JPH04287680A - Image pick-up device of very small substance in liquid - Google Patents

Image pick-up device of very small substance in liquid

Info

Publication number
JPH04287680A
JPH04287680A JP5108091A JP5108091A JPH04287680A JP H04287680 A JPH04287680 A JP H04287680A JP 5108091 A JP5108091 A JP 5108091A JP 5108091 A JP5108091 A JP 5108091A JP H04287680 A JPH04287680 A JP H04287680A
Authority
JP
Japan
Prior art keywords
liquid
microorganisms
imaging device
waterproof
observation window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5108091A
Other languages
Japanese (ja)
Inventor
Shoji Watanabe
昭二 渡辺
Naoki Hara
直樹 原
Mikio Yoda
幹雄 依田
Ichirou Enbutsu
伊智朗 圓佛
Kenji Baba
研二 馬場
Toshio Yahagi
矢萩 捷夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5108091A priority Critical patent/JPH04287680A/en
Publication of JPH04287680A publication Critical patent/JPH04287680A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

PURPOSE:To obtain an excellent static image even in a liquid in a fluidized state by setting a magnifying optical means and a TV camera in a stationary waterproof box, laying an illuminating means in a moving waterproof box and sampling part of liquid between both the waterproof boxes. CONSTITUTION:A moving waterproof box 10B is reciprocated by a mobile driving gear 22 and part of liquid is sampled between an observation window 14B and an observation window 14A of a stationary waterproof box 10A. The box 10A has a built-in magnifying optical lens 19 and a TV camera 10 and the box 10B has a built-in illuminating means 18.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は液中の微小物質を連続的
に自動観察できる液中微小物質撮像装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an imaging device for minute substances in liquid that can continuously and automatically observe minute substances in liquid.

【0002】0002

【従来の技術】微生物利用プロセスは微生物と培地、あ
るいは、微生物と被処理水を混合撹拌し、流動状態下で
有用物質の生産や微生物自身の増殖培養、特定物質の分
解除去に広く利用されている。これらの微生物利用プロ
セスでは、微生物を適正な状態に維持することが重要と
されている。
[Prior Art] Microbial utilization processes mix and stir microorganisms and culture media or microorganisms and water to be treated, and are widely used in fluidized conditions to produce useful substances, propagate and culture the microorganisms themselves, and decompose and remove specific substances. There is. In these microbial utilization processes, it is important to maintain microorganisms in an appropriate state.

【0003】例えば、下水処理場では、活性汚泥と称す
る多種多様の微生物に大量の空気を供給して流入下水中
の汚染物質を除去して浄化している。この浄化機能を高
効率に維持するには、出現する微生物の種類やその濃度
を適切に管理する必要がある。これは、特定種類の微生
物のみが過剰に増殖すると、その種類に特異的な異常現
象が発生して処理水質が悪化し、回復させるのに多大な
時間を要するためである。このため、微生物の種類やそ
の出現量をオンラインで定量化し、これらの情報も反映
した運転管理の必要性が高まっている。
For example, in sewage treatment plants, a large amount of air is supplied to a variety of microorganisms called activated sludge to remove and purify inflowing sewage from pollutants. In order to maintain this purification function with high efficiency, it is necessary to appropriately control the types of microorganisms that appear and their concentrations. This is because when only a specific type of microorganism grows excessively, an abnormal phenomenon specific to that type occurs, the quality of the treated water deteriorates, and it takes a long time to recover. For this reason, there is an increasing need to quantify the types of microorganisms and their abundance online, and to conduct operational management that also reflects this information.

【0004】日常的に、微生物の出現種類や濃度情報を
考慮した運転管理手段の一つとして、画像処理技術の応
用が検討されている。しかし、これを実現するには微生
物を連続的、かつ、自動的に観察できる撮像装置の確立
が前提条件となる。この場合、微生物の凝集状態やその
環境を変化させずに撮像し、活性汚泥の正確な情報を得
ることが重要である。そのためには、液中に、直接、浸
漬して微生物を観察できる撮像装置でなければならない
。直接浸漬方式の撮像装置は特開昭52−89942号
、特公昭63−41639号、特開平1−312992
号公報などが発明されている。
[0004] Application of image processing technology is being considered on a daily basis as one of the operational management means that takes into consideration information on the types of microorganisms that appear and their concentration. However, to achieve this, a prerequisite is the establishment of an imaging device that can continuously and automatically observe microorganisms. In this case, it is important to obtain accurate information on activated sludge by imaging the microorganisms without changing their aggregation state or their environment. For this purpose, an imaging device that can be directly immersed in liquid to observe microorganisms is required. Direct immersion type imaging devices are disclosed in JP-A-52-89942, JP-A-63-41639, and JP-A-1-312992.
No. 2, etc. have been invented.

【0005】[0005]

【発明が解決しようとする課題】上記従来方式のうち、
特開昭52−89942号、特公昭63−41639号
、及び特開平1−312992号公報は照明手段,拡大
光学手段と、拡大光学手段で得られた拡大光像を電気信
号に変換する手段(例えばテレビカメラ)を水平に配置
し、サンプル室を重力方向に形成する構造を採用してい
る。この方式は、重力沈降する性質を持つ微生物がサン
プル室に取り込まれた後も下方向に動き、静止画像を得
ることが困難である。 この静止画像は微生物の出現状態を観察するうえで、撮
像装置の重要な機能である。特に、活性汚泥中に頻繁に
出現する太さ約1μmの糸状性微生物や、運動性のある
原生動物を画像処理で定量化する場合、不可欠な条件で
ある。本発明の目的は流動状態の液体中でも常に良好な
静止画像を得ることができる液中微小物質撮像装置を提
供することにある。
[Problem to be solved by the invention] Among the above conventional methods,
JP-A-52-89942, JP-A-63-41639, and JP-A-1-312992 disclose an illumination means, an enlarging optical means, and a means for converting an enlarged optical image obtained by the enlarging optical means into an electrical signal ( For example, a television camera) is placed horizontally, and the sample chamber is formed in the direction of gravity. With this method, microorganisms that tend to settle due to gravity move downward even after they are taken into the sample chamber, making it difficult to obtain still images. This still image is an important function of the imaging device in observing the appearance of microorganisms. In particular, this is an essential condition when using image processing to quantify filamentous microorganisms with a thickness of approximately 1 μm and motile protozoa that frequently appear in activated sludge. SUMMARY OF THE INVENTION An object of the present invention is to provide an in-liquid microscopic substance imaging device that can always obtain good still images even in a flowing liquid.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
、本発明は浸漬可能な二つの防水筐体をもち、一方の防
水筐体は浸漬対象液を保持する構造物に固定された架台
と連結された支持棒に固定し、前記支持棒の上下位置を
調節できる手段を前記架台に配設し、他方の防水筐体を
前記固定筐体を基準として移動可能なプランジャ方式と
し、前記固定防水筐体には前記プランジャと対向する部
分に観察窓ガラスを設置して前記接液窓外のサンプル液
を撮像対象とする拡大光学手段とテレビカメラを内蔵さ
せ、プランジャには固定防水筐体の接液窓と対向する部
分に凹型観察窓ガラスを設置し、この凹部を含む観察窓
ガラスを照射する照明手段を内蔵させ、前記二つの防水
筐体の間に浸漬対象液の流動を抑制する手段を配設する
[Means for Solving the Problems] In order to achieve the above object, the present invention has two waterproof casings that can be immersed, one of which is a pedestal fixed to a structure that holds a liquid to be immersed. A means is provided on the pedestal that is fixed to the connected support rods and can adjust the vertical position of the support rods, and the other waterproof casing is of a plunger type movable with respect to the fixed casing, An observation window glass is installed in the casing in a part facing the plunger, and a magnifying optical means and a television camera are built in to image the sample liquid outside the liquid contact window. A recessed observation window glass is installed in a portion facing the liquid window, a lighting means is built in to illuminate the observation window glass including this recessed part, and a means for suppressing the flow of the liquid to be immersed is provided between the two waterproof casings. Arrange.

【0007】[0007]

【作用】本発明を構成する上記手段において、プランジ
ャは固定防水筐体に近づき、離れる動作を繰り返す。近
づく動作は微生物混合液を取り込んで観察画像を得るも
ので固定防水筐体間の隙間が150μm以下に調節され
、離れる動作は取り込んだ混合液を入れ替えるために最
大数ないし数十mmに隙間に調節される。防水筐体間に
設置した流動抑制手段は、少なくともプランジャが近づ
く動作をした段階で、外部流動液の流れが筐体間凹部に
形成されたサンプル室に直接当らないようにする。これ
らの構成により、流動の激しい混合液中でもサンプル液
を完全に保持でき、静止画像を得ることができる。この
ため、非運動性の微生物は勿論のこと、可動性微生物の
画像処理による特徴量計測が可能となる。さらに、常に
安定した静止画像が得られることは、オペレータが撮影
像を直接観察して微生物状態を把握できる効果もある。
[Operation] In the above means constituting the present invention, the plunger repeatedly approaches and moves away from the fixed waterproof casing. The approaching motion takes in the microbial mixture to obtain an observation image, and the gap between the fixed waterproof casings is adjusted to 150 μm or less, and the leaving action adjusts the gap to a maximum of several to tens of mm in order to replace the taken-in mixed solution. be done. The flow suppressing means installed between the waterproof casings prevents the flow of the external fluid from directly hitting the sample chamber formed in the recess between the casings, at least when the plunger approaches. With these configurations, the sample liquid can be completely retained even in a rapidly flowing mixed liquid, and a still image can be obtained. For this reason, it is possible to measure the feature quantities of not only non-motile microorganisms but also mobile microorganisms through image processing. Furthermore, the ability to always obtain stable still images has the effect that the operator can directly observe the photographed images and grasp the state of microorganisms.

【0008】[0008]

【実施例】以下、本発明の一実施例を図1により説明す
る。図1は活性汚泥による下水処理設備への適用例で、
処理機能をまず、簡単に説明する。家庭や工場等から排
出された下水は、前処理プロセス(図示せず)で粗大な
夾雑物を除いた後、曝気槽1に導かれる。曝気槽1に流
入した下水3は曝気槽1の後方に配置された沈殿池2か
ら返送される活性汚泥と称する微生物群5との混合液9
となる。流入下水3には前処理プロセスで除去されなか
った夾雑物が混入している。この夾雑物は、例えば土砂
や果実種、木片などで数mmから数十mmの大きさのも
のもある。混合液9は曝気槽1の底部に設置された散気
管8から噴射される大量の空気4により秒速数mの流速
で撹拌されるとともに酸素が供給され、液中の汚染物質
が活性汚泥の働きにより処理される。例えば、有機物は
炭酸ガスや水に変換され、アンモニア性窒素は硝酸性あ
るいは亜硝酸性窒素に酸化されるとともに活性汚泥自身
が自己増殖する。この過程でリンの取り込み等も行われ
る。 曝気槽1から流出した混合液9は沈殿池2で活性汚泥が
重力沈降し、その上澄液は処理水7として殺菌処理を受
けた後、河川や海に放流される。一方、沈殿した活性汚
泥は高濃度となり、その大部分は返送汚泥5として曝気
槽1に再循環され、増殖分に相当する一部を余剰汚泥6
として系外に排出し、脱水や焼却等の工程を経て処理さ
れる。
[Embodiment] An embodiment of the present invention will be explained below with reference to FIG. Figure 1 shows an example of the application of activated sludge to sewage treatment equipment.
First, the processing function will be briefly explained. Sewage discharged from homes, factories, etc. is led to the aeration tank 1 after coarse impurities are removed in a pretreatment process (not shown). The sewage 3 that has flowed into the aeration tank 1 is mixed with a microorganism group 5 called activated sludge, which is returned from the settling tank 2 located behind the aeration tank 1.
becomes. The inflowing sewage 3 contains impurities that were not removed in the pretreatment process. This foreign material may be, for example, earth and sand, fruit seeds, wood chips, etc., and may have a size of several millimeters to several tens of millimeters. The mixed liquid 9 is stirred at a flow rate of several meters per second by a large amount of air 4 injected from the aeration pipe 8 installed at the bottom of the aeration tank 1, and oxygen is supplied, so that the pollutants in the liquid are absorbed by the action of activated sludge. Processed by For example, organic matter is converted to carbon dioxide gas and water, ammonia nitrogen is oxidized to nitrate or nitrite nitrogen, and activated sludge itself multiplies. During this process, phosphorus is also taken up. The activated sludge of the mixed liquid 9 flowing out from the aeration tank 1 is settled by gravity in the settling tank 2, and the supernatant liquid is treated as treated water 7 and is then discharged into a river or the sea after undergoing sterilization treatment. On the other hand, the precipitated activated sludge has a high concentration, and most of it is recycled to the aeration tank 1 as return sludge 5, and a part corresponding to the multiplication is transferred to surplus sludge 6.
It is discharged outside the system as waste and processed through processes such as dehydration and incineration.

【0009】このような水処理設備において、活性汚泥
の管理は重要な運転業務内容の一つである。特に、沈降
性の良好な活性汚泥を形成する維持管理が要求される。 活性汚泥の沈降性悪化は、バルキングと称され、沈殿池
からの汚泥流出の危険を増すのみならず、曝気処理機能
さらには汚泥処理機能にも大きな負担を強いる。沈降性
の良好な汚泥を維持できれば、前述の心配は起こらない
。このバルキングは活性汚泥に棲息する多種多様の微生
物のうち、糸状性微生物の異常繁殖が原因とされている
。活性汚泥を用いる水処理設備では、バルキングの他に
、特定微生物に起因する異常現象が数多く発生する。 従って、微生物の種類や出現量を把握することにより、
活性汚泥の性状を判定し、異常現象の早期発見と事前対
策が可能となる。そのためには活性汚泥中の微生物を連
続的に観察できるオンライン撮像装置が必要不可欠であ
る。本発明はこの観点に立ち、強制的に流動されている
混合液中でも静止画像が安定的に得られる撮像装置を提
供するもので、以下にその詳細を説明する。
[0009] In such water treatment facilities, management of activated sludge is one of the important operational tasks. In particular, maintenance and management to form activated sludge with good settling properties is required. Deterioration of the settling properties of activated sludge is called bulking, which not only increases the risk of sludge flowing out from the settling tank, but also imposes a heavy burden on the aeration processing function and sludge processing function. If sludge with good settling properties can be maintained, the above concerns will not occur. This bulking is thought to be caused by the abnormal proliferation of filamentous microorganisms among the wide variety of microorganisms that live in activated sludge. In addition to bulking, many abnormal phenomena caused by specific microorganisms occur in water treatment facilities that use activated sludge. Therefore, by understanding the types and abundance of microorganisms,
By determining the properties of activated sludge, it is possible to detect abnormal phenomena early and take preventive measures. For this purpose, an online imaging device that can continuously observe microorganisms in activated sludge is essential. In view of this, the present invention provides an imaging device that can stably obtain still images even in a liquid mixture that is forced to flow, and the details thereof will be described below.

【0010】10は混合液3を観察する撮像装置で、図
2に詳細構造を示す。撮像装置10は固定支持棒12に
接続された固定防水筐体10Aと、固定防水筐体10A
を基準に往復動が可能な移動防水筐体10Bと、これら
二つの防水筐体を連結する連結棒11で構成され、全体
が曝気槽混合液9内に浸漬される。図2では、連結棒1
1を一本しか示していないが、複数本設置するのが好ま
しい。連結棒11は移動防水筐体10Bに固定され、固
定防水筐体10Aに固定されたガイド13,13′に沿
って往復動できる。二つの防水筐体10A,10Bは上
下方向に配設され、対向する領域の一部に観察窓14A
,14Bが設置されている。観察窓はガラスのような透
明な材質が用いられ、少なくとも一方を凹型構造とする
Reference numeral 10 denotes an imaging device for observing the mixed liquid 3, the detailed structure of which is shown in FIG. The imaging device 10 includes a fixed waterproof housing 10A connected to a fixed support rod 12, and a fixed waterproof housing 10A.
It consists of a movable waterproof casing 10B that can reciprocate based on , and a connecting rod 11 that connects these two waterproof casings, and the whole is immersed in the aeration tank mixed liquid 9. In Figure 2, connecting rod 1
Although only one No. 1 is shown, it is preferable to install a plurality of No. 1. The connecting rod 11 is fixed to the movable waterproof housing 10B and can reciprocate along guides 13, 13' fixed to the fixed waterproof housing 10A. The two waterproof casings 10A and 10B are arranged vertically, and an observation window 14A is provided in a part of the opposing area.
, 14B are installed. The observation window is made of a transparent material such as glass, and at least one side has a concave structure.

【0011】移動防水筐体10Bには、観察窓14Bを
通して観察窓間の混合液9のを照射する照明手段18を
内蔵させる。照明手段18は、光源部を撮像装置10の
外部に設置し、例えば、ライトガイドを介して観察窓1
4Bを照射しても良いが、図2のように、直接、光源部
を設置しても良い。この場合、集光レンズを照明手段1
8の前方に配置すれば、平行光が得られるので画質が向
上する。
The movable waterproof housing 10B has built-in illumination means 18 for illuminating the mixed liquid 9 between the observation windows through the observation window 14B. The illumination means 18 has a light source installed outside the imaging device 10, and, for example, illuminates the observation window 1 through a light guide.
4B may be irradiated, but as shown in FIG. 2, a light source section may be directly installed. In this case, the condenser lens is
If placed in front of 8, parallel light can be obtained, improving image quality.

【0012】固定防水筐体10Aには、観察窓14Aの
外側の混合液9に焦点を合わせた拡大光学レンズ19と
、拡大光学レンズ19の光像を受光して電気信号に変換
するテレビカメラ20、移動防水筐体10Bを往復動作
させる移動用駆動装置22、及びワイパ32を動作させ
るワイパ用駆動装置34を内蔵している。移動防水筐体
10Bは移動用駆動装置22により上下方向に動作する
伝達棒25に連動して動く。また、ワイパ32は、移動
防水筐体10Bが下方に移動した段階でワイパ用駆動装
置34が作動して観察窓14A,14Bを洗浄する(図
3参照)。また、観察窓14Aが設置されている面に抑
止板30を設置させる。
The fixed waterproof housing 10A includes a magnifying optical lens 19 that focuses on the liquid mixture 9 outside the observation window 14A, and a television camera 20 that receives the optical image of the magnifying optical lens 19 and converts it into an electrical signal. , a moving drive device 22 for reciprocating the movable waterproof housing 10B, and a wiper drive device 34 for operating the wiper 32. The movable waterproof housing 10B is moved in conjunction with a transmission rod 25 that moves in the vertical direction by a moving drive device 22. Moreover, the wiper drive device 34 of the wiper 32 is activated to clean the observation windows 14A and 14B when the movable waterproof housing 10B moves downward (see FIG. 3). Further, a deterrent plate 30 is installed on the surface where the observation window 14A is installed.

【0013】次に、抑止板30の機能を図3及び図4で
説明する。図3は移動防水筐体10Bが下方に位置させ
、観察窓14Aと14B間を広げた状態で、混合液9が
自身の流れ9aにより自由に観察窓間を通過する。この
ように防水筐体間を広げることにより、観察窓間の混合
液が自然に入れ替わり、また、流れ9aの作用で観察窓
14A,14Bの付着物が洗い流される効果がある。さ
らに、ワイパ32の作動により窓面の付着物を強制的に
洗い流すとともに混合液9を完全に入れ替えられる。こ
の場合の観察窓間は、ワイパの大きさで変わるが、数m
mから数十mmに設定される。これは、活性汚泥は数m
mの大きさを形成するものも有り、正確な汚泥を観察す
るためである。図4は、混合液9を入れ替えた後、移動
防水筐体10Bを上方に移動させて観察窓14A,14
Bを接しさせた状態である。微生物はこの時点で観察す
ることができる。観察対象となる混合液9は二つの観察
窓が接して形成される凹部のサンプル室に取り込まれる
。このサンプル室の深さは、数百倍の拡大倍率が必要と
なる太さ約1μmの糸状性微生物を認識する場合、15
0μm以下に設定することにより鮮明画像が得られる。 しかし、観察窓14A,14Bを完全に密着することは
困難で、僅かな隙間がでる。たとえば、混合液9中には
土砂などの微小な夾雑物が浮遊しており、これが観察窓
14A,14B間に混入して一部が観察窓間に挾み込ま
れ、隙間を形成する。流れ9aのある外部混合液9はこ
の隙間を通じてサンプル室内を乱すために静止画像が得
られない。抑止板30は、少なくとも二つの観察窓14
A,14Bが接する面より高くし、混合液流9aがサン
プル室に直接当ることを防止する。また、図5に示すよ
うに、観察窓14Aの上流側で、ワイパアーム33の動
作範囲外へ設置する。このような抑止板30を設けるこ
とにより、混合液流9aの影響を無くし、常時良好な微
生物の静止画像を得ることができる。
Next, the function of the restraining plate 30 will be explained with reference to FIGS. 3 and 4. In FIG. 3, the movable waterproof housing 10B is positioned downward and the space between the observation windows 14A and 14B is widened, and the liquid mixture 9 freely passes between the observation windows by its own flow 9a. By widening the space between the waterproof casings in this manner, the liquid mixture between the observation windows is naturally exchanged, and there is also an effect that deposits on the observation windows 14A and 14B are washed away by the action of the flow 9a. Further, by operating the wiper 32, deposits on the window surface can be forcibly washed away and the mixed liquid 9 can be completely replaced. The distance between observation windows in this case varies depending on the size of the wiper, but is several meters.
m to several tens of mm. This means that activated sludge is several meters long.
There are some that form a size of m, and this is to observe the exact sludge. FIG. 4 shows that after replacing the mixed liquid 9, the movable waterproof housing 10B is moved upward and the observation windows 14A, 14 are
This is the state in which B is in contact with it. Microorganisms can be observed at this point. The mixed liquid 9 to be observed is taken into a sample chamber in a recess formed by two observation windows in contact with each other. The depth of this sample chamber is 15 mm when recognizing filamentous microorganisms with a thickness of approximately 1 μm, which requires a magnification of several hundred times.
A clear image can be obtained by setting it to 0 μm or less. However, it is difficult to bring the observation windows 14A and 14B into perfect contact with each other, and a slight gap appears. For example, minute contaminants such as earth and sand are suspended in the liquid mixture 9, and these contaminants are mixed between the observation windows 14A and 14B, and a portion thereof is sandwiched between the observation windows to form a gap. The external liquid mixture 9 with a flow 9a disturbs the inside of the sample chamber through this gap, so that a still image cannot be obtained. The deterrent plate 30 has at least two observation windows 14
It is made higher than the surface where A and 14B are in contact to prevent the mixed liquid flow 9a from directly hitting the sample chamber. Further, as shown in FIG. 5, the wiper arm 33 is installed outside the operating range of the wiper arm 33 on the upstream side of the observation window 14A. By providing such a deterrent plate 30, it is possible to eliminate the influence of the mixed liquid flow 9a and obtain good still images of microorganisms at all times.

【0014】図1において、50は現場操作盤で撮像装
置10の照明手段18,移動用駆動装置22,ワイパ用
駆動装置34の調節手段や,拡大光学レンズ19及びテ
レビカメラ20の撮像条件の設定手段,撮像映像の観察
手段70が設置されている。さらに、60は遠隔操作盤
で現場操作盤50と同様の操作を遠隔地で実行できる。 操作の切替は、混乱を防ぐため現場操作盤50及び遠隔
操作盤60のいずれか一方に機能させるとよい。
In FIG. 1, reference numeral 50 denotes an on-site operation panel for setting the illumination means 18 of the imaging device 10, the means for adjusting the moving drive device 22, the wiper drive device 34, and the imaging conditions for the magnifying optical lens 19 and the television camera 20. A means 70 for observing a captured image is installed. Furthermore, 60 is a remote control panel that can perform the same operations as the on-site control panel 50 at a remote location. It is preferable that either the on-site operation panel 50 or the remote operation panel 60 function to switch the operation to prevent confusion.

【0015】実施例では、抑止板30を観察窓14Aに
設置しているが、14Bの観察窓側、すなわち、移動防
水筐体10Bに配置してもよい。また、本発明は抑止板
30の設置位置及びその大きさや形状を限定するもので
はない。図6は撮像装置10の外周に設置した例で、図
7は曝気槽1への取付状況を示している。曝気槽1への
空気4は片側壁に設置した散気管8から吹き込まれる片
側旋回流方式が広く採用されている。従って、混合液9
の流れ9aは一方向性を示す。抑止板30は、観察時(
観察窓が接する状態)にこの一方向性の流れ9aを緩和
するもので、少なくとも筐体間に設置すればよい。これ
は混合液9が機械撹拌の場合も同様である。なお、全周
に抑止板30を設けてもよい。これは両側旋回流方式,
全面曝気方式、あるいは水中ポンプによる多方向の流れ
9aとなる場合に有効である。さらに、本発明は撮像光
学系を横方向に配置する撮像装置にも適用可能である。
In the embodiment, the deterrent plate 30 is installed on the observation window 14A, but it may be placed on the observation window side of the observation window 14B, that is, on the movable waterproof housing 10B. Furthermore, the present invention does not limit the installation position of the deterrent plate 30, nor its size or shape. FIG. 6 shows an example where it is installed on the outer periphery of the imaging device 10, and FIG. 7 shows how it is attached to the aeration tank 1. A one-sided swirling flow system is widely used in which air 4 is blown into the aeration tank 1 from an aeration pipe 8 installed on one side wall. Therefore, the mixed liquid 9
The flow 9a shows unidirectionality. The deterrent plate 30 is used during observation (
It is intended to alleviate this unidirectional flow 9a (when the observation window is in contact with the observation window), and may be installed at least between the housings. This also applies when the mixed liquid 9 is mechanically stirred. Note that the restraining plate 30 may be provided around the entire circumference. This is a double-sided swirl flow system.
This is effective when using a full-surface aeration system or a multidirectional flow 9a using a submersible pump. Furthermore, the present invention is also applicable to an imaging device in which the imaging optical system is arranged laterally.

【0016】[0016]

【発明の効果】本発明によれば、流動状態の液中でも撮
像対象液が動くこと無く保持でき、常に良好な微小物質
の静止画像を得ることができる。このため、画像処理等
による微生物計測において、形状が微妙な微生物や運動
性のある微生物をも精度よく定量化でき、信頼性の高い
微生物情報を得ることができる。
According to the present invention, the liquid to be imaged can be held without moving even in a fluid state, and good still images of minute substances can always be obtained. Therefore, when microorganisms are measured using image processing or the like, even microorganisms with delicate shapes or motile microorganisms can be quantified with high accuracy, and highly reliable microorganism information can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例を説明するブロック図。FIG. 1 is a block diagram illustrating an embodiment of the present invention.

【図2】本発明の構成条件を説明する撮像装置の断面図
FIG. 2 is a sectional view of an imaging device for explaining the configuration conditions of the present invention.

【図3】抑止板の機能の説明図。FIG. 3 is an explanatory diagram of the function of the deterrent plate.

【図4】抑止板の機能の説明図。FIG. 4 is an explanatory diagram of the function of the deterrent plate.

【図5】抑止板の配置の説明図。FIG. 5 is an explanatory diagram of the arrangement of restraining plates.

【図6】抑止板の他の配置の説明図。FIG. 6 is an explanatory diagram of another arrangement of the restraining plate.

【図7】撮像装置の設置状況の説明図。FIG. 7 is an explanatory diagram of the installation situation of the imaging device.

【符号の説明】[Explanation of symbols]

1…曝気槽、9…混合液、9a…混合液流、10…撮像
装置、10A…固定防水筐体、10B…移動防水筐体、
14A,14B…観察窓、30…抑止板。
DESCRIPTION OF SYMBOLS 1... Aeration tank, 9... Mixed liquid, 9a... Mixed liquid flow, 10... Imaging device, 10A... Fixed waterproof housing, 10B... Movable waterproof housing,
14A, 14B...Observation window, 30...Suppression board.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】微生物などの微小物質を含み流動する液体
中に浸漬し、前記液体の一部をサンプリングする手段と
、外部液体によるサンプリングした液体の流動抑制手段
と、前記サンプリングした液体に光を照射する手段と、
照射された前記液体中の微小物質を拡大する手段と、前
記微小物質の拡大像を受光して電気信号に変換する手段
とを具備したことを特徴とする液中微小物質撮像装置。
1. Means for sampling a part of the liquid by immersing it in a flowing liquid containing minute substances such as microorganisms, means for suppressing the flow of the sampled liquid by an external liquid, and applying light to the sampled liquid. a means for irradiating;
A microscopic substance imaging device in liquid, comprising means for enlarging the irradiated microscopic substance in the liquid, and means for receiving an enlarged image of the microscopic substance and converting it into an electrical signal.
【請求項2】請求項1において、二つの防水筐体で構成
され、前記筐体の相互間に前記液体の一部をサンプリン
グする手段を設け、前記流動抑制手段を前記防水筐体間
に設けた液中微小物質撮像装置。
2. According to claim 1, the liquid is composed of two waterproof casings, and means for sampling a part of the liquid is provided between the casings, and the flow suppressing means is provided between the waterproof casings. Microscopic substance imaging device in liquid.
【請求項3】請求項2において、前記流動抑制手段を前
記サンプリングする手段の一方向に配設する液中微小物
質撮像装置。
3. The in-liquid minute substance imaging device according to claim 2, wherein the flow suppressing means is disposed in one direction of the sampling means.
JP5108091A 1991-03-15 1991-03-15 Image pick-up device of very small substance in liquid Pending JPH04287680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5108091A JPH04287680A (en) 1991-03-15 1991-03-15 Image pick-up device of very small substance in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5108091A JPH04287680A (en) 1991-03-15 1991-03-15 Image pick-up device of very small substance in liquid

Publications (1)

Publication Number Publication Date
JPH04287680A true JPH04287680A (en) 1992-10-13

Family

ID=12876840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5108091A Pending JPH04287680A (en) 1991-03-15 1991-03-15 Image pick-up device of very small substance in liquid

Country Status (1)

Country Link
JP (1) JPH04287680A (en)

Similar Documents

Publication Publication Date Title
CN106814068A (en) The rapid assay device and method of monitoring sewage treatment plant running status
US4661845A (en) Microorganism monitoring apparatus
CN206945355U (en) Monitor the rapid assay device of sewage treatment plant's running status
CN114414443A (en) Sludge settling performance monitoring device
CA1232056A (en) Automatic observation system for microorganisms and the like
JPH04287680A (en) Image pick-up device of very small substance in liquid
JPH04326993A (en) Apparatus and method for monitoring bacteria
JPH0528595B2 (en)
JPH04235540A (en) Image pickup device for microorganism in liquid
CN211141560U (en) Water sample pretreatment water tank of automatic environmental water quality monitoring station
JPH0471692A (en) Image pickup device for microorganism
CN208829435U (en) It is a kind of to rush version water-circulation filtering device
JPS6250607A (en) Instrument for measuring length of filamentous microorganism
JPH0440340A (en) In-liquid fine material image pickup device
CN213623375U (en) Ultraviolet sewage sterilizing device for clean water tank
CN217404073U (en) Sludge settling performance monitoring device
JPH02159539A (en) Floc image camera apparatus for water purifying plant
CN114047186B (en) Device for measuring bubble capture efficiency and monitoring bubble merging process
JP2990386B2 (en) Underwater imaging device
JPH01121754A (en) Automatic observation device for microorganism in liquid
CN219507702U (en) Sewage treatment device
CN113916732B (en) Activated sludge microscopic image real-time observation recording pulse flow cell
JPH0676968B2 (en) Micro object observation device in solution
CN211402124U (en) Online ammonia nitrogen analyzer adopting double-optical-path analysis method
CN220642805U (en) Sewage treatment equipment for expressway service area