に鑑みてなされたもので
、その目的は、T1,T2,Mo値などを定常歳差状態
(SSFP)時の信号を用いて算出して、磁気共鳴イメ
ージングの高速撮影化を図ることにある。
The present invention has been made in view of the above points, and its purpose is to calculate T1, T2, Mo values, etc. using signals in the steady state precession state (SSFP) to improve magnetic resonance imaging. The purpose is to achieve high-speed photography.

【0008】[0008]

【課題を解決するための手段】本発明は上記目的を達成
するために、基本的には定常歳差状態(SSFP)のエ
コー信号値からT1,T2或いはこれに加えてMo値を
算出しようとするもので、そのためには、上記の特開昭
60−149953号のように励起パルスを直前,直後
に1つづつのエコー信号値をサンプリングするだけでは
不十分であることに着目し、次のような磁気共鳴イメー
ジング法を提案する。
[Means for Solving the Problems] In order to achieve the above object, the present invention basically attempts to calculate T1, T2 or, in addition, the Mo value from the echo signal value in the steady state precession state (SSFP). For this purpose, we focused on the fact that it is not sufficient to sample the echo signal value one by one just before and after the excitation pulse as in the above-mentioned Japanese Patent Application Laid-Open No. 149953/1982, and we will do the following. We propose a new magnetic resonance imaging method.

【0009】すなわち、体内の特定部位のスピン系を励
起(磁気共鳴)させて、2次元又は3次元の画像形成要
素として少なくとも縦緩和時間T1,横緩和時間T2を
求める核磁気共鳴イメージング法において、前記緩和時
間T1,T2よりも充分に短い繰り返し周期TRでスピ
ン励起用のRFパルスを特定部位に印加して、撮影領域
内のスピンに周期TRごとの定常歳差運動(SSFP)
を起こさせ、各周期TRごとに、RFパルス発生時点か
ら起算したRFパルス発生後の2つの経過時間t1O,
t2Oと次のRFパルス発生時点から起算したRFパル
ス発生前の2つの逆行時間t1t,t2tとを設定し、
これら2つづつ計4つの時間設定で磁気共鳴のエコー信
号(FID信号)値S1O,S2O及びS2t,S1t
をサンプリングし、これらの信号値S1O,S1t,S
2O,S2tからT1,T2を未知数として含む多元方
程式を成立させてT1,T2を算出する。
That is, in a nuclear magnetic resonance imaging method in which at least a longitudinal relaxation time T1 and a transverse relaxation time T2 are obtained as two-dimensional or three-dimensional image forming elements by exciting (magnetic resonance) a spin system in a specific part of the body, An RF pulse for spin excitation is applied to a specific region at a repetition period TR that is sufficiently shorter than the relaxation times T1 and T2, and the spins in the imaging region undergo steady precession (SSFP) at each period TR.
occurs, and for each period TR, two elapsed times t1O,
Set t2O and two retrograde times t1t and t2t before the RF pulse generation starting from the next RF pulse generation time,
Magnetic resonance echo signal (FID signal) values S1O, S2O and S2t, S1t with these two time settings, a total of four time settings.
are sampled, and these signal values S1O, S1t, S
From 2O and S2t, a multidimensional equation including T1 and T2 as unknowns is established to calculate T1 and T2.

【0010】0010

【作用】励起用のRFパルスを緩和時間T1,T2より
も充分に短くした繰り返し周期TRで測定対象のスピン
に印加すると、TRの時間帯にスピンによる定常歳差運
動が起こる。
[Operation] When an excitation RF pulse is applied to the spins to be measured at a repetition period TR that is sufficiently shorter than the relaxation times T1 and T2, steady precession by the spins occurs during the time period TR.

【0011】この状態で、図2に示すようにRFパルス
発生時点から起算した2つの経過時間t1O,t2Oと
次のRFパルス発生時点から起算した2つの逆行時間t
1t,t2tを予め設定しておき、これらの時間におい
てそれぞれで磁気共鳴のエコー信号(FID信号)値S
1O,S2O,S2t,S1tをサンプリングする。こ
の場合のエコー信号値S1OとS1t、S2OとS2t
とは類似した信号値となる。エコー信号値SO(SOは
S1OやS2Oの総称)やSt(StはS1tやS2t
の総称)は次式で表すことができる。
In this state, as shown in FIG. 2, two elapsed times t1O and t2O starting from the time when the RF pulse is generated and two retrograde times t starting from the time when the next RF pulse is generated.
1t and t2t are set in advance, and the magnetic resonance echo signal (FID signal) value S is set at each of these times.
1O, S2O, S2t, and S1t are sampled. Echo signal values S1O and S1t, S2O and S2t in this case
and have similar signal values. Echo signal value SO (SO is a generic term for S1O and S2O) and St (St is S1t and S2t)
) can be expressed by the following formula.

【0012】0012

【数1】[Math 1]

【0013】TR;繰り返し周期 tO;周期TR中のRFパルス発生時点からの経過時間
tt;周期TR中のRFパルス発生時点からの逆行時間
T1;縦緩和時間、  T2;横緩和時間α ;フリッ
プ角、  Mo;磁化           E1=exp(−TR/T1)、
  E2=exp(−TR/T2)そして、(1)式を
S1O及びS2Oに適用し、(2)式をS1t及びS2
tに適用して、T1,T2,Moを未知数とした多元方
程式を成立させることが可能となりT1,T2,Moが
算出される。なお、多元方程式の一例は実施例で説明し
てある。
TR: Repetition period tO: Elapsed time tt from the time of RF pulse generation during period TR; Retrograde time from the time of RF pulse generation during period TR T1: Longitudinal relaxation time, T2: Transverse relaxation time α; Flip angle , Mo; magnetization E1=exp(-TR/T1),
E2=exp(-TR/T2) Then, apply equation (1) to S1O and S2O, and apply equation (2) to S1t and S2
By applying this to t, it becomes possible to establish a multidimensional equation with T1, T2, and Mo as unknowns, and T1, T2, and Mo are calculated. Note that an example of the multidimensional equation is explained in the embodiment.

【0014】[0014]

【実施例】本発明の一実施例を図面により説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be explained with reference to the drawings.

【0015】図1は本実施例を実施するためのNMR装
置に係るRFパルス及び傾斜磁場のシーケンス、図2は
本実施例のアルゴリズムに使用する信号である。
FIG. 1 shows a sequence of RF pulses and gradient magnetic fields related to an NMR apparatus for carrying out this embodiment, and FIG. 2 shows signals used in the algorithm of this embodiment.

【0016】図1において、101は繰り返し周期TR
で出力されるRFパルスで、撮影対象たる体内の特定部
位のスピン系を励起(磁気共鳴)させるために用いられ
る。RFパルスは、スピンを励起させた時に生じる縦緩
和時間T1,横緩和時間T2よりも充分に短い周期TR
で繰り返し発生するようにしてある。
In FIG. 1, 101 is the repetition period TR
The RF pulse output by the RF pulse is used to excite (magnetic resonance) the spin system of a specific part of the body that is being imaged. The RF pulse has a period TR that is sufficiently shorter than the longitudinal relaxation time T1 and transverse relaxation time T2 that occur when spins are excited.
It is made to occur repeatedly.

【0017】102は断層撮影を行う場合のスライス部
を選択するスライス選択用傾斜磁場で、スピンの位相が
零(初期状態)になるように印加する。
Reference numeral 102 denotes a slice selection gradient magnetic field for selecting a slice portion when performing tomography, and is applied so that the spin phase becomes zero (initial state).

【0018】103は励起したスライス部のスピンに位
相変化を与える位相エンコード用傾斜磁場で、スライス
部の領域を区分する。104はエコー信号のデータ取得
後に位相を初期状態に戻すための傾斜磁場、105は周
波数エンコード用傾斜磁場である。
Reference numeral 103 denotes a phase encoding gradient magnetic field that gives a phase change to the excited spins of the slice portion, and divides the region of the slice portion. 104 is a gradient magnetic field for returning the phase to the initial state after data acquisition of the echo signal, and 105 is a gradient magnetic field for frequency encoding.

【0019】106,107及び108,109は図示
されない制御装置からのサンプリング指令信号で、この
サンプリング指令信号が出力されると、その時点におけ
るエコー信号(FID信号)値を検出する。
Reference numerals 106, 107, 108, and 109 are sampling command signals from a control device (not shown). When the sampling command signals are output, the echo signal (FID signal) value at that time is detected.

【0020】サンプリング指令は、図2に示すように周
期TRごとに、RFパルス発生時点から起算したRFパ
ルス発生後の2つの経過時間t1O,t2Oと次のRF
パルス発生時点から起算したRFパルス発生前の2つの
逆行時間t1t,t2tのタイミングで出力されるよう
設定される。ここで、時間の長さは、それぞれの起算点
を基準としてt1O=t1t、t2O=t2tとしてあ
り、順方向の経過時点でとらえればt1t=TR−t1
O、t2t=TR−t2Oとなる。
As shown in FIG. 2, the sampling command consists of two elapsed times t1O and t2O after the generation of the RF pulse, calculated from the time of generation of the RF pulse, and the next RF.
The signal is set to be output at two retrograde times t1t and t2t before the RF pulse is generated starting from the pulse generation time. Here, the length of time is t1O = t1t and t2O = t2t based on each starting point, and if taken at the time point in the forward direction, t1t = TR - t1
O, t2t=TR-t2O.

【0021】しかして、本実施例では、緩和時間T1,
T2より充分に短くした周期TRにより繰り返しRFパ
ルスを撮影領域のスピンに照射することにより、スピン
に定常歳差運動を起こさせる。この定常歳差状態の時間
帯(周期TR)に、図2に示すように上記の各時点t1
O,t2O,t2t,t1tにて、その時のエコー信号
値を検出し、これらのエコー信号(FID)値S1O,
S2O,S2t,S1tから画像要素としての縦緩和時
間T1,横緩和時間T2及び磁化Moを実測することな
く後述の3元方程式を用いて算出する。
[0021] Therefore, in this embodiment, the relaxation time T1,
By repeatedly irradiating the spins in the imaging region with RF pulses with a period TR that is sufficiently shorter than T2, the spins are caused to undergo steady precession. During the time period (period TR) of this steady precession state, as shown in FIG.
At O, t2O, t2t, and t1t, the echo signal values at that time are detected, and these echo signal (FID) values S1O,
The longitudinal relaxation time T1, the transverse relaxation time T2, and the magnetization Mo as image elements are calculated from S2O, S2t, and S1t using a three-dimensional equation described below without actually measuring them.

【0022】上記のRFパルス101によるスピン励起
からエコー信号計測ひいてはT1,T2,Mo値演算の
までの一連の手順を位相エンコード傾斜磁場を変化させ
ながら繰り返し行われる。
A series of steps from spin excitation by the RF pulse 101 to echo signal measurement and T1, T2, and Mo value calculation are repeated while changing the phase encode gradient magnetic field.

【0023】ここで、T1,T2,Mo値を算出する演
算式を説明する。
[0023] Here, the arithmetic expressions for calculating the T1, T2, and Mo values will be explained.

【0024】[0024]

【数2】[Math 2]

【0025】[0025]

【数3】[Math 3]

【0026】[0026]

【数4】[Math 4]

【0027】[0027]

【数5】[Math 5]

【0028】本実施例では上記のようにしてT1,T2
,Mo値がCPUにより演算されると、このT1,T2
,Mo値より特定の繰り返し周期TR,エコー時間TE
及びフリップ角αにおける2次元又は3次元の計算値画
像を合成する。
In this embodiment, as described above, T1, T2
, Mo values are calculated by the CPU, these T1, T2
, a specific repetition period TR and echo time TE from the Mo value.
and two-dimensional or three-dimensional calculated value images at the flip angle α are synthesized.

【0029】[0029]

【発明の効果】以上のように本発明によれば、スピン励
起用のRFパルスの繰り返し周期TRを縦,横の緩和時
間T1,T2よりも充分に短くし、且つこの状況で生じ
る定常歳差状態のエコー信号値(信号強度)に基づきT
1,T2或いはこれに加えてMo値を算出するので、信
号計測時間の大幅な短縮化ひいては高速撮影を可能にす
る。
As described above, according to the present invention, the repetition period TR of the RF pulse for spin excitation can be made sufficiently shorter than the longitudinal and transverse relaxation times T1 and T2, and the steady precession that occurs in this situation can be reduced. T based on the state echo signal value (signal strength)
Since the Mo value is calculated as 1, T2 or in addition to this, the signal measurement time can be significantly shortened and high-speed photography can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例たる磁気共鳴イメージング法
におけるRFパルス及び傾斜磁場のシーケンスを示す説
明図。
FIG. 1 is an explanatory diagram showing a sequence of RF pulses and gradient magnetic fields in a magnetic resonance imaging method according to an embodiment of the present invention.

【図2】上記実施例のアルゴリズムに使用するエコー信
号のサンプル状態を示す説明図。
FIG. 2 is an explanatory diagram showing sample states of echo signals used in the algorithm of the above embodiment.

【符号の説明】[Explanation of symbols]

101…RFパルス、102…スライス選択用傾斜磁場
、103…位相エンコード用傾斜磁場、106,107
,108,109…サンプリング指令信号。
101...RF pulse, 102...Gradient magnetic field for slice selection, 103...Gradient magnetic field for phase encoding, 106, 107
, 108, 109...Sampling command signal.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  体内の特定部位のスピン系を励起(磁
気共鳴)させて、2次元又は3次元の画像形成要素とし
て少なくとも縦緩和時間T1,横緩和時間T2を求める
核磁気共鳴イメージング法において、前記緩和時間T1
,T2よりも充分に短い繰り返し周期TRでスピン励起
用のRF(高周波)パルスを特定部位に印加して、撮影
領域のスピンに周期TRごとの定常歳差運動(SSFP
;Steady−State−Free  Prece
ssion)を起こさせ、各周期TRごとに、RFパル
ス発生時点から起算したRFパルス発生後の2つの経過
時間t1O,t2Oと次のRFパルス発生時点から起算
したRFパルス発生前の2つの逆行時間t1t,t2t
とを設定し、これら2つづつ計4つの時間設定で磁気共
鳴のエコー信号(FID信号)値S1O,S2O及びS
2t,S1tをサンプリングし、これらの信号値S1O
,S1t,S2O,S2tからT1,T2を未知数とし
て含む多元方程式を成立させてT1,T2を算出するこ
とを特徴とする核磁気共鳴イメージング法。
Claim 1. A nuclear magnetic resonance imaging method that excites (magnetic resonance) a spin system in a specific part of the body and obtains at least a longitudinal relaxation time T1 and a transverse relaxation time T2 as two-dimensional or three-dimensional image forming elements, The relaxation time T1
, T2, an RF (radio frequency) pulse for spin excitation is applied to a specific region at a repetition period TR that is sufficiently shorter than T2, and the spins in the imaging region undergo steady precession (SSFP) at each period TR.
;Steady-State-Free Prece
ssion), and for each period TR, two elapsed times t1O and t2O after the RF pulse generation starting from the RF pulse generation time and two retrograde times before the RF pulse generation starting from the next RF pulse generation time. t1t, t2t
and the magnetic resonance echo signal (FID signal) values S1O, S2O and S
2t and S1t, and these signal values S1O
, S1t, S2O, and S2t to calculate T1 and T2 by establishing a multidimensional equation including T1 and T2 as unknowns.
【請求項2】  体内の特定部位のスピン系をRFパル
スにより励起(磁気共鳴)させる工程と、励起したスピ
ンに位相エンコード傾斜磁場を加えて位相変化を与える
工程と、傾斜磁場を印加しながら磁気共鳴のエコー(F
ID)信号を検出,計測する工程とを含み、前記励起か
らエコー信号計測までの手順を位相エンコード傾斜磁場
を変化させながら繰り返し行って2次元又は3次元のエ
コー信号を得、この信号を用いて画像を形成する核磁気
共鳴イメージング法において、前記スピンに印加される
RFパルスの繰り返し周期TRを縦緩和時間T1,横緩
和時間T2よりも充分に短くして、撮影領域のスピンに
周期TRごとの定常歳差運動を起こさせ、且つ、前記エ
コー信号の検出,計測の工程では、周期TRごとに、R
Fパルス発生時点から起算したRFパルス発生後の2つ
の経過時間t1O,t2Oと次のRFパルス発生時点か
ら起算したRFパルス発生前の2つの逆行時間t1t,
t2tのタイミングで計4つのエコー信号値S1O,S
2O,S2t,S1tを検出,計測させ、これらの計4
つの信号値より2次元又は3次元の画像要素として少な
くとも縦緩和時間T1,横緩和時間T2を多元方程式に
より算出することを特徴とする核磁気共鳴イメージング
法。
2. A step in which a spin system in a specific part of the body is excited (magnetic resonance) by an RF pulse, a step in which a phase encoding gradient magnetic field is applied to the excited spins to cause a phase change, and a step in which the spin system in a specific part of the body is excited (magnetic resonance) by an RF pulse; echo of resonance (F
ID) A step of detecting and measuring a signal, repeating the steps from excitation to echo signal measurement while changing the phase encoding gradient magnetic field to obtain a two-dimensional or three-dimensional echo signal, and using this signal. In the nuclear magnetic resonance imaging method for forming images, the repetition period TR of the RF pulse applied to the spins is made sufficiently shorter than the longitudinal relaxation time T1 and the transverse relaxation time T2, and the spins in the imaging region are In the step of causing steady precession and detecting and measuring the echo signal, R
Two elapsed times t1O and t2O after the RF pulse is generated starting from the time when the F pulse is generated, and two retrograde times t1t before the RF pulse is generated starting from the time when the next RF pulse is generated.
A total of four echo signal values S1O, S at the timing of t2t
2O, S2t, and S1t are detected and measured, and a total of 4 of these are detected and measured.
A nuclear magnetic resonance imaging method characterized in that at least a longitudinal relaxation time T1 and a transverse relaxation time T2 are calculated as two-dimensional or three-dimensional image elements from two signal values using a multidimensional equation.
【請求項3】  前記多元方程式は、T1,T2のほか
にスピン系の磁化Moを未知数として含む3元方程式で
、算出したT1,T2,Mo値より特定の繰り返し周期
TR,エコー時間TE及びフリップ角αにおける計算値
画像を合成することを特徴とする核磁気共鳴イメージン
グ法。
3. The multi-dimensional equation is a three-dimensional equation that includes magnetization Mo of the spin system as an unknown in addition to T1 and T2, and a specific repetition period TR, echo time TE, and flip A nuclear magnetic resonance imaging method characterized by combining calculated images at an angle α.
JP3052608A 1991-03-18 1991-03-18 Nuclear magnetic resonance imaging Pending JPH04288141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3052608A JPH04288141A (en) 1991-03-18 1991-03-18 Nuclear magnetic resonance imaging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3052608A JPH04288141A (en) 1991-03-18 1991-03-18 Nuclear magnetic resonance imaging

Publications (1)

Publication Number Publication Date
JPH04288141A true JPH04288141A (en) 1992-10-13

Family

ID=12919513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3052608A Pending JPH04288141A (en) 1991-03-18 1991-03-18 Nuclear magnetic resonance imaging

Country Status (1)

Country Link
JP (1) JPH04288141A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102866372A (en) * 2011-07-08 2013-01-09 西门子公司 Methods for calibrating frequency of magnetic resonance device and corresponding magnetic resonance device
JP2013521922A (en) * 2010-03-18 2013-06-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Simultaneous and dynamic determination of longitudinal and transverse relaxation times of nuclear spin systems.
JP2015525604A (en) * 2012-07-02 2015-09-07 シンセティックエムアール・エイビイ Method and system for improved magnetic resonance acquisition
US10073156B2 (en) 2012-07-02 2018-09-11 Syntheticmr Ab Methods and systems for improved magnetic resonance acquisition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013521922A (en) * 2010-03-18 2013-06-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Simultaneous and dynamic determination of longitudinal and transverse relaxation times of nuclear spin systems.
US9588205B2 (en) 2010-03-18 2017-03-07 Koninklijke Philips N.V. Simultaneous and dynamic determination of longitudinal and transversal relaxation times of a nuclear spin system
CN102866372A (en) * 2011-07-08 2013-01-09 西门子公司 Methods for calibrating frequency of magnetic resonance device and corresponding magnetic resonance device
JP2015525604A (en) * 2012-07-02 2015-09-07 シンセティックエムアール・エイビイ Method and system for improved magnetic resonance acquisition
US10073156B2 (en) 2012-07-02 2018-09-11 Syntheticmr Ab Methods and systems for improved magnetic resonance acquisition

Similar Documents

Publication Publication Date Title
EP1037067B1 (en) Non-CPMG fast spin echo MRI method
JP2001204712A (en) Method for measuring breathing displacement and velocity using navigator magnetic resonance imaging echo signal
US5655531A (en) MRI method and apparatus for selective image suppression of material based on T1 and T2 relation times
JPH10155769A (en) Magnetic resonance imaging apparatus and methood
US4836209A (en) NMR imaging of moving material using variable spatially selected excitation
JP3808601B2 (en) Magnetic resonance diagnostic equipment
JPH05285116A (en) Magnetic resonance imaging method
US5655532A (en) Magnetic resonance imaging apparatus and its method
WO2002013692A1 (en) Magnetic resonance imaging apparatus
JP3339509B2 (en) MRI equipment
JP4230875B2 (en) Magnetic resonance imaging system
JPH04288141A (en) Nuclear magnetic resonance imaging
US5317262A (en) Single shot magnetic resonance method to measure diffusion, flow and/or motion
JPH0277235A (en) Magnetic resonance imaging method
JPH08266514A (en) Picture data collecting method for nuclear spin tomography, and nuclear spin tomography device to perform said method
EP0244489A1 (en) Method and apparatus for nmr imaging
JP2000511815A (en) Shift echo MR method and apparatus
JP2005512648A (en) Diffusion-weighted multiple spin echo (RARE) sequence having a crusher gradient with periodically modulated amplitude
JP3323653B2 (en) Magnetic resonance imaging equipment
JPH07148139A (en) Method to measure spin-lattice relaxation period
JPH0723929A (en) Mri device
JPH09103420A (en) Phase difference -mr- blood vessel photographing method, anddevice to perform said method
EP0109517B1 (en) Nuclear magnetic resonance diagnostic apparatus
US11885864B2 (en) Magnetic resonance imaging apparatus and method of controlling the same
JP3366390B2 (en) MRI equipment