JPH0428668B2 - - Google Patents

Info

Publication number
JPH0428668B2
JPH0428668B2 JP62002446A JP244687A JPH0428668B2 JP H0428668 B2 JPH0428668 B2 JP H0428668B2 JP 62002446 A JP62002446 A JP 62002446A JP 244687 A JP244687 A JP 244687A JP H0428668 B2 JPH0428668 B2 JP H0428668B2
Authority
JP
Japan
Prior art keywords
silicon carbide
alkali metal
temperature
base material
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62002446A
Other languages
Japanese (ja)
Other versions
JPS63170264A (en
Inventor
Nobuyuki Azuma
Minoru Maeda
Kazuo Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP62002446A priority Critical patent/JPS63170264A/en
Priority to US07/140,995 priority patent/US4842840A/en
Publication of JPS63170264A publication Critical patent/JPS63170264A/en
Publication of JPH0428668B2 publication Critical patent/JPH0428668B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は表面にち密な結晶相を形成させて物性
を改善させた炭化ケイ素材料の製造方法に関する
ものである。さらに詳しくいえば、本発明は、表
面に特定の処理を施すことにより、ち密な炭化ケ
イ素の結晶相を析出させ、優れた耐酸化性、耐熱
性、耐熱衝撃性及び機械的強度を付与した炭化ケ
イ素材料の製造方法に関するものである。 従来の技術 従来、炭化ケイ素焼結体は耐熱性、耐食性及び
硬度、曲げ強さ、弾性率などの機械的性質などに
優れていることから、耐熱構造材料として、例え
ばガスタービンや自動車エンジンなどへの利用が
はかられ、今後の発展が期待されている材料であ
る。 しかしながら、この炭化ケイ素焼結体は、非酸
化物共通の弱点として、高温大気中で酸化されや
すく、特に水蒸気共存中において侵食されて、そ
の表層部に気孔を有するガラス質が形成され、物
性低下をもたらすという重大な欠点を有してい
る。したがつて、この欠点を改良するため、これ
まで種々の方法、例えば炭化ケイ素粉末に特定の
金属とカーボンを添加し、高温にて反応させる常
圧焼結法、炭化ケイ素粉末にカーボンを添加し、
外部よりケイ素を供給する反応焼結法、炭化ケイ
素粉末に触媒を加えて高温高圧にて加熱するホツ
トプレス法などが提案されている。しかしなが
ら、このような方法においては、特殊な装置を必
要とする上に、エネルギー消費が多く、しかも得
られた焼結体は必ずしもち密なものではなく、気
孔を有することが多い。例えば、2000℃の温度に
おいて、ホツトプレス処理して得られた炭化ケイ
素焼結体でも、ブロツクから切り出した切断面を
観察すると、1〜2μm程度の気孔が多く存在して
いる。 焼結体がこのような気孔を有する場合には、高
温大気中で酸化されやすくなり、種々の好ましく
ない事態を招来する。例えば、大気中の酸素が焼
結体の気孔から内部に拡散し、まず約700℃の温
度において無定形の二酸化ケイ素の薄膜が生成
し、さらに高温の1200℃程度になるとクリストバ
ライトとして結晶化する一方、Al2O3、B2O3
Fe2O3などの焼結促進剤を含む、無数の細かい気
孔及び亀裂を有するシリケート及びガラス質とし
て表層部に形成され、その結果、該焼結体は物性
低下を免れない上に、クラツクなどが発生するよ
うになる。 このように、炭化ケイ素材料がち密質でなく、
気孔を有する場合には、高温耐酸化性に劣るた
め、高温耐熱構造材料としての用途の制限を免れ
ない。 そのため、炭化ケイ素材料の表面改質手段とし
て、基材表面に保護膜を形成する研究が進められ
ているが、炭化ケイ素基材との接着性がよく、か
つ熱膨張係数が炭化ケイ素のそれと近似している
耐酸化性保護膜を、大面積で複雑な形状を有する
炭化ケイ素基材表面に対しても均一かつ経済的に
形成しうる方法はこれまで見い出されていない。 発明が解決しようとする問題点 本発明は、このような事情のもとで、任意の形
状を有する炭化ケイ素基材の表面に、熱膨張係数
が該基材のそれと類似の被覆層を極めて簡単な操
作で、均一かつ密着性よく形成させて、耐酸化性
をはじめ、その他の物性にも優れた炭化ケイ素材
料を経済的に提供することを目的としてなされた
ものである。 問題点を解決するための手段 本発明者らは、耐酸化性に優れた炭化ケイ素材
料を開発するために鋭意研究を重ねた結果、炭化
ケイ素基材の表面にアルカリ金属化合物と炭素質
との混合物層を設け、所定の温度で焼成すること
により、該基材の表層部に均質な炭化ケイ素の結
晶相を生じ、さらにその上にアルカリ金属含有ガ
ラス質から成る被覆層が形成され、したがつて、
この被覆層を除去することによつて、表層部にち
密な結晶相を有する耐酸化性炭化ケイ素材料が得
られ、前記目的を達成しうることを見い出し、こ
の知見に基づいて本発明を完成するに至つた。 すなわち、本発明は、炭化ケイ素基材の表面に
アルカリ金属化合物と炭素質との混合物層を設け
たのち、これを酸素の存在下、800〜1300℃の温
度において焼成し、次いで該基材の表面に形成さ
れたアルカリ金属含有ガラス質から成る被覆層を
除去することを特徴とする表層部にち密な結晶相
を有する耐酸化性炭化ケイ素材料の製造方法を提
供するものである。 以下、本発明を詳細に説明する。 本発明方法において用いられる炭化ケイ素基材
としては、従来慣用されている方法、例えば常圧
焼結法、反応焼結法、ホツトプレス焼結法など、
任意の方法によつて得られた気孔を有する炭化ケ
イ素焼結体を使用することができる。また、その
形状や大きさについては特に制限はなく、任意の
形状や大きさを有する基材を用いることができ
る。 本発明方法において、前記の炭化ケイ素基材の
表面に層を形成させるための、アルカリ金属化合
物としては、例えばリチウム、カリウム、ナトリ
ウムなどのアルカリ金属のハロゲン化物、炭酸
塩、硝酸塩、硫酸塩などが好ましく挙げられ、こ
れらは1種用いてもよいし、2種以上組み合わせ
て用いてもよい。また、これらのアルカリ金属化
合物は粉末状で用いてもよいし、水溶液として用
いてもよい。粉末状で用いる場合には、その粒径
は、通常20μm以下であることが好ましい。 本発明においては、該層の形成に前記アルカリ
金属化合物とともに炭素質を用いることが必要で
ある。この炭素質としては、例えば単体の炭素粒
子や、蔗糖、デンプンなどの炭水化物などが好ま
しく挙げられる。アルカリ金属化合物と炭素質と
の割合は、通常重量比で1:0.1ないし1:2の
範囲で選ばれる。 前記アルカリ金属化合物と炭素質との混合物
は、単位面積(cm2)当り、アルカリ金属換算で2
〜30mgの層が形成されるように、塗布、吹き付け
などの手段で施すのが好ましい。該層を設ける際
に、乾燥後の塗布面を強固にするために、所望に
よりメチルセルロースやデキストリンなどのバイ
ンダーを用いることもできる。 本発明方法においては、このようにして炭化ケ
イ素基材の表面にアルカリ金属化合物と炭素質と
の混合物層が設けられたものを、酸素の存在下
に、800〜1300℃、好ましくは850〜1150℃の範囲
の温度において、焼成する。焼成は通常大気中で
行われるが所望により、酸素と窒素やアルゴンな
どの不活性ガスとの混合ガスや、空気と該不活性
ガスとの混合ガス中で行つてもよい。また、焼成
時間は通常5〜30時間程度で十分である。 前記の焼成処理によつて、炭化ケイ素基材の表
層部に均一な炭化ケイ素の結晶相を生じ、さらに
その上にアルカリ金属含有ガラス質から成る被覆
層が形成される。 このような炭化ケイ素結晶相の生成及びガラス
質から成る被覆層の形成の機構については必ずし
も明確ではないが、次に示す反応による該結晶相
の生成及びガラス質から成る被覆層の形成が考え
られる。 すなわち、炭化ケイ素基材の表面にアルカリ金
属化合物を塗布し、酸素の存在下に800〜1300℃
の範囲の温度において焼成することにより、まず
該アルカリ金属化合物の塗布層が溶融して液相と
なり、この液相を介して、反応式()に示すよ
うに、炭化ケイ素が酸化され、ガス状の一酸化ケ
イ素が生成する。このガス状の一酸化ケイ素は、
該液相中において、反応式()に示すように、
ガス状の二酸化ケイ素とガス状のケイ素とに分解
する。次に、このガス状のケイ素は、反応式
()で生成した該液相中に含有している炭素や
炭素質由来の炭素と反応して、反応式()に示
すように、結晶状の炭化ケイ素が生成し、基材の
表層部にち密な炭化ケイ素の結晶相が生成する。 3SiC+〓O2→3SiO(g)+3C(S) …() 3SiO(g)→1.5SiO2(g)+0.5Si3(g)
…() 0.5Si3(g)+1.5C(S)→1.5SiC(S) …() X線回析によると、前記反応式()で生成す
る炭化ケイ素は、低温で安定に生成するとみられ
るβ−SiCである。 一方、前記反応式()において生成したガス
状の二酸化ケイ素は、大部分が該液相に溶け込
み、反応式()で示すように、アルカリ金属酸
化物と反応して、アルカリ金属含有ガラス質を生
成することにより、前記の炭化ケイ素結晶相の上
に、アルカリ金属含有ガラス質から成る被覆層が
形成される。 M2O(L)+1.5SiO2(g)→ 1/2M2SiO3(S)+1/2M2Si2O5(S) …() 〔ただしMはアルカリ金属、(L)は液状、
(S)は固体を表わす〕 このようにして、形成されたアルカリ金属含有
ガラス質から成る被覆層は融点が低いため、除去
する必要がある。この被覆層の除去については、
例えば該基材をリン酸溶液中に浸せきし、通常
200〜300℃の温度において、5分ないし1時間程
度保持することにより除去することができるし、
あるいは5〜20重量%のフツ化水素酸溶液中に常
温で5分ないし1時間程度浸せきすることによつ
ても除去することができる。 このようにして、炭化ケイ素基材の表層部に、
均一かつち密な炭化ケイ素の結晶相を有する耐酸
化性に優れた炭化ケイ素材料が得られる。該結晶
相を顕微鏡で観察すると、太さ2〜4μm、長さ5
〜10μm程度の繊維状の結晶や部分的に扁平な結
晶がぎつしりと入り組んでおり、また結晶相はX
線回折によると、安定なβ−炭化ケイ素から成る
単一相である。 発明の効果 本発明の耐酸化性炭化ケイ素材料の製造方法に
よると、任意の形状を有する炭化ケイ素基材の表
層部に、均一かつち密な炭化ケイ素の結晶相を極
めて簡単な操作によつて、経済的に形成させるこ
とができ、得られた炭化ケイ素材料は、耐熱性や
耐熱衝撃性に優れる上に、特に耐酸化性及び機械
的強度などが向上しており、耐熱構造材料、例え
ば自動車エンジン用部材やガスタービンなどの産
業用材料として、さらには宇宙、海洋及び環境化
学などの分野や、石炭液化やガス化開発、地熱開
発などの分野における高温耐酸化・耐食性材料な
どとして有用である。 実施例 次に実施例により本発明をさらに詳細に説明す
るが、本発明はこれらの例によつてなんら限定さ
れるものではない。 実施例 1 約100℃に加熱された常圧炭化ケイ素焼結体の
表面に、炭酸リチウム2gとデンプン1.2gとメ
チルセルロース10mgとを蒸留水20mlに溶解した溶
液を、リチウム量が1cm2当り20mgになるように、
筆により一様に塗布し、乾燥した。この試料を炭
化ケイ素ボートに載置し、高アルミナ質燃焼管の
ほぼ中央部に装てんしたのち、500ml/分の速度
で空気を流しながら、1100℃で24時間焼成し、リ
チウムガラス質で均一に覆われた炭化ケイ素塊状
体を得た。このものは金属用顕微鏡観察により、
亀裂と気孔の入つたガラス相がみられ、また、X
線回折から、β−SiCとトリジマイト結晶が形成
されていることが確認された。 次に、該炭化ケイ素塊状体を12mlのリン酸溶液
中に入れ、加熱して水分を揮発させ、しだいに昇
温し、28℃で15分間保持したのち、取り出し、水
洗後乾燥した。このものの表層部を走査型電子顕
微鏡により観察した結果(図参照)、太さ2〜
3μm、長さ5〜10μmの繊維状結晶が部分的に扁
平な結晶を伴つて一面に生成していた。この結晶
相は、粉末X線回折の結果、β−炭化ケイ素の単
一相であることが確認された。 実施例 2 炭化ケイ素ホツトプレス焼結体の表面に、フツ
化リチウム2gと砂糖800mgとメチルセルロース
12mgとを蒸留水20ml中に溶解した溶液を、リチウ
ム量が1cm2当り20mgになるように、筆により塗布
したのち、乾燥した。この試料を実施例1と同様
に炉内に入れ、乾燥空気を500ml/分の速度で流
しながら、室温より急速に昇温し、950℃に達し
た時点で昇温速度を遅くして1100℃まで16時間か
けて昇温したのち、その温度で8時間保持して焼
成を行つた。 このようにして、リチウムガラス質で一様に覆
われた炭化ケイ素塊状体を得た。このものは金属
用顕微鏡観察により、一面に亀裂の入つたガラス
相がみられ、またX線回折からβ−炭化ケイ素及
びトリジマイトが形成されていることが確認され
た。 次に、該炭化ケイ素塊状体を12mlのリン酸中に
入れ、280℃で15分間加熱したのち、取り出し乾
燥した。このものの表層部を走査型電子顕微鏡に
より観察した結果、太さ2〜3μm、長さ5〜
10μmの繊維状の結晶が一部扁平な結晶を伴つて
一面に生成していた。このものは、粉末X線回折
の結果、β−炭化ケイ素の単一相であつた。 実施例 3 実施例1における炭酸リチウムの代りに炭酸ナ
トリウムを用い、かつ炭素質として発光分析用カ
ーボン400mgを用いて実施例1と同じ条件で試料
を調製し、炉内に入れ、空気とアルゴンとをそれ
ぞれ300ml/分、100ml/分の速度で流しながら、
室温より急速に昇温したのち、1000℃で24時間保
持して焼成を行い、ナトリウムシリケートガラス
質により覆われた炭化ケイ素塊状体を得た。 このものは、金属用顕微鏡観察によれば、トリ
ジマイト結晶が全体に生成しており、また溶融状
バブリング現象が認められた。ナトリウム塩は反
応が急激であるため、アルゴンを導入し、酸素分
圧を下げ、かつ反応温度を下げることにより、好
結果が得られた。 次に、該炭化ケイ素塊状体を、46重量%フツ化
水素酸で処理したのち、水洗し乾燥した。このも
のの表層部には、太さ2〜3μm、長さ4〜7μmの
結晶が一部扁平な結晶を伴つて一面に生成してい
た。このものは、粉末X線回折の結果、β−炭化
ケイ素の単一相であつた。 実施例 4 実施例1における炭酸リチウムの代りに炭酸カ
リウムを用い、実施例1と同様にして試料を調製
し、炉内に入れ空気及びアルゴンをそれぞれ300
ml/分及び100ml/分の速度で流しながら、室温
より急速に昇温し、1100℃で24時間保持して焼成
を行い、カリウム含有ガラス質で覆われた炭化ケ
イ素塊状体を得た。このものは、大部分はガラス
相であるが、トリジマイト結晶がびつしりと生成
していた。 次に、該炭化ケイ素塊状体を、46重量%フツ化
水素酸1重量部に蒸留水2重量部を加えた溶液に
15分間浸せきしたのち、アンモニア水溶液中に入
れて、残留フツ化水素酸を除去後、水洗し、乾燥
した。このものの表層部には、太さ2〜3μm、長
さ5〜10μmの繊維状の結晶が扁平な結晶を伴つ
て、一面に生成していた。このものは、粉末X線
回折の結果、β−炭化ケイ素の単一相であつた。 実施例 5 実施例1において、アルカリ金属化合物として
フツ化リチウム、塩化カリウム及び炭酸ナトリウ
ム混合物(重量比2:1:1)を用い、実施例1
と同様にして試料を調製し、炉内に入れ、空気及
びアルゴンをそれぞれ300ml/分及び100ml/分の
速度で流しながら、室温から急速に昇温し、1000
℃から1100℃までは16時間かけて昇温したのち、
この温度で8時間保持して、焼成を行い、アルカ
リ金属含有ガラス相で覆われた炭化ケイ素塊状体
を得た。 次に、該炭化ケイ素塊状体を、46重量%フツ化
水素酸1重量部に蒸留水3重量部を加えた溶液に
15分間浸せきしたのち、アンモニア水溶液に入れ
て残留フツ化水素酸を除去後、水洗して乾燥し
た。このものの表層部には、太さ2〜3μm、長さ
5〜11μmの繊維状結晶が一部扁平な結晶を伴つ
て一面に生成していた。このものは、粉末X線回
折の結果、β−炭化ケイ素の単一相であつた。 実施例 6〜19 第1表に示すような炭化ケイ素焼結体、アルカ
リ金属化合物、反応条件及びガラス質の除去方法
を用いて実施し、該焼結体の表層部に繊維状のβ
−炭化ケイ素結晶を一様に形成させた。その結果
を第1表に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing a silicon carbide material that has improved physical properties by forming a dense crystalline phase on its surface. More specifically, the present invention is a carbonized silicon carbide that precipitates a dense crystalline phase of silicon carbide by subjecting the surface to a specific treatment, thereby imparting excellent oxidation resistance, heat resistance, thermal shock resistance, and mechanical strength. The present invention relates to a method for producing a silicon material. Conventional technology Conventionally, silicon carbide sintered bodies have been used as heat-resistant structural materials for applications such as gas turbines and automobile engines because they have excellent heat resistance, corrosion resistance, and mechanical properties such as hardness, bending strength, and elastic modulus. It is a material that has been used extensively and is expected to develop in the future. However, this silicon carbide sintered body has a common weakness with non-oxides: it is easily oxidized in high-temperature atmosphere, and it is particularly eroded in the coexistence of water vapor, forming a glassy substance with pores on its surface layer, resulting in a decrease in physical properties. It has the serious drawback of causing Therefore, in order to improve this drawback, various methods have been used so far, such as an atmospheric pressure sintering method in which specific metals and carbon are added to silicon carbide powder and reacted at high temperatures, and carbon is added to silicon carbide powder. ,
Proposed methods include a reactive sintering method in which silicon is supplied from the outside, and a hot press method in which a catalyst is added to silicon carbide powder and heated at high temperature and pressure. However, such a method requires special equipment and consumes a lot of energy, and the obtained sintered body is not necessarily dense and often has pores. For example, even in a silicon carbide sintered body obtained by hot pressing at a temperature of 2000°C, when observing a cut surface cut out from a block, many pores of about 1 to 2 μm are present. When the sintered body has such pores, it is easily oxidized in high-temperature atmosphere, leading to various undesirable situations. For example, oxygen in the atmosphere diffuses into the interior through the pores of the sintered body, first forming an amorphous thin film of silicon dioxide at a temperature of about 700°C, and then crystallizing as cristobalite at an even higher temperature of about 1200°C. , Al 2 O 3 , B 2 O 3 ,
Silicates and glass containing numerous fine pores and cracks containing sintering accelerators such as Fe 2 O 3 are formed on the surface layer. will begin to occur. In this way, silicon carbide materials tend to be dense and not
If the material has pores, its high-temperature oxidation resistance is poor, and its use as a high-temperature heat-resistant structural material is inevitably limited. Therefore, research is underway to form a protective film on the surface of the substrate as a means of surface modification of silicon carbide materials. Until now, no method has been found that can uniformly and economically form an oxidation-resistant protective film on the surface of a silicon carbide substrate having a large area and a complicated shape. Problems to be Solved by the Invention Under these circumstances, the present invention provides an extremely simple method of forming a coating layer having a thermal expansion coefficient similar to that of the base material on the surface of a silicon carbide base material having an arbitrary shape. This was done with the aim of economically providing a silicon carbide material that can be formed uniformly and with good adhesion by a simple operation, and has excellent oxidation resistance and other physical properties. Means for Solving the Problems As a result of extensive research in order to develop a silicon carbide material with excellent oxidation resistance, the present inventors discovered that an alkali metal compound and carbonaceous material were added to the surface of a silicon carbide base material. By providing the mixture layer and firing it at a predetermined temperature, a homogeneous silicon carbide crystal phase is formed on the surface layer of the base material, and a coating layer made of glass containing an alkali metal is formed on top of the homogeneous silicon carbide crystal phase. Then,
It has been discovered that by removing this coating layer, an oxidation-resistant silicon carbide material having a dense crystalline phase in the surface layer can be obtained, thereby achieving the above object, and based on this knowledge, the present invention has been completed. It came to this. That is, the present invention provides a layer of a mixture of an alkali metal compound and carbonaceous material on the surface of a silicon carbide base material, and then sintering the mixture layer in the presence of oxygen at a temperature of 800 to 1300°C. The present invention provides a method for producing an oxidation-resistant silicon carbide material having a dense crystalline phase in the surface layer portion, which comprises removing a coating layer formed on the surface and made of glass containing an alkali metal. The present invention will be explained in detail below. As the silicon carbide base material used in the method of the present invention, conventionally used methods such as pressureless sintering method, reaction sintering method, hot press sintering method, etc.
A sintered silicon carbide body having pores obtained by any method can be used. Further, there are no particular restrictions on the shape or size, and a base material having any shape or size can be used. In the method of the present invention, examples of the alkali metal compound used to form a layer on the surface of the silicon carbide substrate include halides, carbonates, nitrates, and sulfates of alkali metals such as lithium, potassium, and sodium. These are preferably mentioned, and one type of these may be used or two or more types may be used in combination. Further, these alkali metal compounds may be used in powder form or in the form of an aqueous solution. When used in powder form, the particle size is usually preferably 20 μm or less. In the present invention, it is necessary to use carbonaceous material together with the alkali metal compound to form the layer. Preferred examples of the carbonaceous material include single carbon particles and carbohydrates such as sucrose and starch. The ratio of the alkali metal compound to the carbonaceous material is usually selected in a weight ratio of 1:0.1 to 1:2. The mixture of the alkali metal compound and carbonaceous material has a concentration of 2 in terms of alkali metal per unit area (cm 2 ).
It is preferably applied by means of painting, spraying, etc. so that a layer of ~30 mg is formed. When forming this layer, a binder such as methylcellulose or dextrin may be used if desired in order to strengthen the coated surface after drying. In the method of the present invention, a silicon carbide base material with a mixture layer of an alkali metal compound and carbonaceous material provided on the surface thereof is heated at a temperature of 800 to 1300°C, preferably 850 to 1150°C, in the presence of oxygen. Calcinate at a temperature in the range of °C. Firing is usually performed in the atmosphere, but if desired, it may be performed in a mixed gas of oxygen and an inert gas such as nitrogen or argon, or a mixed gas of air and the inert gas. Further, a firing time of about 5 to 30 hours is usually sufficient. The above-described firing treatment produces a uniform silicon carbide crystalline phase on the surface layer of the silicon carbide base material, and further forms an alkali metal-containing vitreous coating layer thereon. The mechanism of the formation of such a silicon carbide crystalline phase and the formation of a glassy coating layer is not necessarily clear, but it is thought that the following reaction causes the formation of the crystalline phase and formation of a glassy coating layer. . That is, an alkali metal compound is applied to the surface of a silicon carbide substrate and heated at 800 to 1300°C in the presence of oxygen.
By firing at a temperature in the range of of silicon monoxide is produced. This gaseous silicon monoxide is
In the liquid phase, as shown in reaction formula (),
Decomposes into gaseous silicon dioxide and gaseous silicon. Next, this gaseous silicon reacts with the carbon contained in the liquid phase produced by reaction formula () and carbon derived from carbonaceous materials, and as shown in reaction formula (), crystalline silicon is formed. Silicon carbide is produced, and a dense crystalline phase of silicon carbide is produced on the surface layer of the base material. 3SiC+〓O 2 →3SiO (g) + 3C (S) …() 3SiO (g) → 1.5SiO 2 (g) + 0.5Si 3 (g)
...() 0.5Si 3 (g) + 1.5C(S) → 1.5SiC(S) ...() According to X-ray diffraction, silicon carbide produced by the above reaction formula () is considered to be produced stably at low temperatures. β-SiC. On the other hand, most of the gaseous silicon dioxide produced in the reaction formula () dissolves in the liquid phase and reacts with the alkali metal oxide to form an alkali metal-containing glass as shown in the reaction formula (). As a result, a coating layer made of alkali metal-containing glass is formed on the silicon carbide crystal phase. M 2 O (L) + 1.5SiO 2 (g) → 1/2M 2 SiO 3 (S) + 1/2M 2 Si 2 O 5 (S) ... () [However, M is an alkali metal, (L) is a liquid,
(S) represents a solid.] The alkali metal-containing vitreous coating layer formed in this way has a low melting point and must be removed. Regarding the removal of this coating layer,
For example, the substrate is immersed in a phosphoric acid solution, and
It can be removed by holding it at a temperature of 200 to 300°C for about 5 minutes to 1 hour,
Alternatively, it can also be removed by immersing it in a 5-20% by weight hydrofluoric acid solution at room temperature for about 5 minutes to 1 hour. In this way, on the surface layer of the silicon carbide base material,
A silicon carbide material having a uniform and dense silicon carbide crystal phase and having excellent oxidation resistance can be obtained. When this crystalline phase is observed under a microscope, it has a thickness of 2 to 4 μm and a length of 5 μm.
It is tightly packed with fibrous crystals of ~10 μm and partially flat crystals, and the crystal phase is
Linear diffraction reveals a single phase consisting of stable β-silicon carbide. Effects of the Invention According to the method for producing an oxidation-resistant silicon carbide material of the present invention, a uniform and dense crystal phase of silicon carbide can be formed on the surface layer of a silicon carbide base material having an arbitrary shape by an extremely simple operation. The resulting silicon carbide material can be formed economically and has excellent heat resistance and thermal shock resistance, as well as particularly improved oxidation resistance and mechanical strength, making it suitable for heat-resistant structural materials, such as automobile engines. It is useful as an industrial material for industrial components and gas turbines, and as a high-temperature oxidation- and corrosion-resistant material in fields such as space, ocean, and environmental chemistry, and in fields such as coal liquefaction, gasification development, and geothermal development. Examples Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way. Example 1 A solution of 2 g of lithium carbonate, 1.2 g of starch, and 10 mg of methylcellulose dissolved in 20 ml of distilled water was placed on the surface of an atmospheric pressure silicon carbide sintered body heated to about 100°C, so that the amount of lithium was 20 mg per 1 cm 2 . So that
It was applied evenly with a brush and dried. This sample was placed on a silicon carbide boat, placed almost in the center of a high alumina combustion tube, and then fired at 1100°C for 24 hours while flowing air at a rate of 500 ml/min. A covered silicon carbide mass was obtained. This item was observed through a metal microscope.
A glass phase with cracks and pores is observed, and
Linear diffraction confirmed that β-SiC and tridymite crystals were formed. Next, the silicon carbide mass was placed in 12 ml of phosphoric acid solution, heated to volatilize water, gradually raised to temperature, held at 28°C for 15 minutes, taken out, washed with water, and dried. As a result of observing the surface layer of this material using a scanning electron microscope (see figure), it was found that the thickness was 2~
Fibrous crystals of 3 μm and 5 to 10 μm in length were formed over the entire surface with some flat crystals. As a result of powder X-ray diffraction, this crystalline phase was confirmed to be a single phase of β-silicon carbide. Example 2 2 g of lithium fluoride, 800 mg of sugar, and methylcellulose were placed on the surface of a silicon carbide hot-pressed sintered body.
A solution prepared by dissolving 12 mg of lithium in 20 ml of distilled water was applied with a brush so that the amount of lithium was 20 mg per 1 cm 2 , and then dried. This sample was placed in a furnace in the same manner as in Example 1, and while drying air was flowing at a rate of 500 ml/min, the temperature was rapidly raised from room temperature, and when it reached 950°C, the heating rate was slowed down to 1100°C. After raising the temperature to 16 hours, the temperature was maintained for 8 hours for firing. In this way, a silicon carbide mass uniformly covered with lithium glass was obtained. When this material was observed under a metallurgical microscope, a glass phase with cracks was observed on one surface, and X-ray diffraction confirmed that β-silicon carbide and tridymite were formed. Next, the silicon carbide mass was placed in 12 ml of phosphoric acid, heated at 280°C for 15 minutes, and then taken out and dried. As a result of observing the surface layer of this material using a scanning electron microscope, it was found that the thickness was 2-3 μm and the length was 5-5 μm.
Fibrous crystals of 10 μm were formed all over the surface, with some flat crystals. As a result of powder X-ray diffraction, this product was found to be a single phase of β-silicon carbide. Example 3 A sample was prepared under the same conditions as in Example 1, using sodium carbonate instead of lithium carbonate in Example 1, and using 400 mg of carbon for emission analysis as the carbonaceous material, placed in a furnace, and heated with air and argon. While flowing at a speed of 300ml/min and 100ml/min, respectively,
After rapidly raising the temperature from room temperature, it was held at 1000°C for 24 hours and fired to obtain a silicon carbide block covered with sodium silicate glass. According to observation using a metal microscope, tridymite crystals were formed throughout the product, and a molten bubbling phenomenon was observed. Since sodium salts react rapidly, good results were obtained by introducing argon, lowering the oxygen partial pressure, and lowering the reaction temperature. Next, the silicon carbide block was treated with 46% by weight hydrofluoric acid, washed with water, and dried. Crystals with a thickness of 2 to 3 μm and a length of 4 to 7 μm were formed all over the surface layer, with some flat crystals. As a result of powder X-ray diffraction, this product was found to be a single phase of β-silicon carbide. Example 4 A sample was prepared in the same manner as in Example 1 except that potassium carbonate was used instead of lithium carbonate in Example 1, and the sample was placed in a furnace and air and argon were pumped at 300% each.
While flowing at a rate of ml/min and 100 ml/min, the temperature was rapidly raised from room temperature and kept at 1100°C for 24 hours to perform calcination, thereby obtaining a silicon carbide mass covered with potassium-containing glass. Most of this material was a glass phase, but tridymite crystals were densely formed. Next, the silicon carbide lumps were added to a solution of 1 part by weight of 46% hydrofluoric acid and 2 parts by weight of distilled water.
After soaking for 15 minutes, it was placed in an ammonia aqueous solution to remove residual hydrofluoric acid, washed with water, and dried. Fibrous crystals with a thickness of 2 to 3 .mu.m and a length of 5 to 10 .mu.m were formed all over the surface layer of this material, together with flat crystals. As a result of powder X-ray diffraction, this product was found to be a single phase of β-silicon carbide. Example 5 In Example 1, a mixture of lithium fluoride, potassium chloride and sodium carbonate (weight ratio 2:1:1) was used as the alkali metal compound, and Example 1
A sample was prepared in the same manner as above, placed in a furnace, and rapidly heated from room temperature to 1000 ml while air and argon were flowing at a rate of 300 ml/min and 100 ml/min, respectively.
After raising the temperature from ℃ to 1100℃ over 16 hours,
It was held at this temperature for 8 hours and fired to obtain a silicon carbide mass covered with an alkali metal-containing glass phase. Next, the silicon carbide lumps were added to a solution of 1 part by weight of 46% hydrofluoric acid and 3 parts by weight of distilled water.
After soaking for 15 minutes, it was placed in an aqueous ammonia solution to remove residual hydrofluoric acid, washed with water, and dried. Fibrous crystals with a thickness of 2 to 3 μm and a length of 5 to 11 μm were formed all over the surface layer of this product, with some flat crystals. As a result of powder X-ray diffraction, this product was found to be a single phase of β-silicon carbide. Examples 6 to 19 Examples 6 to 19 were conducted using a silicon carbide sintered body, an alkali metal compound, reaction conditions, and glass removal method as shown in Table 1, and fibrous β was formed on the surface layer of the sintered body.
- Uniform formation of silicon carbide crystals. The results are shown in Table 1.

【表】【table】

【表】 以上の各実施例で得た炭化ケイ素材料を、1200
℃に維持したスーパーカンタル箱型電気炉内に20
分間挿入したのち、空気中で急冷する操作を10回
繰り返したが、いずれも剥離や繊維状組織の脱落
は認められず、十分な耐スポール性を有すること
が分かつた。 また、1200℃で500時間加熱した場合の重量増
加による耐酸化性を求めた。その結果を第2表に
示す。いずれも顕著な耐酸化性が認められ、また
SEM像による観察から、炭化ケイ素の繊維状組
織の変化はほとんど認められなかつた。
[Table] The silicon carbide materials obtained in each of the above examples were
in a Super Kanthal box electric furnace maintained at 20 °C.
After being inserted for a minute, the process of rapidly cooling in the air was repeated 10 times, but no peeling or shedding of the fibrous tissue was observed in any case, indicating that it had sufficient spall resistance. In addition, oxidation resistance was determined based on weight increase when heated at 1200°C for 500 hours. The results are shown in Table 2. Both have remarkable oxidation resistance, and
From observation using SEM images, almost no change in the fibrous structure of silicon carbide was observed.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

図は本発明方法で得られた耐酸化性炭化ケイ素
材料における表層部の組織を示す走査型電子顕微
鏡写真図である。
The figure is a scanning electron micrograph showing the structure of the surface layer of the oxidation-resistant silicon carbide material obtained by the method of the present invention.

Claims (1)

【特許請求の範囲】 1 炭化ケイ素基材の表面にアルカリ金属化合物
と炭素質との混合物層を設けたのち、これを酸素
の存在下800〜1300℃の温度において焼成し、次
いで該基材の表面に形成されたアルカリ金属含有
ガラス質から成る被覆層を除去することを特徴と
する表層部にち密な結晶相を有する耐酸化性炭化
ケイ素材料の製造方法。 2 アルカリ金属化合物がアルカリ金属のハロゲ
ン化物、炭酸塩、硝酸塩及び硫酸塩の中から選ば
れた少なくとも1種である特許請求の範囲第1項
記載の製造方法。 3 炭化ケイ素基材の表面にアルカリ金属化合物
と炭素質との混合物層を、そのアルカリ金属の量
が単位面積(cm2)当り2〜30mgになるように設け
る特許請求の範囲第1項又は第2項記載の製造方
法。 4 アルカリ金属含有ガラス質から成る被覆層
を、リン酸溶液又はフツ化水素酸溶液を用いて除
去する特許請求の範囲第1項、第2項又は第3項
記載の製造方法。
[Claims] 1. After providing a layer of a mixture of an alkali metal compound and carbonaceous material on the surface of a silicon carbide base material, this is fired at a temperature of 800 to 1300°C in the presence of oxygen, and then the base material is A method for producing an oxidation-resistant silicon carbide material having a dense crystalline phase in the surface layer portion, the method comprising removing an alkali metal-containing vitreous coating layer formed on the surface. 2. The manufacturing method according to claim 1, wherein the alkali metal compound is at least one selected from alkali metal halides, carbonates, nitrates, and sulfates. 3. A mixture layer of an alkali metal compound and carbonaceous material is provided on the surface of a silicon carbide base material so that the amount of the alkali metal is 2 to 30 mg per unit area (cm 2 ). The manufacturing method described in Section 2. 4. The manufacturing method according to claim 1, 2, or 3, wherein the coating layer made of glass containing an alkali metal is removed using a phosphoric acid solution or a hydrofluoric acid solution.
JP62002446A 1987-01-08 1987-01-08 Manufacture of oxidation-resistant silicon carbide material Granted JPS63170264A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62002446A JPS63170264A (en) 1987-01-08 1987-01-08 Manufacture of oxidation-resistant silicon carbide material
US07/140,995 US4842840A (en) 1987-01-08 1988-01-05 Method for production of oxidation-resistant sialon and silicon carbide materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62002446A JPS63170264A (en) 1987-01-08 1987-01-08 Manufacture of oxidation-resistant silicon carbide material

Publications (2)

Publication Number Publication Date
JPS63170264A JPS63170264A (en) 1988-07-14
JPH0428668B2 true JPH0428668B2 (en) 1992-05-14

Family

ID=11529504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62002446A Granted JPS63170264A (en) 1987-01-08 1987-01-08 Manufacture of oxidation-resistant silicon carbide material

Country Status (1)

Country Link
JP (1) JPS63170264A (en)

Also Published As

Publication number Publication date
JPS63170264A (en) 1988-07-14

Similar Documents

Publication Publication Date Title
Naslain et al. Boron nitride interphase in ceramic‐matrix composites
US8168116B2 (en) Method for producing an object at least partly with a silicon carbide structure from a blank of a carbon-containing material
Soltys et al. Synthesis and Properties of Silicon Carbide
RU1782229C (en) Method for making self-baring ceramic body
Shimoo et al. Oxidation behavior of Si-MCO fibers under wide range of oxygen partial pressures
JP2001511106A (en) 312 Surface treatment of ternary ceramic material and its product
JPH031271B2 (en)
JPH1045474A (en) Production of graphite material coated with pyrolyzed carbon
US5268199A (en) Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure and method of processing
JPS6311589A (en) Heat resistant tool and manufacture
JPS61236604A (en) Synthesizing method for beta-si3n4
WO2009112619A1 (en) Method for producing porous ceramics and multiphasic materials from cellulosic precursors
JPH0428668B2 (en)
JPH0428670B2 (en)
EP1452488B1 (en) Method of producing silicon carbide ceramics from plant precursors
US4842840A (en) Method for production of oxidation-resistant sialon and silicon carbide materials
US4886652A (en) Production of metal carbides
JPS59227787A (en) Silicon carbide with anticorrosive protection coating and manufacture
JPS5835950B2 (en) Production method of α-sialon sintered body
CN111410560A (en) Preparation method of silicified graphite with high-density SiC coating
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
JPH03177384A (en) Oxidation-resistant material and its production
CN110156446A (en) The production method of ceramic mold for casting hollow turbo blade
Li et al. Thin film coatings of (Ca0. 6, Mg0. 4) Zr4 (PO4) 6 on Si3N4 and SiC
JPS61101409A (en) Manufacture of silicon carbide

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term