JPH0428720B2 - - Google Patents

Info

Publication number
JPH0428720B2
JPH0428720B2 JP57151754A JP15175482A JPH0428720B2 JP H0428720 B2 JPH0428720 B2 JP H0428720B2 JP 57151754 A JP57151754 A JP 57151754A JP 15175482 A JP15175482 A JP 15175482A JP H0428720 B2 JPH0428720 B2 JP H0428720B2
Authority
JP
Japan
Prior art keywords
group
fragment
ncs
neocarzinostatin
immunoglobulin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57151754A
Other languages
Japanese (ja)
Other versions
JPS5942323A (en
Inventor
Kazuo Kishida
Yoshinori Kato
Masahiko Saito
Takeshi Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP57151754A priority Critical patent/JPS5942323A/en
Publication of JPS5942323A publication Critical patent/JPS5942323A/en
Publication of JPH0428720B2 publication Critical patent/JPH0428720B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は新芏な遞択的殺现胞性蛋癜耇合䜓ずそ
の補造方法に関する。曎に詳しくは、抗腫瘍IgG
免疫グロブリン、あるいはその抗原結合郚䜍を含
むフラグメントからなる構成郚分ず、抗癌剀ネオ
カルチノスタチンからなる構成郚分を有する、新
芏な遞択的殺现胞性蛋癜耇合䜓ずその補造方法に
関するものである。 ある皮の现胞だけを遞択的に殺すこずを目的ず
しお、その暙的现胞ず遞択的に結合しうる免疫グ
ロブリンを皮々の抗癌剀ず結合させる詊みがなさ
れおきた䟋えば、テむ ゎヌスT.Ghose
ら、ゞダヌナル オブ ザ ナシペナルキダンサ
ヌ むンステむテコヌトJ.Natl.Cancer Inst.
第61巻、第657〜676頁1978幎参照。ネオカル
チノスタチンは、その现胞毒性が匷いが故に、か
かる目的に䜿甚する抗癌剀ずしお適しおいるこず
が考えられ、免疫グロブリンずの耇合䜓が怜蚎さ
れた。䟋えば朚村らは−゚チル−−−ゞ
メチルアミノプロピルカルボゞむミド以䞋
WSCIずいうを脱氎瞮合剀ずしお甚いお、免疫
グロブリンずネオカルチノスタチンを結合せし
め、埗られた耇合䜓はネオカルチノスタチン掻性
ずずもに抗䜓掻性を保有しおいるこず、及びネオ
カルチノスタチン単独より有効に暙的现胞の
DNA合成を阻害したず報告しおいる癌ず化孊
療法、第巻臚時増刊75〜81頁 1979幎参
照。たた、ゞ ナングG.Jungらは、免疫グ
ロブリンずネオカルチノスタチンに架橋剀を甚い
お導入した硫黄原子間にゞスルフむド結合を圢成
せしめるこずにより耇合䜓を䜜補し、その耇合䜓
はネオカルチノスタチン掻性を保持しおいたず報
告しおいるバむオケミカル アンド バむオフ
むゞカル リサヌチ コミナニむケヌシペンズ
Biochemical and Biophysical Reserch
Comunications第101巻599〜606頁1981幎
参照。しかしながら、耇合䜓䜜補に圓りWSCI
を瞮合剀ずしお甚いる方法は、WSCIはアミノ基
ずカルボキシル基間で脱氎瞮合を起こさせ、アミ
ド結合を圢成させる詊薬であり、免疫グロブリン
ずネオカルチノスタチン間の架橋の他に、䞀぀の
分子内での架橋や、免疫グロブリン同志の架橋あ
るいはネオカルチノスタチン同志の架橋も起こ
り、望たしい生成物は埗にくい。たた、免疫グロ
ブリン及びネオカルチノスタチンには耇数個のア
ミノ基及びカルボキシル基があるために、免疫グ
ロブリンずネオカルチノスタチンが耇数個互いに
結合した高分子物質も盞圓皋床生成し、WSCIを
甚いる架橋方法によ぀おは実際に治療に䟛し埗る
耇合䜓を埗るこずは極めお困難である。たた、䞊
蚘のナングらの耇合䜓では、免疫グロブリンずネ
オカルチノスタチンがゞスルフむド−−
−結合により結合されおいお、かかる非倩然の
ゞスルフむド結合はその盞圓郚分は血液䞭で切断
されるので、かかる耇合䜓は暙的现胞に到達する
前にその薬効が䜎䞋するずいう欠点がある。 本発明者らは、先行技術の有するかかる欠点を
解消し、䟋えば、癌现胞の劂き殺すべき现胞に遞
択的に匷力な毒性を発揮する遞択的殺现胞性蛋癜
耇合䜓を開発すべく鋭意研究の結果、本発明到達
した。 即ち、本発明は、抗腫瘍IgG免疫グロブリンた
たはそのフラグメントずネオカルチノスタチン
を、結合させおなる䞋蚘匏〔〕 〔匏䞭、Abは抗腫瘍IgG免疫グロブリンたた
はそのフラグメントを衚し、Abはその化孊構造
䞭のアミノ基で結合しおいる。NCSはネオカル
チノスタチンを衚し、NCSはその化孊構造䞭の
アミノ基で結合しおいる。は−プニレン基
たたはトリメチレン基を、はたたはを衚
す。はむオり原子を衚すが、がのずきは
抗腫瘍IgG免疫グロブリンたたはそのフラグメン
トの化孊構造が元来有するチオヌル基に由来し、
がのずきは導入された有機基が含有するチオ
ヌル基に由来する。は〜の敎数を衚す。〕 で衚される遞択的殺现胞性蛋癜耇合䜓である。 本発明においお免疫グロブリンずは、砎壊すべ
き暙的现胞を認識する抗䜓たたはかかる抗䜓を含
むグロブリンを蚀う。かかる免疫グロブリンは、
暙的现胞が癌现胞の堎合には抗腫瘍免疫グロブリ
ンず呌ばれる。抗腫瘍免疫グロブリンには、䟋え
ば癌患者の血枅から、たたは腫瘍现胞又は腫瘍特
異抗原或いは腫瘍関連抗原をサル、りマ、りシ、
ダギ、ヒツゞ、りサギ等の動物に過免疫した血枅
から、コヌンの゚タノヌル分画法、硫安分画法、
むオン亀換クロマトグラフむヌ法等の公知の手段
によ぀お調補され、さらに必芁によ぀おは各皮现
胞を甚いお吞収、吞着操䜜をほどこしお埗るこず
ができるずころの抗䜓掻性を有する蛋癜質免疫
グロブリン、あるいは、癌现胞や癌抗原を動物
に免疫しお埗た抗䜓産生性リンパ球を、䟋えば骚
髄腫瘍现胞ず融合させお、培逊可胜で抗䜓を産生
する融合现胞ハむブリドヌマを埗、これをin
vitvo生䜓倖で培逊するか、或いは動物に移怍
しおin vivo生䜓内で培殖せしめお、その培逊
液たたは血枅や腹腔液から調補される極めお特異
性の高い抗䜓掻性を有する免疫グロブリンが含た
れる。たた、腫瘍組織から界面掻性剀等の倉性剀
で抗腫瘍抗䜓を遊離させ、これから前述ず同様な
手段で調補される抗䜓掻性を有する免疫グロブリ
ンも本発明の免疫グロブリンに含たれる。 免疫グロブリンにはIgGIgAIgMIgD
IgEの぀のクラスがあるこずが知られおいる
が、その基本構造は、第図に暡匏的に瀺した劂
く、図䞭で瀺された鎖本ずで瀺された
鎖本が少なくずも぀のゞスルフむド結合−
−−結合で結ばれたものである点、たた、
第䞀図に瀺した劂く、抗原結合掻性をも぀Fab郚
分ず゚プクタヌ掻性をも぀Fc郚分から成る点
においお䞀臎しおいる。本発明で甚いる免疫グロ
ブリンは䞊蚘の぀のクラスのうちIgGクラスの
免疫グロブリンである。 本発明の遞択的殺现胞性蛋癜耇合䜓の䞀方の構
成郚分ずしお抗腫瘍IgG免疫グロブリンたたはそ
のフラグメントが甚いられるが、抗腫瘍IgG免疫
グロブリンのフラグメントずしおは、前述のごず
き免疫グロブリンの抗䜓掻性を有する郚䜍を含む
フラグメントが甚いられる。かかるフラグメント
ずしおは、特にFabFab′Fab郚ずいわゆるヒ
ンゞ郚第図ロに斜線で瀺した郚分ずからな
る郚分及びFab′の量䜓であるab′2が望
たしい。 本発明においお甚いられるネオカルチノスタチ
ンは、Streptomyces Carzinostaticusの培逊
液より埗られる分子量玄11000の急性癜血病、胃
癌、膀胱癌、肝臓癌等に抗腫瘍掻性を瀺す蛋癜性
抗生物質であり、分子䞭に個の遊離アミノ基を
有しおいる。たた、ネオカルチノスタチンには非
蛋癜郚分、即ちクロモフオアが䟝存し、このクロ
モフオアがネオカルチノスタチンの生物掻性を担
い、蛋癜郚分はクロモフオアの安定化、運搬、掻
性化等に関䞎しおいるこずが明らかにされおおり
江戞、石田、医孊のあゆみ、第120巻、79〜80
頁、1982幎参照、かかる分子構造的特城が本発
明においおは有利に甚いられる。 䞊蚘匏〔〕においおの堎合には、は免
疫グロブリンたたはそのフラグメントに由来する
硫黄原子であり、の堎合には架橋剀により
導入された硫黄原子である。匏〔〕においお、
ゞメチレン基は䟋えば䞋蚘匏〔〕 〔匏䞭、は結合しおいる硫黄原子ず共に掻
性ゞスルフむド基を圢成し埗る䟡の有機基を、
X3はゞメチレン基を、は掻性゚ステルのアル
コヌル残基を衚わす。〕 で衚わされる架橋剀に由来する。 で衚わされる、結合しおいる硫黄原子ず共に
掻性ゞスルフむド基を圢成し埗る䟡の有機基の
具䜓䟋ずしおは、−ピリゞルチオ基
The present invention relates to a novel selective cell-killing protein complex and a method for producing the same. For more information, see Antitumor IgG
The present invention relates to a novel selective cell-killing protein complex having a component consisting of an immunoglobulin or a fragment thereof containing an antigen-binding site and a component consisting of the anticancer drug neocarzinostatin, and a method for producing the same. For the purpose of selectively killing only certain types of cells, attempts have been made to combine various anticancer drugs with immunoglobulins that can selectively bind to the target cells (for example, T. Ghose).
et al., Journal of the National Cancer Inst.
61, pp. 657-676, 1978). Neocarzinostatin is considered to be suitable as an anticancer agent for such purposes because of its strong cytotoxicity, and a complex with immunoglobulin was investigated. For example, Kimura et al.
WSCI) was used as a dehydration condensation agent to bind immunoglobulin and neocarzinostatin, and the resulting complex possessed antibody activity as well as neocarzinostatin activity, and was found to be more effective than neocarzinostatin alone. effectively target cells
It has been reported that it inhibited DNA synthesis (see Cancer and Chemotherapy, Vol. 6 Extra Edition, pp. 75-81, 1979). In addition, G. Jung et al. created a complex by forming a disulfide bond between the sulfur atoms introduced into immunoglobulin and neocarzinostatin using a cross-linking agent, and the complex was developed into neocarzinostatin. It has been reported that nostatin activity was maintained (Biochemical and Biophysical Research Co., Ltd.).
101, pp. 599-606, 1981). However, when preparing the complex, WSCI
In the method of using WSCI as a condensing agent, WSCI is a reagent that causes dehydration condensation between an amino group and a carboxyl group to form an amide bond. Cross-linking between immunoglobulins, cross-linking between neocarzinostatins, and cross-linking between neocarzinostatins also occur, making it difficult to obtain desired products. In addition, since immunoglobulin and neocarzinostatin have multiple amino groups and carboxyl groups, a considerable amount of polymeric substances in which multiple immunoglobulins and neocarzinostatin are bonded to each other is produced, and cross-linking using WSCI is required. Depending on the method, it is extremely difficult to obtain a complex that can actually be used for treatment. In addition, in the above-mentioned complex of Jung et al., immunoglobulin and neocarzinostatin are disulfide (-S-S
-) bonds, and since a significant portion of such unnatural disulfide bonds are cleaved in the blood, such complexes have the disadvantage that their efficacy is reduced before they reach the target cells. The present inventors have conducted extensive research in order to overcome these drawbacks of the prior art and develop a selective cell-killing protein complex that selectively exhibits strong toxicity to cells to be killed, such as cancer cells. As a result, the present invention was achieved. That is, the present invention provides the following formula [] which is obtained by binding an anti-tumor IgG immunoglobulin or a fragment thereof to neocarzinostatin. [wherein Ab represents an antitumor IgG immunoglobulin or a fragment thereof, and Ab is bonded through an amino group in its chemical structure. NCS stands for neocarzinostatin, and NCS is attached through an amino group in its chemical structure. X represents an m-phenylene group or a trimethylene group, and m represents 0 or 1. S represents a sulfur atom, and when m is 0, S is derived from a thiol group originally contained in the chemical structure of the antitumor IgG immunoglobulin or its fragment;
When m is 1, it originates from a thiol group contained in the introduced organic group. n represents an integer of 1 to 5. ] It is a selective cell-killing protein complex represented by In the present invention, immunoglobulin refers to an antibody that recognizes a target cell to be destroyed or a globulin containing such an antibody. Such immunoglobulin is
When the target cell is a cancer cell, it is called an antitumor immunoglobulin. Anti-tumor immunoglobulins can be obtained, for example, from the serum of cancer patients, or from tumor cells or tumor-specific or tumor-associated antigens from monkeys, horses, cows, etc.
Cohn's ethanol fractionation method, ammonium sulfate fractionation method,
Proteins with antibody activity (immunoglobulins) that can be prepared by known means such as ion-exchange chromatography and, if necessary, subjected to absorption and adsorption operations using various cells. Alternatively, antibody-producing lymphocytes obtained by immunizing an animal with cancer cells or cancer antigens are fused with, for example, bone marrow tumor cells to obtain culturable antibody-producing fusion cells (hybridomas), which are then inoculated into
An immune system with highly specific antibody activity that is prepared from culture fluid, serum, or peritoneal fluid after being cultured in vitro (externally) or transplanted into animals and cultured in vivo (in vivo). Contains globulin. Furthermore, the immunoglobulin of the present invention also includes an immunoglobulin having antibody activity that is prepared by releasing anti-tumor antibodies from tumor tissue using a denaturing agent such as a surfactant, and then preparing the anti-tumor antibody therefrom by the same means as described above. Immunoglobulins include IgG, IgA, IgM, IgD,
It is known that there are five classes of IgE, and their basic structure, as schematically shown in Figure 1, consists of two L chains, indicated by L, and an H chain, indicated by H.
Two chains have at least three disulfide bonds (-
S-S-bond), and
As shown in Figure 1, they are identical in that they consist of a Fab portion with antigen-binding activity and an Fc portion with effector activity. The immunoglobulin used in the present invention is an IgG class immunoglobulin among the above five classes. Anti-tumor IgG immunoglobulin or a fragment thereof is used as one component of the selective cell-killing protein complex of the present invention, and the fragment of anti-tumor IgG immunoglobulin has the antibody activity of the above-mentioned immunoglobulin. A fragment containing the site is used. Such fragments include, in particular, Fab, Fab' (a portion consisting of a Fab part and a so-called hinge part (the shaded part in Figure 1B)), and F(ab)' 2 , which is a dimer of Fab'. desirable. Neocarzinostatin used in the present invention is a protein antibiotic with a molecular weight of approximately 11,000 obtained from the culture solution of Streptomyces Carzinostaticus that exhibits antitumor activity against acute leukemia, gastric cancer, bladder cancer, liver cancer, etc. It has two free amino groups. In addition, neocarzinostatin is dependent on a non-protein part, that is, a chromophore, and this chromophore is responsible for the biological activity of neocarzinostatin, and the protein part is involved in the stabilization, transport, activation, etc. of the chromophore. (Edo, Ishida, History of Medicine, Vol. 120, 79-80)
1982), such molecular structural features are advantageously used in the present invention. In the above formula [], when m=0, S is a sulfur atom derived from an immunoglobulin or a fragment thereof, and when m=1, it is a sulfur atom introduced by a crosslinking agent. In the formula [],
For example, the dimethylene group has the following formula [] [In the formula, Y is a monovalent organic group that can form an active disulfide group together with the bonded sulfur atom S,
X 3 represents a dimethylene group, and Z represents an alcohol residue of an active ester. ] Derived from the crosslinking agent represented by Specific examples of the monovalent organic group represented by Y that can form an active disulfide group together with the bonded sulfur atom include 2-pyridylthio group.

【匏】−ピリゞルチオ基[Formula] 4-pyridylthio group

【匏】−カルボキシ−−ニト ロプニルチオ基[Formula] 3-carboxy-4-nito lophenylthio group

【匏】− カルボキシ−−ピリゞルゞチオ基
[Formula] 4-carboxy-2-pyridyldithio group

【匏】−オキシ−−ピ リゞルゞチオ[Formula] N-oxy-2-pi lysyldithio

【匏】−ニトロプ ニルチオ基[Formula] 2-nitrophe Nylthio group

【匏】−ニトロ−− ピリゞルチオ基[Formula] 4-nitro-2- Pyridylthio group

【匏】−ベ ンゟチアゟむルチオ基[Formula] 2-be nzothiazoylthio group

【匏】 −ベンゟむミダゟむルチオ基
[Formula] 2-benzimidazoylthio group

【匏】−プニルアミノ− N′−プニルむミノメチルチオ基[Formula] N-phenylamino- N′-phenyliminomethylthio group

【匏】等を挙げるこずがで きる。で衚わされる掻性゚ステルのアルコヌル
残基の具䜓䟋ずしおは−サクシンむミドキシ基
[Formula] etc. can be mentioned. A specific example of the alcohol residue of the active ester represented by Z is an N-succinimidoxy group.

【匏】−ヒドロキシ−−ノルボ ルネン−−ゞカルボゞむミドキシ基
[Formula] N-hydroxy-5-norbornene-2,3-dicarbodiimidoxy group

【匏】−フタルむミドキシ 基[Formula] N-phthalimidoxy base

【匏】−ニトロプノキ シ基−ゞニトロプノキシ基
−ロリクロロプノキシ基ベンタクロロプ
ノキシ基等を挙げるこずができる。で衚わされ
るむミド゚ステルのアルコヌル残基の具䜓䟋ずし
おはメトキシ゚トキシ基等を挙げるこずができ
る。で衚わされるハロゲン原子の具䜓䟋ずしお
は、塩玠、臭玠、ペり玠等を挙げるこずができ
る。䞊蚘匏〔〕䞭のは䞋蚘匏〔〕 〔匏䞭、X4は−プニレン基たたはトリメ
チレン基を衚わす。の定矩は匏〔〕ず同じ。〕 で衚わされる架橋剀のX4に由来する。で衚わ
される掻性゚ステルのアルコヌル残基の具䜓䟋ず
しおは、䞊蚘の匏〔〕の堎合ず同じである。架
橋剀の具䜓䟋ずしおは、匏〔〕で衚わされる架
橋剀ずしお、−サクシンむミゞル−−ピ
リゞルゞチオプロピオネヌトを、匏〔〕で衚
わされる架橋剀ずしお、メタマレむミド安息銙酞
−ヒドロキシサクシンむミド゚ステル、マレむ
ミド酢酞−ゞニトロプノヌル゚ステルを
挙げるこずができる。 本発明の遞択的殺现胞性蛋癜耇合䜓は、抗腫瘍
IgG免疫グロブリンたたはそのフラグメントにチ
オヌル基を発生させるか導入しお䞋蚘匏〔〕 〔匏䞭、Abは抗腫瘍IgG免疫グロブリンたた
はそのフラグメントを衚し、Abはその化孊構造
䞭のアミノ基で結合しおいる。はたたはを
衚す。はむオり原子を衚すが、がのずき
は抗腫瘍IgG免疫グロブリンたたはそのフラグメ
ントの化孊構造が元来有するチオヌル基に由来
し、がのずきは導入された有機基が含有する
チオヌル基に由来する。n1は〜の敎数を衚
す。〕 で衚わされる化合物を合成しおおき、他方、䞋蚘
匏〔〕 〔匏䞭、NCSはネオカルチノスタチンを衚し、
NCSはその化孊構造䞭のアミノ基で結合しおい
る。は−プニレン基たたはトリメチレン基
を衚す〕 で衚される導入されたマレむミド基を有するネオ
カルチノスタチンを合成し、䞡者を反応させるこ
ずにより補造するこずができる。 即ち、抗腫瘍IgG免疫グロブリンたたはそのフ
ラグメントに、䟋えば、匏〔〕で衚わされる架
橋剀を反応せしめ、生成物を、䟋えば、−メル
カプト゚タノヌルたたはゞチオスレむトヌルで還
元しお〔反応(1)〕、匏〔〕で衚されるチオヌル
基が導入された免疫グロブリンたたはそのフラグ
メントを埗る。 䞊蚘匏(1)䞭、は〜の敎数を衚す。他
方、ネオカルチノスタチンを、䟋えば、匏〔〕
で衚わされる架橋剀ず反応せしめ、䞋蚘匏〔
〕 〔匏䞭、NCS及びの定矩は匏〔〕の堎合
ず同じである。はたたはを衚わす。〕 で衚わされるマレむミド基が導入されたネオカル
チノスタチンを埗る。そしお、かくしお埗られた
チオヌル基が導入された抗腫瘍IgG免疫グロブリ
ンたたはそのフラグメントず、マレむミド基が導
入されたネオカルチノスタチンを反応させるこず
により、本発明の遞択的殺现胞性蛋癜耇合䜓を補
造するこずができる。 本発明の遞択的殺现胞性蛋癜耇合䜓の䞀぀の前
駆物質はチオヌル基を有する免疫グロブリンたた
はそのフラグメントであるが、かかるチオヌル基
は化孊匏で具䜓的に蚘した劂く、倖郚から導入さ
れたチオヌル基の他、免疫グロブリンたたはその
フラグメント自䜓がもずもずチオヌル基を有しお
いる堎合にはそのチオヌル基、あるいはシスチン
に基づくゞスルフむド結合をも぀おいる堎合に
は、そのゞスルフむド基を、䟋えば、還元しお生
成させるこずができるチオヌル基であ぀おもよ
い。 本発明の遞択的殺现胞性蛋癜耇合䜓の補造にお
いお、免疫グロブリンたたはそのフラグメントに
架橋剀を反応させる堎合は、免疫グロブリンたた
はそのフラグメントモルに察し、架橋剀を〜
100モル甚いるのが奜たしい。反応は免疫グロブ
リンたたはそのフラグメントのPH〜の緩衝液
䞭蛋癜濃床が0.5〜100mgmlより奜たしくは
〜20mgmlになるように調補された溶液に、
〜40℃で攪拌しながら架橋剀の氎溶液たたは架橋
剀が氎に溶けない堎合には、架橋剀を少量の有機
溶媒、䟋えば、−ゞメチルホルドアミド
ゞメチルスルホキシド−ゞメトキシ゚タ
ンメタノヌル゚タノヌルアセトン等に溶か
した溶液を添加しお行なわれる。反応時間は、反
応スケヌル反応条件によるが、䞀般に日間以
内である。反応終了埌、透析たたは分子ふるいの
カラムクロマトグラフむヌにより、未反応の架橋
剀及び䜎分子反応生成物を陀く。架橋剀によりゞ
スルフむド基が導入された堎合には、ゞスルフむ
ド基はチオヌル基に還元されるが、かかる反応は
チオヌル詊薬䟋えば、−メルカプト゚タヌ
ルゞチオスレむトヌルを過剰に甚い、䞊蚘の
反応枩床反応時間を適甚しお行い、同じく䞊蚘
の方法にお反応物の粟補を行うこずができる。た
た、ネオカルチノスタチンに架橋剀を甚いおマレ
むミド基を導入する反応条件も䞊蚘の免疫グロブ
リンたたはそのフラグメントに架橋剀を反応させ
る堎合の反応条件ず同様である。 チオヌル基を発生たたは導入されたチオヌル基
を有する免疫グロブリンたたはそのフラグメント
ずマレむミド基が導入されたネオカルチノスタチ
ンずの反応は、䞡者を混合しお反応液の奜たし
いPHは〜で、奜たしい蛋癜濃床は〜20mg
mlである、〜40℃で〜24時間行われる。䞊
蚘方法によ぀お埗られる免疫グロブリン又はその
フラグメントずネオカルチノスタチンの耇合䜓
の、反応混合物からの分離、粟補は通垞甚いられ
る操䜜、䟋えば、分子ふるいのカラムクロマトグ
ラフむヌによ぀お行なうこずができる。 本発明の遞択的殺现胞性蛋癜耇合䜓は、癌现胞
等の暙的现胞に察し毒性を発揮するネオカルチノ
スタチンから成る構成郚分ず、暙的现胞を遞択的
に認識し、ネオカルチノスタチンを暙的现胞に遞
択的に到達せしめるキダリアヌである免疫グロブ
リンたたはそのフラグメントから成る構成郚分を
有し、しかも䞡構成郚分が化孊的に安党な結合に
よ぀お結合されおいるので、暙的现胞に察する现
胞毒性を遞択的にしかも効率よく発揮できるずい
う特城を有しおいる。たたかかる耇合䜓は、本発
明の方法によ぀お玔床高く補造するこずができ
る。 以䞋、実斜䟋により本発明を詳述する。 実斜䟋  (ã‚€) 抗マりス乳癌MM46モノクロヌン抗䜓の調補 现胞融合法により埗られた抗MM46IgG2b抗䜓
産生性ハむブリドヌマ瀬戞加倧ら、ゞダヌナル
オブ むムノロゞヌJ.Immunol第128巻、
201〜205頁、1982幎参照を、ヌヌドマりス15匹
の腹腔に、䞀匹圓り×107個接皮し、10日埌に
腹氎液を採取し、埗られた腹氎液50mlをの
0.1Mリン酞緩衝液PH8.0に十分透析した。透
析内液を同じ緩衝液で十分に平衡化されたプロテ
むン・セフアロヌスカラムカラムサむズ1.5
×12.5cmにかけお、十分に玠通り蛋癜を流し出
した埌、0.1Mク゚ン酞緩衝液PH5.0で䞍玔蛋
癜を溶出し、その埌0.1Mク゚ン酞緩衝液PH
3.0で吞着しおいたIgG2bを溶出し、溶出液の
PHを2MTris−HC緩衝液PH8.2で䞭性にも
どし、その埌の20mMリン酞緩衝液PH7.5
に十分透析し、105mg17.7mlの抗MM46モノ
クロヌン抗䜓IgG2bを埗た。たた、正垞マり
ス血枅50mlより、䞊蚘ず同様にしおMM46に察す
る芪和力をもたないIgG2b以䞋、「非免疫
IgG2b」ずいう25mg7.0mlを埗た。 (ロ) チオヌル基をも぀IgG2b抗䜓の調補䞊蚘(ã‚€)で
埗られた抗MM46モノクロヌン抗䜓IgG2b27.3
mg4.6ml、0.182ÎŒmoleに−サクシンむミ
ゞル−−ピリゞルゞチオプロピオネヌ
ト以䞋SPDPず略すの20mM゚タノヌル溶
液36.4ÎŒlIgG2bの倍圓量を加え、宀枩で30
分間反応させた埌、反応液に、2MTris−HC
緩衝液PH7.5を10容量、2M2−MEを
10ÎŒlSPDPに察しお30倍圓量加えお37℃で
時間むンキナベヌトした。 次いで反応液を20mMリン酞緩衝液PH7.5
で平衡化されおいるセフアデツクス−25カラ
ムにかけ、䜎分子物質を取り陀き、玄20mg
4.76mlのチオヌル基が導入された抗
MM46IgG2b抗䜓を埗た。非免疫Ig2bに぀いお
も同様にしお、25mgのIgG2bより玄20mg7.9
mlのチオヌル基が導入されたIgG2bを埗た。 (ハ) −マレむミドベンゟむルネオカルチノスタ
チンの調補 遮光䞋にネオカルチノスタチン以䞋NCSず
略す14.3mg5.2mlを含む50mMリン酞緩衝液
PH7.0に、−サクシンむミゞル −マレむ
ミドベンゟ゚ヌト以䞋SMBず略すの
N′−ゞメチルホルムアミド溶液173mM0.15
mlを加え、23℃で30分間反応させた。反応液を遠
心し䞊枅を50mMリン酞緩衝液PH6.2で平衡
化されおいるセフアデツクス−25カラムcm
×36cmにかけ、未反応のSMB等の䜎分子物質
を陀き、−マレむミドベンゟむルネオカルチノ
スタチン以䞋NCS−MBず略す9.9mg4.5ml
を埗た。 なお、生成物の䞀郚100ÎŒlに10倍圓量のゞニト
ロプニル−システむン以䞋DNP−システむ
ンず略すを加え23℃で時間むンキナベヌシペ
ンし、生理食塩氎で平衡化しおあるセフアデツク
ス−25に通し、未反応のDNP−システむンを
陀き、埗られた詊料の278nmず361nmの吞光床を
枬定したずころNCSE1%1cm278nm15DNP
−システむンE%1cm361nm17000、平均しお
NCS1個あたり0.32個の−マレむミドベンゟむ
ル基が導入されおいるこずがわか぀た。 (ニ) 抗MM46IgG2b抗䜓ずNCSの耇合䜓の䜜補 䞊蚘(ロ)の劂くしお埗られたチオヌル基が導入さ
れた抗MM46IgG2b抗䜓20mg4.76mlに䞊蚘(ハ)
の劂くしお埗られたNCS−MBを4.73mg2.15ml
加え、氎酞化ナトリりムでPH7.0に合わせお℃
で䞀晩反応させた。反応終了埌反応液を生理食塩
氎で平衡化されおいるセフアデツクス−150ス
ヌパヌフアむンカラム1.5×89cmにかけ、第
図の斜線郚分の画分を集め濃瞮し、本発明の耇
合䜓を含む生成物20.8ml6.1mlを埗た。埗ら
れた生成物をラりリル硫酞ナトリりム・ポリアク
リルアミドゲル電気泳動以䞋SDS−PAGEず略
すにより解析したずころ、第図のデむスク
に瀺した劂きバンドのパタヌンが埗られ、この生
成物は未反応の抗MM46IgG2b抗䜓分子量玄
15.5䞇ず、IgG2b抗䜓にNCSが個結合したも
の分子量玄17䞇ずIgG2b抗䜓にNCSが個結
合したもの分子量玄18䞇ずからなるこずがわ
か぀た。 非免疫IgG2b抗䜓を甚い、前蚘ず同様にしお
NCSずの反応を行な぀たずころ、その生成物の
SDS−PAGEによる解析結果は第図のデむスク
の劂くであり、抗MM46IgG2b抗䜓の堎合ず類
䌌しおいた。 なお、第図のデむスクは抗MM46IgG2b抗
䜓のバンドのパタヌンである。 (ホ) マりスにおける治療実隓 䞊蚘(ニ)の劂くしお䜜補した抗MM46IgG2b抗䜓
ずNCSの耇合䜓を含む生成物以䞋単に抗
MM46IgG2b抗䜓ずNCSの耇合䜓ずいうの、
MM46腫瘍を移怍したマりスに察する治療効果を
怜蚎した。 即ち、䞀矀匹のC3Hマりスに×105個の
MM46现胞を腹腔内に移怍し、移怍24時間埌に静
脈泚射により怜䜓抗MM46IgG2b抗䜓ずNCSの
耇合䜓、非免疫IgG2b抗䜓ずNCSの耇合䜓、抗
MM46IgG2b抗䜓ずNCSの混合物の50ÎŒg
たたは500ÎŒgを投䞎し、各矀のマりスの寿呜を
比范し、抗MM46IgG2b抗䜓ずNCSの耇合䜓の抗
腫瘍掻性を怜蚎した。 その結果を第図に瀺した。非免疫IgG2b抗䜓
ずNCSの耇合䜓は500ÎŒg投䞎しおも抗腫瘍性を瀺
さず、マりスの寿呜は食塩氎投䞎の察照矀ずほが
同じであり、党マりスが腫瘍移怍埌15日たでに死
亡した第図(b)。抗MM46IgG2b抗䜓ずNCS
の察混合物では、500及び50ÎŒg投䞎した堎
合、若干の抗腫瘍効果がみられたが、䞀匹のマり
スが長期間生存したに止た぀た第図(c)。こ
れに察し、抗MM46IgG2b抗䜓ずNCSの耇合䜓投
䞎矀では、500ÎŒg投䞎した堎合匹のマりスが長
期間生存し、本発明の耇合䜓に匷い抗腫瘍性があ
るこずがわか぀た第図(a)。 実斜䟋  (ã‚€) 抗マりス癜血病L1210IgGの調補マりス癜血
病L1210现胞×106個をフロむント完党アゞ
ナバンドずの゚マルゞペンずし、家兎に静脈泚
射した。その埌曎に、週間間隔で回、それ
ぞれ玄×106個のL1210现胞をアゞナバンド
ず共に皮䞋泚射し、最終投䞎日から日埌に採
血した。埗られた血液をプヌルし、血枅を分離
し、その血枅を56℃、30分間加熱、非働化し
た。こうしお埗られた抗L1210血枅200mlに、
硫安の飜和氎溶液200mlを加えお、生じた沈柱
を遠心分離によ぀お分取した。この沈柱を
0.01Mリン酞緩衝液PH7.650mlに溶解し、
曎に同緩衝液に察しお十分に透析した。この透
析内液を同じ緩衝液で平衡化したDEAEセルロ
ヌスカラムクロマトグラフむヌカラムサむズ
cm×94cmにかけお、未吞着分画ずしお抗
L1210IgGを含む溶液を埗た。 (ロ) 免疫グロブリンよりab′2フラグメント
の分離 䞊蚘(ã‚€)の劂くしお埗られた抗L1210IgGの1.2
を0.1M酢酞緩衝液PH4.540mlに溶解し、24mg
のペプシンを添加しお、37℃で玄18時間分解した
埌、分解生成物を生理食塩氎䞭でセフアデツクス
G200カラムクロマトグラフむヌカラムサむズ
3.5cm×140cmにかけお、分子量玄10䞇のずころ
に流出する蛋癜ずしお玔粋なab′2フラグメ
ントを埗た。 (ハ) Fab′フラグメントの調補 䞊蚘(ロ)の劂くしお埗られたab′2フラグメ
ント18.4mgを含む0.01Mトリス・塩酞−0.14Må¡©
化ナトリりム−2mMEDTA溶液PH8.32.0ml
に、150mMの−メルカプト゚タノヌル氎溶液
を0.02ml加えお、37℃で時間還元した。反応
埌、その溶液を5mM酢酞緩衝液−0.14M塩化ナ
トリりム−1mMEDTA溶液PH5.5以䞋、
ANE緩衝液ず略すで平衡化したセフアデツク
スG25カラムクロマトグラフむヌ1.0cm×20cm
にかけお−メルカプト゚タノヌルを陀去し、チ
オヌル基個を有するFab′フラグメントを埗た。 (ニ) 抗マりス癜血病L1210IgGフラグメント
Fab′ずNCSの耇合䜓の䜜補 䞊蚘(ハ)の劂くしお埗られた抗L1210IgGの
Fab′フラグメントmgmlに、実斜䟋の
(ハ)の劂くしお埗られたNCS−MBを3.5mg1.6ml
加え、0.5Mリン酞緩衝液PH7.0を10容量
加え、℃で䞀晩反応させた。反応終了埌、生理
食塩氎で平衡化されおいるセフアデツクス−
150スヌパヌフアむンカラム1.5cm×89cmによ
぀お耇合䜓を粟補し、抗L1210IgGのFab′フラグ
メントずNCSの耇合䜓mgmlを埗た。埗
られた耇合䜓には、SDS−PAGEにより解析した
ずころ、分子量玄䞇のFab′ず分子量玄䞇の
蛋癜耇合䜓が含たれおいるこずが刀぀た。 なお、抗1210IgGのフラグメントはチオヌル基
個を含むFab′であり、埓぀お個のNCSが結
合しおおり、埗られた蛋癜耇合䜓は本発明の䞀般
匏〔〕においおの化合物である。
[Formula] p-nitrophenoxy group, 2,4-dinitrophenoxy group, 2,4,
Examples include 5-lolichlorophenoxy group and bentachlorophenoxy group. Specific examples of the alcohol residue of the imidoester represented by Q include methoxy and ethoxy groups. Specific examples of the halogen atom represented by R include chlorine, bromine, and iodine. X in the above formula [] is the following formula [] [In the formula, X 4 represents a m-phenylene group or a trimethylene group. The definition of Z is the same as the formula []. ] Derived from X 4 of the crosslinking agent represented by Specific examples of the alcohol residue of the active ester represented by Z are the same as in the case of the above formula []. Specific examples of the crosslinking agent include N-succinimidyl 3-(2-pyridyldithio)propionate as a crosslinking agent represented by the formula [], and N-hydroxysuccinimide benzoate as a crosslinking agent represented by the formula []. Imidoester and maleimidoacetic acid 2,4-dinitrophenol ester can be mentioned. The selective cell-killing protein complex of the present invention has anti-tumor properties.
By generating or introducing a thiol group into IgG immunoglobulin or its fragment, the following formula [] [wherein Ab represents an antitumor IgG immunoglobulin or a fragment thereof, and Ab is bonded through an amino group in its chemical structure. m represents 0 or 1. S represents a sulfur atom, but when m is 0, S
m is derived from a thiol group originally contained in the chemical structure of the antitumor IgG immunoglobulin or its fragment, and when m is 1, it is derived from a thiol group contained in the introduced organic group. n1 represents an integer from 1 to 5. ] A compound represented by is synthesized, and on the other hand, the following formula [] [In the formula, NCS represents neocarzinostatin,
NCS is bonded through amino groups in its chemical structure. X represents m-phenylene group or trimethylene group] It can be produced by synthesizing neocarzinostatin having an introduced maleimide group represented by the following and reacting the two. That is, anti-tumor IgG immunoglobulin or a fragment thereof is reacted with, for example, a crosslinking agent represented by the formula [], and the product is reduced with, for example, 2-mercaptoethanol or dithiothreitol [reaction (1)]. , an immunoglobulin or a fragment thereof into which a thiol group represented by formula [X] has been introduced is obtained. (In the above formula (1), p represents an integer of 1 to 5.) On the other hand, neocarzinostatin is expressed by the formula []
It is reacted with a crosslinking agent represented by the following formula [X
] [In the formula, the definitions of NCS and X are the same as in the case of the formula []. q represents 1 or 2. ] Obtain neocarcinostatin into which a maleimide group represented by the following is introduced. Then, the selective cell-killing protein complex of the present invention is produced by reacting the thus obtained antitumor IgG immunoglobulin or its fragment into which a thiol group has been introduced with neocarzinostatin into which a maleimide group has been introduced. can be manufactured. One precursor of the selective cell-killing protein complex of the present invention is an immunoglobulin or a fragment thereof having a thiol group; In addition, if the immunoglobulin or its fragment itself originally has a thiol group, or if it has a cystine-based disulfide bond, the disulfide group can be reduced, for example. It may also be a thiol group that can be In the production of the selective cell-killing protein complex of the present invention, when reacting an immunoglobulin or its fragment with a crosslinking agent, 1 to 1 to 10% of the crosslinking agent is added to 1 mole of the immunoglobulin or its fragment.
Preferably, 100 mol is used. The reaction is carried out using an immunoglobulin or its fragment at a protein concentration of 0.5 to 100 mg/ml (more preferably 1
~20mg/ml) in a solution prepared with 0
An aqueous solution of the crosslinking agent or, if the crosslinking agent is not soluble in water, a small amount of an organic solvent such as N,N-dimethylholdamide,
It is carried out by adding a solution dissolved in dimethyl sulfoxide, 1,2-dimethoxyethane, methanol, ethanol, acetone, etc. The reaction time depends on the reaction scale and reaction conditions, but is generally within 2 days. After the reaction is completed, unreacted crosslinking agents and low-molecular reaction products are removed by dialysis or molecular sieve column chromatography. When a disulfide group is introduced by a crosslinking agent, the disulfide group is reduced to a thiol group, but this reaction uses an excess of a thiol reagent (e.g., 2-mercaptoethal, dithiothreitol) and the above reaction temperature. , reaction time can be applied, and the reactant can be purified by the same method as described above. Furthermore, the reaction conditions for introducing a maleimide group into neocarzinostatin using a crosslinking agent are the same as those for reacting the crosslinking agent with the above-mentioned immunoglobulin or its fragment. The reaction between an immunoglobulin having a thiol group or a fragment thereof having a thiol group generated or introduced therein and neocarzinostatin having a maleimide group introduced can be carried out by mixing the two (the preferred pH of the reaction solution is 5 to 8, The preferred protein concentration is 1-20mg/
ml) at 0-40°C for 2-24 hours. The complex of immunoglobulin or its fragment and neocarzinostatin obtained by the above method can be separated and purified from the reaction mixture by a commonly used procedure, such as molecular sieve column chromatography. can. The selective cell-killing protein complex of the present invention has a component consisting of neocarzinostatin that is toxic to target cells such as cancer cells, and a component that selectively recognizes target cells and targets neocarzinostatin. It has a component consisting of immunoglobulin or its fragment, which is a carrier that selectively reaches cells, and both components are linked by a chemically safe bond, so it is selective for cytotoxicity against target cells. It has the characteristic of being able to perform effectively and efficiently. Moreover, such a complex can be produced with high purity by the method of the present invention. Hereinafter, the present invention will be explained in detail with reference to Examples. Example 1 (a) Preparation of anti-mouse breast cancer MM46 monoclonal antibody Anti-MM46 IgG2b antibody-producing hybridoma obtained by cell fusion method (Seto Kadai et al., Journal of Immunology (J. Immunol), Vol. 128,
201-205, 1982) was inoculated into the peritoneal cavity of 15 nude mice at 2 x 10 7 per mouse, and after 10 days, the ascites fluid was collected.
It was thoroughly dialyzed against 0.1M phosphate buffer (PH8.0). The dialysis solution was thoroughly equilibrated with the same buffer using a Protein A/Sepharose column (column size 1.5).
x 12.5cm) to thoroughly wash out the protein that passed through, elute the impure protein with 0.1M citrate buffer (PH5.0), and then elute the impure protein with 0.1M citrate buffer (PH5.0).
3.0) to elute the adsorbed IgG2b and collect the eluate.
Return the pH to neutral with 2MTris-HC buffer (PH8.2), then add 20mM phosphate buffer (PH7.5) in step 5.
After thorough dialysis, 105 mg (17.7 ml) of anti-MM46 monoclonal antibody (IgG2b) was obtained. In addition, from 50 ml of normal mouse serum, we collected IgG2b (hereinafter referred to as "non-immune") that does not have affinity for MM46 in the same manner as above.
25 mg (7.0 ml) of IgG2b was obtained. (b) Preparation of IgG2b antibody with thiol group Anti-MM46 monoclonal antibody IgG2b27.3 obtained in (a) above
36.4 ÎŒl of a 20 mM ethanol solution (4 times equivalent of IgG2b) of N-succinimidyl 3-(2-pyridyldithio)propionate (hereinafter abbreviated as SPDP) was added to mg (4.6 ml, 0.182 ÎŒmole), and
After reacting for minutes, add 2MTris-HC to the reaction solution.
1/10 volume of buffer solution (PH7.5), 2M2-ME
10 Όl (30 times equivalent to SPDP) was added and incubated at 37° C. for 1 hour. Then, the reaction solution was diluted with 20mM phosphate buffer (PH7.5).
Approximately 20 mg of
(4.76ml) of anti-thiol group introduced
MM46IgG2b antibody was obtained. Similarly, for non-immune Ig2b, approximately 20 mg (7.9
ml) of IgG2b into which a thiol group was introduced was obtained. (c) Preparation of m-maleimidobenzoyl neocarzinostatin N-succinimidyl m - N of maleimidobenzoate (hereinafter abbreviated as SMB),
N′-dimethylformamide solution (173mM) 0.15
ml was added and reacted at 23°C for 30 minutes. The reaction solution was centrifuged and the supernatant was transferred to a Sephadex G-25 column (1 cm) equilibrated with 50 mM phosphate buffer (PH6.2).
x 36 cm), remove unreacted low-molecular substances such as SMB, and prepare 9.9 mg (4.5 ml) of m-maleimidobenzoyl neocarcinostatin (hereinafter abbreviated as NCS-MB).
I got it. In addition, 10 times the equivalent of dinitrophenyl-cysteine (hereinafter abbreviated as DNP-cysteine) was added to 100 Όl of a portion of the product, incubated at 23°C for 1 hour, and transferred to Cephadex G-25 equilibrated with physiological saline. After removing unreacted DNP-cysteine, the absorbance of the resulting sample at 278 nm and 361 nm was measured (NCSE 1 % 1 cm, 278 nm = 15, DNP
- Cysteine E% 1 cm, 361 nm = 17000), on average
It was found that 0.32 m-maleimidobenzoyl groups were introduced per NCS. (d) Preparation of a complex of anti-MM46IgG2b antibody and NCS 20mg (4.76ml) of the anti-MM46IgG2b antibody into which a thiol group was introduced as obtained in (b) above was added to the above (c).
4.73 mg (2.15 ml) of NCS-MB obtained as follows.
Add sodium hydroxide to adjust the pH to 7.0 at 4℃.
The mixture was allowed to react overnight. After the reaction was completed, the reaction solution was applied to a Cephadex G-150 Superfine column (1.5 x 89 cm) equilibrated with physiological saline, and the fractions shown in the shaded area in Figure 2 were collected and concentrated to obtain the complex of the present invention. 20.8 ml (6.1 ml) of containing product were obtained. When the obtained product was analyzed by sodium lauryl sulfate polyacrylamide gel electrophoresis (hereinafter abbreviated as SDS-PAGE), disk 2 in Figure 3 was found.
A band pattern as shown in Figure 1 was obtained, and this product was composed of unreacted anti-MM46 IgG2b antibody (molecular weight approx.
155,000), an IgG2b antibody bound to one NCS (molecular weight approximately 170,000), and an IgG2b antibody bound to two NCS (molecular weight approximately 180,000). Same as above using non-immune IgG2b antibody.
When the reaction with NCS was carried out, the product was
The analysis results by SDS-PAGE were as shown in disk 3 of FIG. 3, and were similar to those for the anti-MM46 IgG2b antibody. Note that disk 1 in FIG. 1 is the band pattern of anti-MM46 IgG2b antibody. (e) Therapeutic experiment in mice The product containing the complex of anti-MM46IgG2b antibody and NCS prepared as described in (d) above (hereinafter simply referred to as anti-MM46 IgG2b antibody and NCS)
MM46IgG2b antibody and NCS complex)
We investigated the therapeutic effects on mice transplanted with MM46 tumors. That is, 3 × 10 5 mice were administered to each group of 5 C3H mice.
MM46 cells were transplanted intraperitoneally, and 24 hours after transplantation, samples (complex of anti-MM46 IgG2b antibody and NCS, complex of non-immune IgG2b antibody and NCS, anti-MM46 IgG2b antibody and NCS,
50ÎŒg of 1:1 mixture of MM46IgG2b antibody and NCS
The lifespan of mice in each group was compared, and the antitumor activity of the complex of anti-MM46 IgG2b antibody and NCS was examined. The results are shown in Figure 4. The conjugate of non-immune IgG2b antibody and NCS showed no antitumor activity even when administered at 500 ÎŒg, and the lifespan of the mice was similar to that of the saline-treated control group, with all mice dying by 15 days after tumor implantation. (Figure 4(b)). Anti-MM46IgG2b antibody and NCS
A 1:1 mixture of 500 and 50 ÎŒg showed some antitumor effects, but only one mouse survived for a long period of time (Figure 4(c)). On the other hand, in the group administered with the anti-MM46IgG2b antibody and NCS complex, three mice survived for a long period of time when 500 ÎŒg was administered, indicating that the complex of the present invention has strong antitumor properties (Figure 4). (a)). Example 2 (a) Preparation of anti-mouse leukemia L1210 IgG 1×10 6 mouse leukemia L1210 cells were made into an emulsion with Freund's complete adjuvant and intravenously injected into rabbits. Thereafter, approximately 1×10 6 L1210 cells were subcutaneously injected together with adjuband three times at one-week intervals, and blood was collected 8 days after the final administration. The obtained blood was pooled, the serum was separated, and the serum was inactivated by heating at 56°C for 30 minutes. To 200 ml of the anti-L1210 serum obtained in this way,
200 ml of a saturated aqueous solution of ammonium sulfate was added, and the resulting precipitate was separated by centrifugation. This precipitate
Dissolve in 50ml of 0.01M phosphate buffer (PH7.6),
Furthermore, it was thoroughly dialyzed against the same buffer. This dialyzed solution was subjected to DEAE cellulose column chromatography (column size 3 cm x 94 cm) equilibrated with the same buffer, and the unadsorbed fraction was treated with anti-antibiotics.
A solution containing L1210IgG was obtained. (b) Separation of F(ab)′ 2 fragment from immunoglobulin 1.2 g of anti-L1210 IgG obtained as in (b) above
Dissolve in 40ml of 0.1M acetate buffer (PH4.5) and add 24mg
After adding pepsin and decomposing at 37°C for about 18 hours, the decomposition products were separated into physiological saline.
G200 column chromatography (column size
3.5 cm x 140 cm), a pure F(ab)' 2 fragment was obtained as a protein flowing out at a molecular weight of approximately 100,000. (c) Preparation of Fab' fragment 2.0ml of 0.01M Tris-HCl-0.14M sodium chloride-2mMEDTA solution (PH8.3) containing 18.4mg of F(ab)' 2 fragment obtained as in (b) above.
0.02ml of 150mM 2-mercaptoethanol aqueous solution was added to the mixture, and the mixture was reduced at 37°C for 1 hour. After the reaction, the solution was mixed with 5mM acetate buffer - 0.14M sodium chloride - 1mM MEDTA solution (PH5.5) (hereinafter referred to as
Sephadex G25 column chromatography (1.0cm x 20cm) equilibrated with ANE buffer)
2-mercaptoethanol was removed to obtain a Fab' fragment having one thiol group. (d) Anti-mouse leukemia L1210 IgG fragment
Preparation of complex of Fab′ and NCS The anti-L1210 IgG obtained as in (c) above
5 mg (2 ml) of the Fab' fragment was added to the Fab' fragment of Example 1.
3.5 mg (1.6 ml) of NCS-MB obtained as in (c)
In addition, 1/10 volume of 0.5M phosphate buffer (PH7.0) was added, and the mixture was reacted overnight at 4°C. After the reaction is complete, Cephadex G- is equilibrated with physiological saline.
The complex was purified using a 150 Superfine column (1.5 cm x 89 cm) to obtain 6 mg (4 ml) of a complex of anti-L1210 IgG Fab' fragment and NCS. When the obtained complex was analyzed by SDS-PAGE, it was found that it contained Fab' with a molecular weight of about 50,000 and protein (complex) with a molecular weight of about 60,000. The anti-1210 IgG fragment is Fab' containing one thiol group, and therefore has one NCS bound to it, and the resulting protein complex is a compound of the present invention where n=1 in the general formula []. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第図のむは、免疫グロブリンの基本構造を瀺
す暡匏図、ロはヒト免疫グロブリンのIgG1の構
造を瀺す暡匏図である。第図は、実斜䟋(ニ)で
埗た反応生成物の、セフアデツクス−150スヌ
パヌフアむン・カラムクロマトグラフむヌにおけ
る蛋癜流出パタヌンである。第図は、SDS−
PAGEのパタヌンであり、デむスクは抗
MM46IgG2b抗䜓、デむスクは実斜䟋で埗ら
れた抗MM46IgG2b抗䜓ずNCSの耇合䜓、デむス
クは同じく実斜䟋で埗られた非免疫IgG2bず
NCSの耇合䜓をSDS−PAGEにかけお埗られた
バンドのパタヌンである。第図は、実斜䟋(ホ)
で行な぀た抗MM46抗䜓ずNCSの耇合䜓の抗腫
瘍性を、MM46腫瘍を移怍したマりスに察する治
療効果で調べた結果であり、マりスの生存率を、
腫瘍移怍埌の日数に察しお瀺した図である。は
抗MM46IgG2bずNCSずの耇合䜓の堎合で、−●
−は生理食塩氎を、−○−は500ÎŒg、−△−は50ÎŒg
の耇合䜓を投䞎した堎合の生存率を瀺す。は非
免疫IgG2bずNCSずの耇合䜓の堎合で、−●−は
生理食塩氎を、−○−は500ÎŒg、−△−は50ÎŒgの耇
合䜓を投䞎した堎合の生存率を瀺す。は抗
MM46IgG2bずNCSがの割合の混合物の堎
合で、−●−は生理食塩氎を、−○−は500ÎŒg、−
△−は50ÎŒgの混合物を投䞎した堎合の生存率を
瀺す。
In FIG. 1, A is a schematic diagram showing the basic structure of immunoglobulin, and B is a schematic diagram showing the structure of IgG1, a human immunoglobulin. FIG. 2 shows the protein efflux pattern of the reaction product obtained in Example 1 (d) in Sephadex G-150 Superfine column chromatography. Figure 3 shows the SDS-
PAGE pattern, disk 1 is anti-
MM46IgG2b antibody, disk 2 is a complex of anti-MM46IgG2b antibody obtained in Example 1 and NCS, and disk 3 is a complex of non-immune IgG2b obtained in Example 1 as well.
This is a band pattern obtained by subjecting the NCS complex to SDS-PAGE. Figure 4 shows Example 1 (E)
These are the results of investigating the antitumor properties of the complex of anti-MM46 antibody and NCS in terms of the therapeutic effect on mice transplanted with MM46 tumors.
FIG. 3 is a graph plotted against the number of days after tumor implantation. a is the case of the complex of anti-MM46 IgG2b and NCS, -●
-: Physiological saline, -○-: 500ÎŒg, -△-: 50ÎŒg
The figure shows the survival rate when the complex was administered. b shows the survival rate in the case of a complex of non-immune IgG2b and NCS, -●- shows the survival rate when physiological saline was administered, -○- shows 500 ÎŒg of the complex, and -Δ- shows the survival rate when 50 ÎŒg of the complex was administered. c is anti
In the case of a mixture of MM46IgG2b and NCS at a ratio of 1:1, -●- is physiological saline, -○- is 500 ÎŒg, -
Δ- indicates the survival rate when 50 ÎŒg of the mixture was administered.

Claims (1)

【特蚱請求の範囲】  䞋蚘匏〔〕で衚される、抗腫瘍IgG免疫グ
ロブリンたたはそのフラグメントずネオカルチノ
スタチンを結合させおなる遞択的殺现胞性蛋癜耇
合䜓。 〔匏䞭、Abは抗腫瘍IgG免疫グロブリンたた
はそのフラグメントを衚し、Abはその化孊構造
䞭のアミノ基で結合しおいる。NCSはネオカル
チノスタチンを衚し、NCSはその化孊構造䞭の
アミノ基で結合しおいる。は−プニレン基
たたはトリメチレン基を、はたたはを衚
す。はむオり原子を衚すが、がのずきは
抗腫瘍IgG免疫グロブリンたたはそのフラグメン
トの化孊構造が元来有するチオヌル基に由来し、
がのずきは導入された有機基が含有するチオ
ヌル基に由来する。は〜の敎数を衚す。〕  䞋蚘匏〔〕 〔匏䞭、Abは抗腫瘍IgG免疫グロブリンたた
はそのフラグメントを衚し、Abはその化孊構造
䞭のアミノ基で結合しおいる。はたたはを
衚す。はむオり原子を衚すが、がのずき
は抗腫瘍IgG免疫グロブリンたたはそのフラグメ
ントの化孊構造が元来有するチオヌル基に由来
し、がのずきは導入された有機基が含有する
チオヌル基に由来する。n1は〜の敎数を衚
す。〕 で衚される発生たたは導入されたチオヌル基を有
する抗腫瘍IgG免疫グロブリンたたはそのフラグ
メントず䞋蚘匏〔〕 〔匏䞭、NCSはネオカルチノスタチンを衚し、
NCSはその化孊構造䞭のアミノ基で結合しおい
る。は−プニレン基たたはトリメチレン基
を衚す〕 で衚される導入されたマレむミド基を有するネオ
カルチノスタチンを反応させるこずを特城ずする 䞋蚘匏〔〕 〔匏䞭、は〜の敎数を衚し、Ab、、
、NCSおよびは䞊蚘定矩のずおり〕 で衚される遞択的殺现胞性蛋癜耇合䜓の補造方
法。
[Scope of Claims] 1. A selective cell-killing protein complex formed by binding an anti-tumor IgG immunoglobulin or a fragment thereof to neocarzinostatin, represented by the following formula []. [wherein Ab represents an antitumor IgG immunoglobulin or a fragment thereof, and Ab is bonded through an amino group in its chemical structure. NCS stands for neocarzinostatin, and NCS is attached through an amino group in its chemical structure. X represents an m-phenylene group or a trimethylene group, and m represents 0 or 1. S represents a sulfur atom, and when m is 0, S is derived from a thiol group originally contained in the chemical structure of the antitumor IgG immunoglobulin or its fragment;
When m is 1, it originates from a thiol group contained in the introduced organic group. n represents an integer of 1 to 5. ] 2 The following formula [] [wherein Ab represents an antitumor IgG immunoglobulin or a fragment thereof, and Ab is bonded through an amino group in its chemical structure. m represents 0 or 1. S represents a sulfur atom, but when m is 0, S
m is derived from a thiol group originally contained in the chemical structure of the antitumor IgG immunoglobulin or its fragment, and when m is 1, it is derived from a thiol group contained in the introduced organic group. n1 represents an integer from 1 to 5. ] An anti-tumor IgG immunoglobulin having a generated or introduced thiol group represented by or a fragment thereof and the following formula [] [In the formula, NCS represents neocarzinostatin,
NCS is bonded through amino groups in its chemical structure. X represents an m-phenylene group or a trimethylene group] The following formula [] is characterized by reacting neocarzinostatin having an introduced maleimide group represented by the following formula [] [In the formula, n represents an integer of 1 to 5, Ab, m,
S, NCS and X are as defined above.] A method for producing a selective cell-killing protein complex.
JP57151754A 1982-09-02 1982-09-02 Conjugated protein killing selectively cell and its preparation Granted JPS5942323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57151754A JPS5942323A (en) 1982-09-02 1982-09-02 Conjugated protein killing selectively cell and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57151754A JPS5942323A (en) 1982-09-02 1982-09-02 Conjugated protein killing selectively cell and its preparation

Publications (2)

Publication Number Publication Date
JPS5942323A JPS5942323A (en) 1984-03-08
JPH0428720B2 true JPH0428720B2 (en) 1992-05-15

Family

ID=15525559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57151754A Granted JPS5942323A (en) 1982-09-02 1982-09-02 Conjugated protein killing selectively cell and its preparation

Country Status (1)

Country Link
JP (1) JPS5942323A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2564839B1 (en) * 1984-05-23 1986-11-14 Sanofi Sa CONJUGATES COMBINING BY COVALENT BINDING A MONOVALENT CARBOXYLIC IONOPHORE AND A MACROMOLECULE AND THEIR USE AS POTENTIALIZERS OF IMMUNOTOXINS
US5612034A (en) * 1990-10-03 1997-03-18 Redcell, Inc. Super-globuling for in vivo extended lifetimes

Also Published As

Publication number Publication date
JPS5942323A (en) 1984-03-08

Similar Documents

Publication Publication Date Title
EP0023401B1 (en) Antitumor protein hybrid and process for the preparation thereof
EP0031999B1 (en) Antitumor protein hybrid and process for the preparation thereof
JP2942356B2 (en) Therapeutic complexes containing toxins and drugs
JPH021129B2 (en)
US4507234A (en) Conjugate having cytotoxicity and process for the preparation thereof
JP3633613B2 (en) Immunotoxins against c-erbB-2 (HER-2 / neu) associated with surface antigens
JPH021128B2 (en)
JPS61500789A (en) Monoclonal anti-human breast cancer antibody
EP0279862A1 (en) Cytocidal antibody complex and process for its preparation
JPH0133448B2 (en)
PL172837B1 (en) Pharmaceutic preparation containing thioether conjugates
IE67448B1 (en) Cross-linked antibodies and processes for their preparation
JPH0259128B2 (en)
KR860001149B1 (en) Process for preparing immunoglobulin conjugates
US6509451B1 (en) Cross-linked antibodies and processes for their preparation
EP0017507B1 (en) Antitumor protein hybrid and process for the preparation thereof
WO2022152289A1 (en) An engineered antibody and antibody-drug conjugates comprisign same
JPH0641423B2 (en) Cytotoxic drug composition and cytotoxic drug kit
JPH0428720B2 (en)
US5151266A (en) Use of anionic detergents with conjugates of monoclonal or polyclonal antibodies
EP2049570B1 (en) Purification of a bivalently active antibody using a non-chromatographic method
US4767621A (en) Drugs comprising in association at least one immunotoxin and at least one monovalent carboxylic ionophore
JPS59134734A (en) Cytocidal modified immunoglobulin and its preparation
HAISMA et al. A monoclonal antibody against human β-glucuronidase for application in antibody-directed enzyme prodrug therapy
JPS58167519A (en) Cytotoxic complex and preparation thereof