JPH0428691Y2 - - Google Patents

Info

Publication number
JPH0428691Y2
JPH0428691Y2 JP1986119910U JP11991086U JPH0428691Y2 JP H0428691 Y2 JPH0428691 Y2 JP H0428691Y2 JP 1986119910 U JP1986119910 U JP 1986119910U JP 11991086 U JP11991086 U JP 11991086U JP H0428691 Y2 JPH0428691 Y2 JP H0428691Y2
Authority
JP
Japan
Prior art keywords
molten metal
weir
supply tool
mold
melting furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986119910U
Other languages
Japanese (ja)
Other versions
JPS6329658U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986119910U priority Critical patent/JPH0428691Y2/ja
Publication of JPS6329658U publication Critical patent/JPS6329658U/ja
Application granted granted Critical
Publication of JPH0428691Y2 publication Critical patent/JPH0428691Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

〔産業上の利用分野〕 本考案は溶湯供給具、更に詳しくは低圧鋳造法
などにおいて鋳型への溶湯の供給に用いる溶湯供
給具に関するものである。 〔従来の技術〕 鋳造法例えば溶湯を鋳型の下方に配置した湯口
管を通して溶融炉から鋳型に充填した後凝固させ
る低圧鋳造法などにおいて、製品キヤビテイへの
堰が1個であれば湯口管と堰とを直結すればよい
が、製品各部への湯流れ性や押湯のために多数個
の堰を設ける場合、従来より第7図に示す如く、
湯口管3と各堰6との間に溶湯分配具(マニホル
ド)1が用いられている。なお、図中、4は鋳
型、5は製品キヤビテイである。又、外に堰の数
に応じてY字状としたマニホルドが例えば特開昭
55−24793号公報及び実開昭57−122762号公報に
開示されている。 〔考案が解決しようとする問題点〕 しかしながら、マニホルド内においては湯口管
の直上と湯口管から離れた端のほうでは溶湯温度
が均一でなく従つて湯口管出口からの距離の異な
る各堰をバランス良くしかも、短時間で凝固させ
ることは非常に難しい。 例えば第7図のような方案では第8図のような
堰の凝固傾向となる。すなわち、図中両側が長く
なる。鋳造時間がこれより短い場合中央部の堰上
の製品部の未凝固溶湯が抜け落ち欠肉し、又、反
対に長いと端の堰からマニホルドにかけて溶湯が
凝固し、製品の離型が困難となる。 従つて、鋳造終了のタイミングの設定が非常に
難しく、堰長さが長く必要で、製品歩留りが悪い
といつた問題がある。又、サイクルタイムは最終
凝固する堰によつてきまるので、堰を均一に凝固
させたものに比べサイクルタイムが長くなるとい
う問題も生ずる。 更に、例えばY字型マニホールドを形成しよう
とすればマニホールドが複雑で高価になるし、3
個以上の堰を有するマニホールドでは均一凝固は
難かしくなる。 本考案は上記従来技術における問題点を解決す
るためのものであり、その目的とするところは複
数の堰を有する鋳型へ溶融炉内の溶湯を供給した
後各堰の溶湯を均一に凝固させることができ、サ
イクルタイム及び製品歩留りを向上させることの
できる溶湯供給具を提供することにある。 〔問題点を解決するための手段〕 すなわち本考案の溶湯供給具は、溶融炉内の溶
湯を鋳型に設けた複数の堰に同時に供給するため
の、本体及びその内部に設けた鋳造時に溶融炉か
ら溶湯を通じて伝わる熱流を複数の堰に分散させ
ることにより堰部の凝固長さを均一化するための
一枚のじやま板からなる溶湯供給具であつて、 本体は、溶湯を堰に供給するための一つの開口
部及びこの開口部に対向する位置に設けた一つの
溶融炉との連結口を有し、 じやま板は、開口部の中心部と連結口の中心部
とを結ぶ軸線上の本体のほぼ中央部の位置に設け
てなることを特徴とする。 供給具の大きさや形状等の性状は鋳型の性状及
びその堰の数や配置等に応じて選択する。供給具
は湯口管とマニホルドよりなるものであつてもよ
いし、又は湯口管のみからなるものであつてもよ
い。材質は例えば従来の湯口管の材質と同じであ
つてよく、例えば鉄系合金などを使用することが
できる。 じやま板は鋳造途中において供給具内の溶湯の
温度分布を均一とし特に各堰の温度を均一とする
ために設けるものであり、その大きさや形状等の
性状は前記目的を達成するために伝熱の理論的解
析によつて、又は実験的に最適に定める。じやま
板の断面形状としては例えば矩形状、片面凸状、
両面凸状又は各種形状の組合せ等、溶湯の種類や
目的とするサイクルタイムなどの鋳造条件に応じ
て選択するとよい。更にじやま板には伝熱の程度
を調整するための孔やスリツト等の開口部を設け
てもよい。 じやま板の材質は溶湯供給具本体と同一とする
と溶接により本体壁面に固定できるので都合がよ
いが、特に限定されるものではなく、耐熱性の金
属材や耐熱性無機材料例えばセラミツクや又はこ
れらの複合材などから適宜選択する。 じやま板は前記の如き所定の位置に適する大き
さのものを設けるとよい。 〔実施例〕 以下の実施例において図面に基づいて本考案を
更に詳細に説明する。なお、本考案は下記実施例
に限定されるものではない。 実施例 1: 第1図及び第2図に低圧鋳造に使用する場合の
本考案の溶湯供給具の一実施例を示す。第1図は
本供給具を鋳型側から見た平面図であり、第2図
は本供給具を鋳型及び溶融炉(図示せず)と接続
した状態を示す第1図のA−A線に沿つた断面図
である。図中、1′はマニホルド、2はじやま板、
7は開口部を示し、他の数字は第6図と同じ意味
を表わす。 第2図において、溶融炉から湯口管3を通つて
上昇してきた溶湯はマニホルド1′内に入り、そ
の中間深さに取付けたじやま板2の開口部7及び
じやま板2とマニホルド1′との間隙を通り、複
数の堰6より製品キヤビテイ5に充填され、凝固
する。この場合、じやま板の大きさ、形状、開口
部の大きさや形状、じやま板の取付け深さ等は実
験的に各堰6にほぼ等量の湯湯が同時に到達する
ように定めた。 上記本考案の溶湯供給具を用いて、AC2Cアル
ミニウム合金を用いてシリンダヘツドを鋳込ん
だ。 実験 1: 注湯温度700℃、鋳造(凝固)時間8分で鋳造
を行つた。その結果第3図に示す如く取出した製
品8の堰凝固部9はその位置にかかわらずほぼ等
しい長さであり、均一に凝固したことが判る。な
お、本実験において、堰凝固部の本数n=12、平
均長さ(mm)=75、標準偏差(mm)σo-1=10で
あつた。 実験 2: 実験1と同様の方法で、ただし注湯温度700℃、
凝固時間9分で鋳造したところ、n=12、=
85、σo-1=12であつた。 実験 3: 実験1と同様の方法で、ただし注湯温度700℃、
凝固時間7分で鋳造したところ、n=12、=
55、σo-1=9であつた。 比較例 1: 実施例1と同様の製品を第7図に示すマニホル
ド1を用いてじやま板なしの方案で、注湯温度
700℃、凝固時間8分で鋳造したところ、中央部
の堰では製品部が未凝固だつたため、鋳造終了後
落下し欠肉し、一方端の方の堰凝固部は約80mm残
つていた。 比較例 2: 比較的1と同様の方案で、注湯温度700℃、凝
固時間9分30秒で鋳造したところ、第8図のよう
な堰凝固部が得られ、中央付近では製品下端より
15mmしかなく、反対に端の堰ではこれ以上鋳造時
間を長くすればマニホルドまで凝固して製品の離
型が困難になるところであつた。この場合、n=
12、=60、σo-1=45であつた。 実施例2及び3: 第4図及び第5図に本考案の溶湯供給具の別の
実施例のじやま板の断面形状を示す。第4図は湯
口管側(下面)を凸面とし、溶湯流入中の空気と
溶湯との置換作用を持たせるとともに溶湯が流れ
易くするためのものであり、第5図は更に上面も
凸面とし、鋳造終了時のじやま板上面の残湯を防
止するためのものである。いずれも実施例1と同
様の効果を示し、本考案の目的を達成することが
できる。 下記表に実施例1と比較例2における堰凝固部
の長さの結果をまとめて示す。
[Industrial Application Field] The present invention relates to a molten metal supply tool, and more particularly to a molten metal supply tool used for supplying molten metal to a mold in a low-pressure casting method or the like. [Prior art] In a casting method, for example, a low-pressure casting method in which molten metal is filled from a melting furnace into a mold through a sprue pipe placed below the mold and then solidified, if there is only one weir to the product cavity, the sprue pipe and weir are used. However, when installing multiple weirs to improve the flow of hot water to each part of the product and for the feeder, conventionally, as shown in Fig. 7,
A molten metal distribution device (manifold) 1 is used between the sprue pipe 3 and each weir 6. In addition, in the figure, 4 is a mold, and 5 is a product cavity. In addition, a manifold with a Y-shape according to the number of weirs on the outside is used, for example, in Japanese Patent Application Publication No.
It is disclosed in Japanese Utility Model Application Publication No. 55-24793 and Japanese Utility Model Application Publication No. 57-122762. [Problem that the invention aims to solve] However, inside the manifold, the temperature of the molten metal is not uniform just above the sprue pipe and at the end away from the sprue pipe. Although it is good, it is very difficult to solidify it in a short time. For example, in the case of the method shown in FIG. 7, the weir solidification tendency will be as shown in FIG. 8. That is, both sides in the figure become longer. If the casting time is shorter than this, the unsolidified molten metal in the product section above the central weir will fall out and cause a lack of thickness, and if it is too long, the molten metal will solidify from the end weir to the manifold, making it difficult to release the product from the mold. . Therefore, it is very difficult to set the timing for finishing casting, a long weir length is required, and the product yield is poor. Furthermore, since the cycle time depends on the final solidification of the weir, there arises the problem that the cycle time is longer than in a case where the weir is uniformly solidified. Furthermore, if you try to form a Y-shaped manifold, for example, the manifold will be complicated and expensive;
Uniform solidification becomes difficult in a manifold having more than 1 weir. The present invention is intended to solve the above-mentioned problems in the conventional technology, and its purpose is to uniformly solidify the molten metal in each weir after supplying the molten metal in the melting furnace to the mold having multiple weirs. The object of the present invention is to provide a molten metal supply tool that can improve cycle time and product yield. [Means for Solving the Problems] In other words, the molten metal supply tool of the present invention has a main body and a main body provided inside the body for simultaneously supplying molten metal in the melting furnace to a plurality of weirs provided in the mold. A molten metal supply tool consisting of a single diagonal plate for uniformizing the solidification length of the weir by dispersing the heat flow transmitted through the molten metal to multiple weirs, and the main body supplies the molten metal to the weir. It has one opening for connection to the melting furnace and one connection port to the melting furnace located opposite this opening, and the board is located on the axis connecting the center of the opening and the center of the connection port. It is characterized in that it is provided at a position approximately in the center of the main body. The size, shape, and other properties of the supply tool are selected depending on the properties of the mold and the number and arrangement of its weirs. The supply device may consist of a sprue and a manifold, or it may consist of only a sprue. The material may be, for example, the same as that of conventional sprue pipes, such as iron-based alloys. The diyama plate is provided to uniformize the temperature distribution of the molten metal in the supply tool during casting, and in particular to equalize the temperature of each weir, and its size, shape, and other properties are determined in order to achieve the above purpose. Optimally determined by thermal theoretical analysis or experimentally. The cross-sectional shape of the jiyama board is, for example, rectangular, convex on one side,
A convex shape on both sides or a combination of various shapes may be selected depending on the casting conditions such as the type of molten metal and the desired cycle time. Furthermore, openings such as holes and slits may be provided in the board to adjust the degree of heat transfer. It is advantageous to use the same material as the molten metal feeder main body, since it can be fixed to the wall of the main body by welding, but it is not particularly limited, and may be made of heat-resistant metal materials, heat-resistant inorganic materials such as ceramics, or the like. Select from composite materials, etc. It is preferable to provide a wall board of a size suitable for the predetermined position as described above. [Example] The present invention will be explained in more detail in the following example based on the drawings. Note that the present invention is not limited to the following examples. Embodiment 1: FIGS. 1 and 2 show an embodiment of the molten metal supply tool of the present invention when used in low pressure casting. Fig. 1 is a plan view of this supply tool as seen from the mold side, and Fig. 2 shows the supply tool connected to the mold and melting furnace (not shown) along line A-A in Fig. 1. FIG. In the figure, 1' is the manifold, 2 is the cutting board,
7 indicates the opening, and the other numbers have the same meanings as in FIG. In FIG. 2, the molten metal rising from the melting furnace through the sprue pipe 3 enters the manifold 1', and the opening 7 of the baffle plate 2 installed at an intermediate depth therebetween, and the baffle plate 2 and the manifold 1'. The product passes through the gap between the products and fills the product cavity 5 through the plurality of weirs 6, and solidifies. In this case, the size and shape of the weir, the size and shape of the opening, the installation depth of the weir, etc. were experimentally determined so that approximately the same amount of hot water would reach each weir 6 at the same time. A cylinder head was cast using AC2C aluminum alloy using the molten metal supply tool of the present invention. Experiment 1: Casting was performed at a pouring temperature of 700°C and a casting (solidification) time of 8 minutes. As a result, as shown in FIG. 3, the weir solidified portions 9 of the product 8 taken out had approximately the same length regardless of their position, indicating that they were uniformly solidified. In this experiment, the number of weir solidified parts n = 12, the average length (mm) = 75, and the standard deviation (mm) σ o -1 = 10. Experiment 2: Same method as Experiment 1, except that the pouring temperature was 700℃.
When cast with a solidification time of 9 minutes, n = 12, =
85, σ o-1 = 12. Experiment 3: Same method as Experiment 1, except that the pouring temperature was 700℃.
When casting with a solidification time of 7 minutes, n=12,=
55, σ o-1 =9. Comparative Example 1: A product similar to Example 1 was manufactured using the manifold 1 shown in Fig. 7 without a cutting board, and the pouring temperature was
When casting was carried out at 700℃ for 8 minutes, the product part was not solidified in the weir in the center, so it fell down after casting and there was a lack of thickness, and about 80 mm of solidified part of the weir remained at one end. . Comparative Example 2: Using a relatively similar method to 1, casting was performed at a pouring temperature of 700°C and a solidification time of 9 minutes and 30 seconds, resulting in a weir-solidified part as shown in Figure 8, with the part near the center being closer to the lower end of the product.
It was only 15 mm, and on the other hand, if the casting time was extended any longer at the weir at the end, the manifold would solidify and it would be difficult to release the product from the mold. In this case, n=
12, = 60, and σ o-1 = 45. Embodiments 2 and 3: FIGS. 4 and 5 show the cross-sectional shape of the wall board of another embodiment of the molten metal supply tool of the present invention. In Fig. 4, the sprue pipe side (lower surface) is made convex, so that the air flowing into the molten metal has a displacement effect with the molten metal, and the molten metal flows easily, and in Fig. 5, the upper surface is also made convex, This is to prevent residual metal from remaining on the top of the cutting board at the end of casting. Both exhibit the same effects as Example 1, and can achieve the purpose of the present invention. The table below summarizes the results of the length of the weir solidified portion in Example 1 and Comparative Example 2.

〔考案の効果〕[Effect of idea]

上述のように本考案の溶湯供給具は、その内部
に鋳造時に湯口管側から溶湯を通じて伝わる熱を
鋳型に設けた複数の堰に均一に分散させるじやま
板を設けたものであるため、多数の堰をほぼ均一
に凝固させることができる。鋳造時間によつて製
品の堰凝固部の長さを制御できるため鋳造条件の
設定が容易であり、従来よりも短い時間で製品を
凝固させることが可能となり、鋳造工程における
サイクルタイム及び製品歩留りを向上させること
ができる。
As mentioned above, the molten metal supply device of the present invention is equipped with a diagonal plate inside which uniformly disperses the heat transmitted through the molten metal from the sprue pipe side during casting to multiple weirs provided in the mold. It is possible to solidify the weir almost uniformly. Since the length of the weir solidification part of the product can be controlled by the casting time, it is easy to set casting conditions, and it is possible to solidify the product in a shorter time than before, reducing cycle time and product yield in the casting process. can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の溶湯供給具の一実施例のマニ
ホルド部分の平面図、第2図は第1図の供給具を
鋳型及び溶融炉と接続した状態を示す第1図のA
−A線に沿つた断面図、第3図は本考案の溶湯供
給具を使用して鋳造した製品の一例の正面図、第
4図及び第5図は本考案の溶湯供給具の別の実施
例のじやま板の断面図、第6図は本考案の溶湯供
給具の更に別の実施例の鋳型と接続した状態を示
す断面図、第7図は従来の溶湯供給具の一例を鋳
型及び湯口管と接続した状態を示す断面図、第8
図は従来の溶湯供給具を使用して鋳造した製品の
一例の正面図である。 図中、1,1′……マニホルド、2,2′,2″
……じやま板、3……湯口管、4……鋳型、5…
…製品キヤビテイ、6……堰、7……開口部、8
……製品、9……堰凝固部。
Fig. 1 is a plan view of a manifold portion of an embodiment of the molten metal supply tool of the present invention, and Fig. 2 is a plan view of the manifold portion of an embodiment of the molten metal supply tool of the present invention, and Fig. 2 shows the state in which the supply tool of Fig. 1 is connected to a mold and a melting furnace.
- A sectional view taken along line A; Figure 3 is a front view of an example of a product cast using the molten metal supply tool of the present invention; Figures 4 and 5 are other implementations of the molten metal supply tool of the present invention. FIG. 6 is a cross-sectional view showing the molten metal supply tool of the present invention connected to a mold according to another embodiment of the present invention, and FIG. 7 shows an example of the conventional molten metal supply tool with the mold and Sectional view showing the state connected to the sprue pipe, No. 8
The figure is a front view of an example of a product cast using a conventional molten metal feeder. In the diagram, 1, 1'...manifold, 2, 2', 2''
...Jiyama board, 3...Gate pipe, 4...Mold, 5...
...Product cavity, 6...Weir, 7...Opening, 8
...Product, 9...Weir solidification section.

Claims (1)

【実用新案登録請求の範囲】 溶融炉内の溶湯を鋳型に設けた複数の堰に同時
に供給するための、本体及びその内部に設けた鋳
造時に溶融炉から溶湯を通じて伝わる熱流を複数
の堰に分散させることにより堰部の凝固長さを均
一化するための一枚のじやま板からなる溶湯供給
具であつて、 本体は、溶湯を堰に供給するための一つの開口
部及びこの開口部に対向する位置に設けた一つの
溶融炉との連結口を有し、 じやま板は、開口部の中心部と連結口の中心部
とを結ぶ軸線上の本体のほぼ中央部の位置に設け
てなることを特徴とする溶湯供給具。
[Claim for Utility Model Registration] A main body and a device installed inside the body to simultaneously supply molten metal in the melting furnace to multiple weirs provided in the mold to disperse the heat flow transmitted from the melting furnace through the molten metal during casting to multiple weirs. This is a molten metal supply tool consisting of a single diagonal plate for uniformizing the solidification length of the weir by moving the molten metal to the weir, and the main body has one opening for supplying the molten metal to the weir and a It has a connecting port with one melting furnace located at an opposing position, and the jamb board is located approximately at the center of the main body on the axis connecting the center of the opening and the center of the connecting port. A molten metal supply tool characterized by:
JP1986119910U 1986-08-05 1986-08-05 Expired JPH0428691Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986119910U JPH0428691Y2 (en) 1986-08-05 1986-08-05

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986119910U JPH0428691Y2 (en) 1986-08-05 1986-08-05

Publications (2)

Publication Number Publication Date
JPS6329658U JPS6329658U (en) 1988-02-26
JPH0428691Y2 true JPH0428691Y2 (en) 1992-07-13

Family

ID=31007729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986119910U Expired JPH0428691Y2 (en) 1986-08-05 1986-08-05

Country Status (1)

Country Link
JP (1) JPH0428691Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188940A (en) * 1984-10-05 1986-05-07 Takaoka Kogyo Kk Casting mold

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188940A (en) * 1984-10-05 1986-05-07 Takaoka Kogyo Kk Casting mold

Also Published As

Publication number Publication date
JPS6329658U (en) 1988-02-26

Similar Documents

Publication Publication Date Title
CN1174106A (en) Continuous and semicontinuous method preparing gradient material
US5620044A (en) Gravity precision sand casting of aluminum and equivalent metals
JPH0428691Y2 (en)
JPS6015049A (en) Continuous casting device
US7140415B1 (en) Method and apparatus for direct pour casting
JPH01170552A (en) Manufacture of metal strip and strip casting machine
EP0372945B1 (en) Direct chill casting mould
JP2749179B2 (en) Pouring nozzle for twin-drum continuous casting equipment
RU2152843C1 (en) Sleeve-type mold for high-speed continuous casting
JPS60216956A (en) Continuous casting machine for thin sheet
CN106670388B (en) A kind of cooling steel ingot die
US4744406A (en) Horizontal continuous casting apparatus with break ring formed integral with mold
JPS6376753A (en) Box type submerged nozzle for high cleanliness steel
JPH0140612Y2 (en)
RU2030955C1 (en) Metal continuous pouring crystallizer
JPH01166868A (en) Continuous casting apparatus
JPH0324270Y2 (en)
JPH04187344A (en) Mold for continuous casting
JPH05276Y2 (en)
JP2004058115A (en) Metallic mold casting apparatus
JPS61154736A (en) Horizontal and continuous casting device
JPS63188467A (en) Method for adjusting solidification in high temperature mold
Churkin et al. Optimization of Thermal Conditions of Casting Formation in Metal Moulds
JPH01262053A (en) Method for preventing over-cooling of molten steel in tundish for continuous casting and structure of tundish
JPS61289956A (en) Metallic mold casting machine