JPH04286306A - Self-cooling gas-insulated transformer - Google Patents

Self-cooling gas-insulated transformer

Info

Publication number
JPH04286306A
JPH04286306A JP7421591A JP7421591A JPH04286306A JP H04286306 A JPH04286306 A JP H04286306A JP 7421591 A JP7421591 A JP 7421591A JP 7421591 A JP7421591 A JP 7421591A JP H04286306 A JPH04286306 A JP H04286306A
Authority
JP
Japan
Prior art keywords
transformer
gas
radiator
self
transformer tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7421591A
Other languages
Japanese (ja)
Inventor
Masahiko Kobayashi
小林 真彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Original Assignee
Takaoka Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Electric Mfg Co Ltd filed Critical Takaoka Electric Mfg Co Ltd
Priority to JP7421591A priority Critical patent/JPH04286306A/en
Publication of JPH04286306A publication Critical patent/JPH04286306A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the setting plane surface of the entire self-cooling gas- insulated transformer. CONSTITUTION:A radiator 4 is attached to the upper part of a transformer tank 2, and SF 6 gas is circulated by natural convection passing through a piping 5 for ascending gas to a radiator 4 from the upper part of the transformer tank 2 and also passing through a plurality of gas introducing pipes 8, provided in parallel on the inner wall of the transformer tank 2, to the lower part of a transformer winding 1 through a descending gas piping 6 from the radiator 4.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、自冷式ガス絶縁変圧器
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to self-cooled gas insulated transformers.

【0002】0002

【従来の技術】ガス絶縁変圧器は、不燃で火災に対する
防災性の高いSF6ガスを内部に密封した変圧器であり
、防災性の高い変圧器として人口過密地域やビル内の受
変電設備においてその需要が高まってきている。また、
人口過密地域の地価の高まりとともに受変電設備の縮小
化の要求が高く、特に設置平面スペースの小さいガス絶
縁変圧器を求める要求が高くなっている。
[Prior Art] A gas insulated transformer is a transformer whose interior is sealed with SF6 gas, which is non-flammable and highly fire-resistant.As a highly disaster-resistant transformer, it is used in densely populated areas and in power receiving and transforming equipment in buildings. Demand is increasing. Also,
As land prices in densely populated areas rise, there is a growing demand for downsizing of power receiving and transforming equipment, and in particular there is a growing demand for gas-insulated transformers that require a small installation space.

【0003】従来の自冷式ガス絶縁変圧器は、図3に示
すように変圧器鉄心3の周囲に巻回された変圧器巻線1
で発生した熱を変圧器タンク2の側壁にガス配管7を介
して取り付けられた放熱器4により放熱している。また
、SF6ガスは、第2種圧力容器に接触しない0.2メ
ガパスカル(2キログラム毎平方センチメートル)以下
の圧力では絶縁油よりも熱伝達率が低い。しかしながら
、SF6ガスは第2種圧力容器に抵触しない0.2メガ
パスカル(2キログラム毎平方センチメートル)以下の
圧力では絶縁油よりも熱伝達が低いので、上述した従来
の自冷式ガス絶縁変圧器においては、放熱器4の設置平
面スペースが変圧器タンク2のそれの2倍程度必要であ
り、変圧器全体の設置平面スペースが大きくなって人口
過密地域やビル内に設置するのに適さない不都合がある
A conventional self-cooling gas insulated transformer has a transformer winding 1 wound around a transformer core 3, as shown in FIG.
The heat generated is radiated by a radiator 4 attached to the side wall of the transformer tank 2 via a gas pipe 7. Furthermore, SF6 gas has a lower heat transfer coefficient than insulating oil at a pressure of 0.2 megapascals (2 kilograms per square centimeter) or less, which does not contact the second class pressure vessel. However, SF6 gas has lower heat transfer than insulating oil at pressures below 0.2 megapascals (2 kilograms per square centimeter), which does not conflict with the second class pressure vessel, so in the conventional self-cooled gas insulated transformer mentioned above, In this case, the installation space of the radiator 4 is about twice that of the transformer tank 2, and the installation space of the entire transformer becomes large, which is an inconvenience that makes it unsuitable for installation in a densely populated area or inside a building. be.

【0004】0004

【発明が解決しようとする課題】そこで本発明は、変圧
器本体から発生する熱を放熱器から放熱する自冷式ガス
絶縁変圧器において、放熱器の設置平面スペースを不要
にでき、これによって変圧器全体の設置平面スペースを
小さくできるようにしたものである。
[Problems to be Solved by the Invention] Accordingly, the present invention provides a self-cooling gas insulated transformer in which heat generated from the transformer body is radiated from a radiator, which eliminates the need for a plane space for installing the radiator, thereby making it possible to transform the transformer. This allows the installation space of the entire device to be reduced.

【0005】[0005]

【課題を解決するための手段】本発明においては、変圧
器鉄心および変圧器巻線より発生する熱を放熱器より放
熱する自冷式ガス絶縁変圧器において、放熱器を変圧器
タンク上に配置し導ガス管を本体内壁に沿って複数個並
列配置する。
[Means for Solving the Problems] In the present invention, in a self-cooling gas insulated transformer in which heat generated from a transformer core and transformer windings is radiated from a radiator, the radiator is disposed on the transformer tank. A plurality of gas guide pipes are arranged in parallel along the inner wall of the main body.

【0006】[0006]

【作用】このように構成することにより、放熱器のため
の設置スペースを省略することができ、かつ、導ガス管
を本体内壁に沿って複数個並列配置するため変圧器タン
ク外側に導ガス管のスペースを設ける必要がなくなり、
設置スペースを縮小できる。
[Operation] With this configuration, the installation space for the radiator can be omitted, and since multiple gas guide pipes are arranged in parallel along the inner wall of the main body, the gas guide pipes are installed outside the transformer tank. There is no need to provide space for
Installation space can be reduced.

【0007】[0007]

【実施例】図1は本発明の自冷式ガス絶縁変圧器の一例
で、放熱器4は変圧器タンク2の上部に接続された上昇
ガス配管5と下降ガス配管6によって変圧器タンク2に
接続される。また、下降ガス配管6を通って冷却された
SF6ガスを変圧器巻線1の下部へ導くために、変圧器
タンク2の側面内壁に半円状の断面を持つ導ガス管8を
複数個並列に取り付ける。
[Embodiment] Fig. 1 shows an example of a self-cooling type gas insulated transformer according to the present invention, in which a radiator 4 is connected to the transformer tank 2 by an ascending gas pipe 5 and a descending gas pipe 6 connected to the upper part of the transformer tank 2. Connected. In addition, in order to guide the cooled SF6 gas through the descending gas pipe 6 to the lower part of the transformer winding 1, a plurality of gas guide pipes 8 having a semicircular cross section are arranged in parallel on the inner wall of the side surface of the transformer tank 2. Attach to.

【0008】変圧器巻線1で熱を持ったSF6ガスは自
然対流により上昇し、変圧器タンク2上部に取り付けら
れた上昇ガス配管5を通って放熱器4に送られ、放熱器
4内で冷却されながら下降する。放熱器4で冷却された
SF6ガスは下降ガス配管6を通って変圧器タンク2に
戻され、さらに変圧器タンク2の側面内壁に取り付けら
れた導ガス管8内を通って変圧器巻線1の下部に送り込
まれる。このような構造とすることにより、変圧器巻線
1にて熱せられたSF6ガスを放熱器4に効率よく対流
により送ることができ、また放熱器4にて冷却されたS
F6ガスを変圧器巻線1の下部に導くことができる。ま
た、一般にSF6ガスの絶縁耐力は電界依存性が高く、
変圧器内部に突起のある金属物を配置することは避けな
ければならないが、この例における導ガス管8は半円状
であるため電界集中が生じにくく、また図1(b)に示
すように巻線1の間付近に導ガス管8を配置する等の処
置を行うことにより、変圧器タンク2の設置平面スペー
スを増大させることなく導ガス管8を変圧器タンク2の
側面内壁に設置することができる。なお、図2に示すよ
うに変圧器タンク2の内壁角部に導ガス管8を設けるこ
とにより、同様の効果を得ることができる。
The heated SF6 gas in the transformer winding 1 rises due to natural convection and is sent to the radiator 4 through the rising gas pipe 5 attached to the top of the transformer tank 2, where it is heated. It descends while being cooled. The SF6 gas cooled by the radiator 4 is returned to the transformer tank 2 through the descending gas pipe 6, and further passes through the gas guide pipe 8 attached to the inner side wall of the transformer tank 2 to the transformer winding 1. sent to the bottom of the With this structure, the SF6 gas heated by the transformer winding 1 can be efficiently sent to the radiator 4 by convection, and the SF6 gas cooled by the radiator 4 can
F6 gas can be led to the bottom of the transformer winding 1. In addition, in general, the dielectric strength of SF6 gas is highly dependent on the electric field,
Although it is necessary to avoid placing metal objects with protrusions inside the transformer, the gas guide pipe 8 in this example is semicircular, so electric field concentration is less likely to occur, and as shown in FIG. 1(b), By taking measures such as arranging the guiding gas pipe 8 near between the windings 1, the guiding gas pipe 8 can be installed on the inner side wall of the transformer tank 2 without increasing the installation plane space of the transformer tank 2. be able to. Incidentally, a similar effect can be obtained by providing a gas guide pipe 8 at a corner of the inner wall of the transformer tank 2 as shown in FIG.

【0009】[0009]

【発明の効果】本発明によれば、次の効果を得ることが
できる。 (1)放熱器を変圧器タンク上部に設置することにより
、放熱器の設置平面スペースを省略することができる。 (2)変圧器タンク側面外壁に放熱器の導ガス管を必要
とせず、変圧器タンクの設置平面スペースを縮小するこ
とができる。
[Effects of the Invention] According to the present invention, the following effects can be obtained. (1) By installing the radiator above the transformer tank, the planar space for installing the radiator can be omitted. (2) There is no need for a gas guide pipe for the radiator on the outer wall of the side surface of the transformer tank, and the installation planar space for the transformer tank can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】(a)は、本発明の一実施例による自冷式ガス
絶縁変圧器の断面図、(b)は、その平面断面図である
FIG. 1(a) is a sectional view of a self-cooling gas insulated transformer according to an embodiment of the present invention, and FIG. 1(b) is a plan sectional view thereof.

【図2】本発明の他の実施例による自冷式ガス絶縁変圧
器の平面図である。
FIG. 2 is a plan view of a self-cooling gas insulated transformer according to another embodiment of the present invention.

【図3】従来例の断面図である。FIG. 3 is a sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

1  変圧器巻線 2  変圧器タンク 3  変圧器鉄心 4  放熱器 5  上昇ガス用配管 6  下降ガス用配管 8  導ガス管 1 Transformer winding 2 Transformer tank 3 Transformer core 4 Heat sink 5 Piping for rising gas 6 Piping for descending gas 8 Gas guide pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  変圧器本体より発生する熱を放熱器よ
り放熱する自冷式ガス絶縁変圧器において、放熱器を変
圧器タンク上に配置し導ガス管を本体内壁に沿って複数
個並列配置したことを特徴とする自冷式ガス絶縁変圧器
Claim 1: In a self-cooled gas insulated transformer in which heat generated from the transformer body is radiated from a radiator, the radiator is placed on the transformer tank, and a plurality of gas guide pipes are arranged in parallel along the inner wall of the main body. A self-cooling gas insulated transformer.
JP7421591A 1991-03-15 1991-03-15 Self-cooling gas-insulated transformer Pending JPH04286306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7421591A JPH04286306A (en) 1991-03-15 1991-03-15 Self-cooling gas-insulated transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7421591A JPH04286306A (en) 1991-03-15 1991-03-15 Self-cooling gas-insulated transformer

Publications (1)

Publication Number Publication Date
JPH04286306A true JPH04286306A (en) 1992-10-12

Family

ID=13540753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7421591A Pending JPH04286306A (en) 1991-03-15 1991-03-15 Self-cooling gas-insulated transformer

Country Status (1)

Country Link
JP (1) JPH04286306A (en)

Similar Documents

Publication Publication Date Title
JPH04286306A (en) Self-cooling gas-insulated transformer
US3713060A (en) Transformer having improved heat dissipating system
US3467929A (en) Dry type transformer and improved enclosure assembly therefor
US3482108A (en) Underground distribution transformer
JP6833462B2 (en) Manufacturing method of naturally circulating vegetable oil-filled transformer
JP2009117714A (en) Transformer
JPH11176651A (en) Static induction electric apparatus
CN212967324U (en) Epoxy pouring assembled dry-type transformer
CN217280315U (en) Self-cooled gas tank heat radiation structure of gas insulated transformer
US2066322A (en) Electric cable system
KR200338266Y1 (en) Current transformer changing situation of bushing
US20240038441A1 (en) Transformer, Power Module and Switching Power Supply
CN210182195U (en) High-efficient heat radiation structure of dry-type transformer
US2942216A (en) Electrical apparatus and enclosure therefor
JP2008282846A (en) Oil-filled stationary induction apparatus
JPH0410668Y2 (en)
JPS61121306A (en) Stationary induction apparatus
EP2819133A1 (en) Electric coil device for electro-technical and power electronics applications
JP2595794B2 (en) Self-cooling gas-insulated induction device
JPH046174Y2 (en)
JP2020043125A (en) Oil-filled transformer
CN116052984A (en) Outdoor oil immersed transformer
JPS6027173B2 (en) electromagnetic induction equipment
JP2005175067A (en) Oil-immersed stationary induction apparatus
JPS61109405A (en) Cooling device for gas insulated transmission apparatus