JPH04285192A - Copper foil for printed circuit and its manufacture - Google Patents

Copper foil for printed circuit and its manufacture

Info

Publication number
JPH04285192A
JPH04285192A JP7366091A JP7366091A JPH04285192A JP H04285192 A JPH04285192 A JP H04285192A JP 7366091 A JP7366091 A JP 7366091A JP 7366091 A JP7366091 A JP 7366091A JP H04285192 A JPH04285192 A JP H04285192A
Authority
JP
Japan
Prior art keywords
copper foil
zinc
indium
layer
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7366091A
Other languages
Japanese (ja)
Other versions
JP2537108B2 (en
Inventor
Atsuchika Shimamura
島村 敦睦
Kazuyoshi Aso
阿曽 和義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Denkai Co Ltd
Original Assignee
Nippon Denkai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Denkai Co Ltd filed Critical Nippon Denkai Co Ltd
Priority to JP3073660A priority Critical patent/JP2537108B2/en
Publication of JPH04285192A publication Critical patent/JPH04285192A/en
Application granted granted Critical
Publication of JP2537108B2 publication Critical patent/JP2537108B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To obtain copper foil for a printed circuit having a thermal decoloration resistant film by forming an indiumzinc layer on the surface of copper foil for a printed circuit. CONSTITUTION:An In-Zn layer constituted of, by weight, 25 to 75% In and the balance Zn is formed at least on one side of copper foil for a printed by an electroplating method. Copper foil for a printed circuit free from any decoloration on the surface even if subjected to heating history of >=200 deg.C high temp. and excellent in solder expansibility, adhesion with a resist ink or the like required for copper foil for a printed circuit can be obtd. This copper foil is heated and press-fixed to a resin substrate into a copper-plated laminate for a printed circuit.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、プリント回路用銅箔及
びその製造方法に関し、更に詳しくは、銅箔面上に優れ
た耐熱変色性被膜を有するプリント回路用銅箔及びその
製造方法に関するものである。
[Field of Industrial Application] The present invention relates to a copper foil for printed circuits and a method for producing the same, and more particularly to a copper foil for printed circuits having an excellent heat-resistant discoloration coating on the surface of the copper foil and a method for producing the same. It is.

【0002】0002

【従来の技術】一般に銅表面は周知のように大気中では
次第に酸化されて、時間の経過と共に本来の銅色の光沢
を失い茶褐色に変色する。加熱雰囲気下にあっては更に
一層酸化が促進されて黒褐色の酸化銅となる。したがっ
て、銅製品にあっては、本来の銅色を失って変色した銅
表面は、その商品価値の著しい低下を意味する。特にプ
リント配線板の導体材料に多用されているプリント回路
用銅箔にあっては、その表面に銅酸化物層が存在すると
外観の品質を損うばかりか、プリント回路用銅箔に必要
とされる半田ひろがり性やレジストインクとの密着性な
どの特性を悪化させる要因となる。特に高温雰囲気中に
おける銅箔面の耐熱変色性は、プリント回路用銅箔の重
要な要求特性の一つとされている。
BACKGROUND OF THE INVENTION Generally, as is well known, the surface of copper is gradually oxidized in the atmosphere, and as time passes, it loses its original copper luster and turns brown. In a heated atmosphere, the oxidation is further promoted and becomes blackish brown copper oxide. Therefore, for copper products, a discolored copper surface that loses its original copper color means a significant decrease in its commercial value. In particular, the presence of a copper oxide layer on the surface of copper foil for printed circuits, which is often used as a conductor material for printed wiring boards, not only impairs the quality of the appearance, but also reduces the quality of the copper foil required for printed circuits. This is a factor that deteriorates properties such as solder spreading and adhesion with resist ink. In particular, heat discoloration resistance of the copper foil surface in a high-temperature atmosphere is considered to be one of the important characteristics required for copper foil for printed circuits.

【0003】従来、銅箔面に耐熱変色性、すなわち酸化
防止力を付与する方法として、種々の方法が提案されて
いる。例えば、特公昭51−42575号公報には、六
価クロムイオンを含む水溶液中に銅箔を浸漬し、該箔面
に陰極処理を施して、いわゆるクロメート層を形成する
方法が提案されている。しかし、クロメート層を有する
銅箔は、これを用いて樹脂基材と加熱加圧して銅張積層
板を製造する際に、クロメート層が熱の影響をうけて破
壊され、銅箔面が酸化され、茶褐色に変色する。したが
って、クロメート層の形成からでは、良好な対熱変色性
を期待することは困難である。
Conventionally, various methods have been proposed as methods for imparting thermal discoloration resistance, that is, antioxidation ability, to the surface of copper foil. For example, Japanese Patent Publication No. 51-42575 proposes a method in which a copper foil is immersed in an aqueous solution containing hexavalent chromium ions, and the foil surface is subjected to cathode treatment to form a so-called chromate layer. However, when copper foil with a chromate layer is used to heat and press a resin base material to produce a copper-clad laminate, the chromate layer is destroyed by the heat and the copper foil surface is oxidized. , turns brown. Therefore, it is difficult to expect good thermal discoloration properties from the formation of a chromate layer.

【0004】また、亜鉛イオンを含むメッキ液を用いて
、銅表面に亜鉛被膜を形成することは一般によく知られ
ている。例えば、特公昭54−29187号公報には、
亜鉛イオンを含むアルカリ水溶液中に銅を浸漬するか、
又はこのアルカリ水溶液中で銅を陽極として通電するこ
とにより、銅表面にZn及びCuを含む緻密な酸化物層
を形成する方法が提案されている。このようにして得ら
れる亜鉛被膜を有する銅箔はクロメート層で被覆された
銅箔に比較すれば耐熱変色性をはるかに良好に保持する
ことができる。しかし、この亜鉛被膜を有する銅箔にお
いても、200℃を超える雰囲気中では亜鉛被膜の厚み
が比較的薄いものでは十分な耐熱変色性の効果は得られ
ず、一方、亜鉛被膜の厚みを増せば、亜鉛と銅との相互
の熱拡散により両者の合金である黄銅層となり、銅箔面
には黄色の色相が強く発現して好ましい外観とはいえな
くなる。
[0004] Furthermore, it is generally well known that a zinc coating is formed on a copper surface using a plating solution containing zinc ions. For example, in Japanese Patent Publication No. 54-29187,
Immerse the copper in an alkaline aqueous solution containing zinc ions, or
Alternatively, a method has been proposed in which a dense oxide layer containing Zn and Cu is formed on the copper surface by energizing copper as an anode in this alkaline aqueous solution. The zinc-coated copper foil obtained in this way can maintain heat discoloration resistance much better than copper foil coated with a chromate layer. However, even with this copper foil having a zinc coating, if the thickness of the zinc coating is relatively thin, sufficient heat discoloration resistance cannot be obtained in an atmosphere exceeding 200°C.On the other hand, if the thickness of the zinc coating is increased, Due to mutual thermal diffusion between zinc and copper, a brass layer is formed which is an alloy of the two, and a strong yellow hue appears on the copper foil surface, resulting in an undesirable appearance.

【0005】特開昭52−735号公報には、銅箔の平
滑な光沢面に亜鉛を電気メッキし、次いで亜鉛と銅の相
互拡散により黄銅層を形成する条件下で加熱処理し、光
沢面に黄銅層を形成することが提案されている。この方
法においてもやはり、先に記載した如く、銅箔面に黄銅
層の黄色味が強く発現し、外観上の問題がある。
[0005] JP-A-52-735 discloses that zinc is electroplated on the smooth shiny surface of copper foil, and then heat treated under conditions that form a brass layer by mutual diffusion of zinc and copper. It has been proposed to form a brass layer on. In this method as well, as described above, the brass layer develops a strong yellowish tinge on the copper foil surface, causing problems in terms of appearance.

【0006】また、特公昭61−33906号公報には
、銅箔の両面に亜鉛の被膜を形成し、次いで各亜鉛被膜
上にクロム酸化物の被膜を形成する方法が記載されてい
る。しかしこの方法によって得られる銅箔も、200℃
を超える高温雰囲気にさらされると耐熱変色性は著しく
低下して変色し、実用上問題であった。
[0006] Furthermore, Japanese Patent Publication No. 33906/1983 describes a method in which a zinc coating is formed on both sides of a copper foil, and then a chromium oxide coating is formed on each zinc coating. However, the copper foil obtained by this method also
When exposed to a high-temperature atmosphere that exceeds 100%, the heat discoloration resistance significantly decreases and the color changes, which is a practical problem.

【0007】特公昭58−7077号公報には、銅箔の
少なくとも一面に亜鉛又は酸化亜鉛とクロム酸化物とよ
りなる混合物被膜層を形成する方法が開示されているが
、この銅箔も、200℃を超える高温雰囲気にさらされ
ると変色の度合が著しく大きくなり実用上問題である。
Japanese Patent Publication No. 58-7077 discloses a method of forming a layer of a mixture of zinc or zinc oxide and chromium oxide on at least one surface of a copper foil. When exposed to a high temperature atmosphere exceeding .degree. C., the degree of discoloration increases significantly, which is a practical problem.

【0008】特公昭51−35711号公報では、銅箔
層の一方の面に亜鉛とインジウムと黄銅とからなる群か
ら選択される金属の電着金属層を形成する方法が提案さ
れている。しかし、電着インジウム層で被覆された銅箔
は耐熱変色性が低く、また、インジウムの被着量を多く
するとインジウム層自体が灰白色を呈するという難点が
ある。電着亜鉛層又は電着黄銅層で被覆された銅箔には
、上記同様、耐熱変色性が低いという問題点がある。
Japanese Patent Publication No. 51-35711 proposes a method of forming an electrodeposited metal layer of a metal selected from the group consisting of zinc, indium and brass on one side of a copper foil layer. However, copper foil coated with an electrodeposited indium layer has a low resistance to heat discoloration, and also has the disadvantage that when the amount of indium deposited is increased, the indium layer itself takes on a grayish-white color. Copper foil coated with an electrodeposited zinc layer or an electrodeposited brass layer has the same problem of low heat discoloration resistance.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、20
0℃を超える高温の熱履歴を受けても銅箔面は依然とし
て変色することなく耐熱変色性に優れ、かつプリント回
路用銅箔に必要とされる半田ひろがり性、レジストイン
クとの密着性などの特性を良好に保つことのできるプリ
ント回路用銅箔と、それを連続的に量産することのでき
る製造方法を提供することにある。
[Problems to be Solved by the Invention] The objects of the present invention are 20
The copper foil surface remains undiscolored even after being subjected to heat history at temperatures exceeding 0°C, and has excellent thermal discoloration resistance, and also has excellent solder spreadability and adhesion with resist ink, which are required for copper foil for printed circuits. An object of the present invention is to provide a copper foil for printed circuits that can maintain good characteristics and a manufacturing method that can continuously mass-produce the same.

【0010】0010

【課題を解決するための手段】本発明者等は、上記問題
点を解消するため鋭意研究を重ねた結果、インジウムと
亜鉛の両方を含有する被膜においては、銅箔面の酸化防
止力が相乗的に向上することを見出し、本発明を完成す
るに至った。すなわち、本発明は、銅箔の少なくとも片
面にインジウム−亜鉛層を有することを特徴とするプリ
ント回路用銅箔を提供するものである。本発明のプリン
ト回路用銅箔は、後述する本発明の製造方法によって容
易に製造することができる。
[Means for Solving the Problem] As a result of intensive research to solve the above problems, the present inventors have found that in a film containing both indium and zinc, the anti-oxidation ability of the copper foil surface is synergistic. The present inventors have discovered that the present invention can be improved in terms of performance, and have completed the present invention. That is, the present invention provides a copper foil for printed circuits characterized by having an indium-zinc layer on at least one side of the copper foil. The copper foil for printed circuits of the present invention can be easily manufactured by the manufacturing method of the present invention described below.

【0011】本発明のプリント回路用銅箔におけるイン
ジウム−亜鉛層はインジウムと亜鉛の金属を主体とする
合金薄膜であり、素地の銅箔面に強固に密着している。 このインジウム−亜鉛層の表層部付近にはインジウムと
亜鉛の酸化物、水酸化物が若干混在していてもよい。こ
のインジウム−亜鉛層自体は無色透明な緻密な被膜であ
り、素地の銅色を損なうことはない。そして、高温加熱
雰囲気下にあっても変色することなく、銅箔面の銅色を
保持したまま酸化防止力に極めて優れた機能を発揮する
ことができる。
The indium-zinc layer in the copper foil for printed circuits of the present invention is a thin alloy film mainly composed of indium and zinc metals, and is tightly adhered to the base copper foil surface. A small amount of indium and zinc oxides and hydroxides may be mixed in the vicinity of the surface layer of this indium-zinc layer. This indium-zinc layer itself is a colorless and transparent dense film, and does not impair the copper color of the base material. Moreover, even in a high-temperature heating atmosphere, the copper foil does not change color and exhibits an extremely excellent anti-oxidation function while maintaining the copper color of the copper foil surface.

【0012】このインジウム−亜鉛層を構成するインジ
ウムと亜鉛の金属量として換算した被着量とその比率に
ついて説明すると、インジウム及び亜鉛の各被着量は共
に20〜150μg/dm2の範囲にあることが好まし
い。それぞれ20μg/dm2未満の場合は膜厚が薄い
こともあって耐熱変色性が低下することがあり、一方、
150μg/dm2を超える場合は、双方の比率にもよ
るが、インジウム−亜鉛層が艶のない灰白色の色調とな
ることがある。特に好ましくは両者それぞれの被着量は
40〜130μg/dm2である。
[0012] To explain the amounts of indium and zinc that compose this indium-zinc layer converted into metal amounts and their ratio, the amounts of each of indium and zinc are both in the range of 20 to 150 μg/dm2. is preferred. If each is less than 20 μg/dm2, the film thickness may be thin and the heat discoloration resistance may decrease;
If it exceeds 150 μg/dm2, the indium-zinc layer may take on a dull grayish-white color, although it depends on the ratio of both. Particularly preferably, the amount of each coating is 40 to 130 μg/dm 2 .

【0013】また、インジウム−亜鉛層中のインジウム
と亜鉛との金属量の比率は、インジウムと亜鉛の金属量
の総和に対してインジウム含有量が25〜75重量%で
あることが好ましい。この範囲外では双方がもたらす高
温時の耐熱変色性の相乗効果が減衰することがある。特
に好ましくは35〜70重量%の範囲である。また、こ
のインジウム−亜鉛層の厚みについていえば、亜鉛の比
重7.12を用いて換算した場合、通常、約0.000
5〜0.004μmである。
[0013] Furthermore, the ratio of the metal amounts of indium and zinc in the indium-zinc layer is preferably such that the indium content is 25 to 75% by weight with respect to the total metal amount of indium and zinc. Outside this range, the synergistic effect of heat discoloration resistance at high temperatures provided by both may be attenuated. Particularly preferred is a range of 35 to 70% by weight. In addition, the thickness of this indium-zinc layer is usually about 0.000 when converted using the specific gravity of zinc of 7.12.
It is 5 to 0.004 μm.

【0014】銅箔面上にインジウム−亜鉛層を形成して
本発明のプリント回路用銅箔を製造する手段としては、
公知の電気メッキ法、化学メッキ法、真空蒸着法、スパ
ッタリング法、メタリコン法などを用いることができる
。これらの中では、電気メッキ法によって陰極電解処理
により実施することが量産性、経済性の点で実用上望ま
しい。本発明の製造方法はこの電気メッキ法を用いたも
のであり、インジウムイオンと亜鉛イオンを含むメッキ
浴を用い、該メッキ浴中で銅箔を陰極処理し、該銅箔の
少なくとも片面にインジウム−亜鉛層を形成することを
特徴とする。
Means for producing the copper foil for printed circuits of the present invention by forming an indium-zinc layer on the copper foil surface is as follows:
Known electroplating methods, chemical plating methods, vacuum evaporation methods, sputtering methods, metallicon methods, etc. can be used. Among these, it is practically preferable to carry out cathodic electrolytic treatment using electroplating method from the viewpoint of mass production and economy. The manufacturing method of the present invention uses this electroplating method, in which a plating bath containing indium ions and zinc ions is used, a copper foil is cathodically treated in the plating bath, and at least one side of the copper foil is coated with indium- It is characterized by forming a zinc layer.

【0015】本発明の方法において用いられる銅箔は、
電解銅箔、圧延銅箔に代表されるが、特に限定するもの
ではない。銅箔の厚みについても、プリント回路用銅箔
として用いられる厚みのものであれば、特に制限はない
。本発明においては、樹脂基材に接着する面の積層後の
剥離強度を高めるため、少なくとも片面を粗面化処理し
た銅箔を用いることが好ましい。
[0015] The copper foil used in the method of the present invention is
Representative examples include electrolytic copper foil and rolled copper foil, but they are not particularly limited. The thickness of the copper foil is also not particularly limited as long as it has a thickness that can be used as a copper foil for printed circuits. In the present invention, in order to increase the peel strength after lamination of the surface to be adhered to the resin base material, it is preferable to use a copper foil whose at least one side has been roughened.

【0016】次に、本発明方法において用いられるメッ
キ浴について述べると、メッキ浴中に含まれる金属イオ
ンはインジウムイオンと亜鉛イオンである。インジウム
イオン供給源として例示すると、In2(SO4)3、
InCl3、In(SO3NH2)3、In(BF4)
3 又はこれらの水化物などが好適である。亜鉛イオン
供給源としては、ZnSO4、ZnCl2、Zn(CH
3COO)2 又はこれらの水化物などが好適である。 また、本発明の目的達成に支障をきたさない範囲で、他
の金属イオンを少量含んでいてもよい。
Next, regarding the plating bath used in the method of the present invention, the metal ions contained in the plating bath are indium ions and zinc ions. Examples of indium ion sources include In2(SO4)3,
InCl3, In(SO3NH2)3, In(BF4)
3 or their hydrates are suitable. ZnSO4, ZnCl2, Zn(CH
3COO)2 or hydrates thereof are preferred. In addition, a small amount of other metal ions may be included within a range that does not interfere with achieving the object of the present invention.

【0017】インジウムイオン供給源の少なくとも1種
及び亜鉛イオン供給源の少なくとも1種を水に溶解して
メッキ浴がつくられる。メッキ浴中の両金属イオンの含
有量を設定するにあたっては、前記メッキ金属被着量と
電流密度、通電時間などを勘案して決められるが、通常
、それぞれ0.1〜50g/lの範囲から選択すること
ができる。好ましくは、それぞれ0.5〜10g/lで
ある。例えば、インジウムイオン供給源にIn2(SO
4)3を用い、亜鉛イオウン供給源にZnSO4・7H
2Oを用いた場合、それぞれ0.1〜10g/lの範囲
で用いることが特に好ましい。
A plating bath is prepared by dissolving at least one source of indium ions and at least one source of zinc ions in water. When setting the content of both metal ions in the plating bath, it is determined by taking into consideration the amount of plating metal deposited, current density, current application time, etc., but usually from a range of 0.1 to 50 g/l for each. You can choose. Preferably, each amount is 0.5 to 10 g/l. For example, the indium ion source is In2(SO
4) Using ZnSO4.7H as the zinc ion source using 3.
When 2O is used, it is particularly preferable to use it in a range of 0.1 to 10 g/l.

【0018】また、メッキ浴のpHは酸性からアルカリ
性の広範囲な領域に調整して用いることも可能であるが
、通常は酸性として用いることが好ましい。アルカリ性
とする場合は、スルファミン酸等の錯化剤を添加して、
金属イオンの沈殿を防止することが望ましい。また、こ
のメッキ浴に導電性を付与する目的で、硫酸ナトリウム
、塩化アンモニウムのような塩類などを添加してもよい
。メッキ浴の液温については通常常温でよく、また、例
えば80℃程度まで加熱して用いてもよい。
Although the pH of the plating bath can be adjusted over a wide range from acidic to alkaline, it is usually preferable to use it as acidic. When making it alkaline, add a complexing agent such as sulfamic acid,
It is desirable to prevent precipitation of metal ions. Furthermore, salts such as sodium sulfate and ammonium chloride may be added to the plating bath for the purpose of imparting conductivity. The liquid temperature of the plating bath may be normally room temperature, or may be heated to, for example, about 80°C.

【0019】このメッキ浴に銅箔を浸漬し、銅箔を陰極
として通電することにより、銅箔面上にインジウム−亜
鉛層が形成される。電流密度及び通電時間については前
記金属イオン量、メッキ金属被着量とその比率など他の
条件に関係するため一慨には規定できないが、通常、電
流密度0.1〜10A/dm2、好ましくは0.2〜2
A/dm2、通電時間1〜60秒、好ましくは1〜30
秒の範囲から適宜選択することが望ましい。
By immersing the copper foil in this plating bath and applying electricity using the copper foil as a cathode, an indium-zinc layer is formed on the surface of the copper foil. Although the current density and the current application time cannot be specified in general because they are related to other conditions such as the amount of metal ions, the amount of plating metal deposited and their ratio, the current density is usually 0.1 to 10 A/dm2, preferably 0.2~2
A/dm2, current application time 1 to 60 seconds, preferably 1 to 30
It is desirable to select an appropriate value from the range of seconds.

【0020】必要に応じ少なくとも片面を粗面化処理さ
れた銅箔に、水洗工程を経、前記により調製されたイン
ジウムイオンと亜鉛イオンを含むメッキ浴中で銅箔の片
面又は両面に対向配置させた不溶性陽極を設け、前記電
解条件で銅箔の片面、好ましくは光沢面、又は両面に陰
極処理を施すことによりインジウム−亜鉛層が形成され
、本発明のプリント回路用銅箔が製造される。
[0020] Copper foil, which has been roughened on at least one side if necessary, is subjected to a water washing process, and then placed facing each other on one or both sides of the copper foil in a plating bath containing indium ions and zinc ions prepared as described above. An insoluble anode is provided, and one side, preferably the shiny side, or both sides of the copper foil is subjected to cathode treatment under the above electrolytic conditions to form an indium-zinc layer, thereby producing the copper foil for printed circuits of the present invention.

【0021】本発明の製造方法を実施するにあたっては
、例えば、所定の厚さと幅を有するコイル状に巻き取ら
れた銅箔を、必要に応じて設けられる脱脂槽、酸洗槽、
水洗槽、粗面化処理用銅メッキ槽、水洗槽に次いで、イ
ンジウム−亜鉛層を形成するメッキ槽、水洗槽及び乾燥
装置等を連結した構成からなる銅箔処理装置内を定速走
行させ、連続的に巻き取って製造することが好ましい。
[0021] In carrying out the manufacturing method of the present invention, for example, a copper foil wound into a coil having a predetermined thickness and width is placed in a degreasing tank, a pickling tank,
Running at a constant speed in a copper foil processing equipment consisting of a washing tank, a copper plating tank for surface roughening treatment, a washing tank, followed by a plating tank for forming an indium-zinc layer, a washing tank, a drying device, etc. It is preferable to manufacture the film by continuously winding it up.

【0022】このようにして得られる本発明のプリント
回路用銅箔は、フェノール樹脂、エポキシ樹脂、ポリイ
ミド樹脂等の樹脂基板に加熱圧着することによりプリン
ト回路銅張積層板とされ、所定の加工操作を経た後、プ
リント回路板として使用される。
The copper foil for printed circuits of the present invention thus obtained is made into a printed circuit copper-clad laminate by heat-pressing it to a resin substrate made of phenol resin, epoxy resin, polyimide resin, etc., and then subjected to predetermined processing operations. After that, it is used as a printed circuit board.

【0023】[0023]

【実施例】以下、本発明を実施例に基づいて詳細に説明
するが、本発明はこれに限定されるものではない。 実施例1 In2(SO4)3  0.5g/lと、ZnSO4・
7H2O  2.0g/lを水に溶解して、pH3.0
、液温30℃に調製したメッキ浴をつくった。このメッ
キ浴を用い、予め片面を粗面化処理した電解銅箔(厚み
:35μm)を浸漬し、銅箔の光沢面側に電流密度0.
5A/dm2、通電時間2秒で陰極処理を施し、インジ
ウム−亜鉛層を形成した。陰極処理後、直ちに銅箔をメ
ッキ液中から取り出して水洗した後、温度100℃に保
持した乾燥器中で乾燥した。インジウム−亜鉛層を形成
した銅箔面の色調は電解処理前と同様の銅色を呈してい
た。また、このインジウム−亜鉛層のメッキ金属被着量
をIPC分析装置で分析したところ、インジウム金属量
は75μg/dm2、亜鉛金属量は55μg/dm2で
あった。
EXAMPLES The present invention will be explained in detail below based on Examples, but the present invention is not limited thereto. Example 1 In2(SO4)3 0.5g/l and ZnSO4.
Dissolve 2.0 g/l of 7H2O in water and adjust the pH to 3.0.
A plating bath was prepared at a liquid temperature of 30°C. Using this plating bath, an electrolytic copper foil (thickness: 35 μm), one side of which had been roughened in advance, was immersed, and the shiny side of the copper foil was immersed at a current density of 0.
A cathode treatment was performed at 5 A/dm2 for 2 seconds to form an indium-zinc layer. Immediately after the cathode treatment, the copper foil was taken out of the plating solution, washed with water, and then dried in a dryer maintained at a temperature of 100°C. The color tone of the copper foil surface on which the indium-zinc layer was formed was the same copper color as before the electrolytic treatment. Further, when the amount of plating metal deposited on this indium-zinc layer was analyzed using an IPC analyzer, the amount of indium metal was 75 μg/dm 2 and the amount of zinc metal was 55 μg/dm 2 .

【0024】次に、下記の特性試験を行うため、得られ
たインジウム−亜鉛層付銅箔をFR−4グレードのエポ
キシ樹脂含浸ガラス布基材に粗面を基材面に接して積層
し、温度168℃、圧力80kg/cm2、時間60分
の条件下で加熱加圧処理し、縦250mm、横250m
m、厚さ1.6mmの銅張積層板を必要量作製し、試験
片とした。下記特性試験の結果を一括して表1及び表2
に示した。
Next, in order to conduct the following characteristic test, the obtained indium-zinc layered copper foil was laminated on an FR-4 grade epoxy resin-impregnated glass cloth base material with its rough surface in contact with the base material surface. Heat and pressure treated under conditions of temperature 168℃, pressure 80kg/cm2, time 60 minutes, length 250mm, width 250m
A required amount of copper-clad laminates having a thickness of 1.6 mm and a thickness of 1.6 mm were produced to be used as test pieces. The results of the following characteristic tests are summarized in Tables 1 and 2.
It was shown to.

【0025】(1)耐熱変色性 積層直後の試験片の銅箔面の変色度合、及び、180℃
1時間、200℃1時間、250℃1時間、300℃1
0分の各条件に保持した恒温槽中で加熱処理したときの
銅箔面の変色度合を目視観察し、○・・・変色なし、△
・・・少し変色、×・・・著しく変色、として評価した
。 (2)半田広がり性試験 JIS  Z  3282で規定されている60Sn(
記号H60B)の半田を用い、JIS  Z  319
7、4−11で規定する広がり試験法に準拠して積層後
の各試験片につき、半田広がり率を測定した。 広がり率(%)={(D−H)/D}×100(H;広
がった半田の高さ(mm) D;試験に用いた半田を球とみなしたときの直径(mm
)であり、D=1.24V1/3から算出される値、た
だし、V=半田質量/比重) 上記算式によって得られる広がり率を、○・・・広がり
率  90〜95% △・・・広がり率  85〜89% ×・・・広がり率  84%以下として評価した。 (3)レジストインク密着性試験 試験片をトリクレンで洗浄した後、インジウム−亜鉛層
上に、UVインク(UR−450B、タムラ製作所製)
を用い、スクリーン印刷(用いたスクリーン;ナイロン
製、メッシュ200〜300メッシュ)により回路状の
UVインク塗膜を形成し、このUVインク塗膜をUV装
置(型式HMW−713、オーク製作所製)で照射硬化
させた後、温度50℃の10%HCl水溶液に5分間浸
漬し、水洗後風乾し、試験片上の硬化塗膜の硬度をJI
S  C  3002で規定する鉛筆法に準拠して測定
した。 ○・・・鉛筆硬度  2H以上 △・・・鉛筆硬度  F〜H ×・・・鉛筆硬度  B以下
(1) Heat discoloration resistance Degree of discoloration on the copper foil surface of the test piece immediately after lamination and 180°C
1 hour, 200℃ 1 hour, 250℃ 1 hour, 300℃ 1 hour
Visually observe the degree of discoloration of the copper foil surface when heat treated in a constant temperature bath maintained at 0 minute conditions, ○...no discoloration, △
Evaluation was made as: slight discoloration, x: marked discoloration. (2) Solder spreadability test 60Sn (as specified in JIS Z 3282)
Using solder with symbol H60B), JIS Z 319
The solder spreading rate was measured for each test piece after lamination in accordance with the spreading test method specified in 7.4-11. Spreading rate (%) = {(D-H)/D} x 100 (H; Height of spread solder (mm) D; Diameter when the solder used in the test is regarded as a sphere (mm)
), and the value calculated from D=1.24V1/3, where V=solder mass/specific gravity) The spreading rate obtained by the above formula is ○...spreading rate 90-95% △...spreading Rate: 85-89% x... Spread rate: 84% or less. (3) Resist ink adhesion test After cleaning the test piece with trichlene, apply UV ink (UR-450B, manufactured by Tamura Seisakusho) on the indium-zinc layer.
A circuit-shaped UV ink film was formed by screen printing (screen used: made of nylon, mesh 200-300 mesh), and this UV ink film was coated with a UV device (model HMW-713, manufactured by Oak Seisakusho). After being irradiated and cured, it was immersed in a 10% HCl aqueous solution at a temperature of 50°C for 5 minutes, washed with water and air-dried, and the hardness of the cured coating on the test piece was determined by JI.
It was measured in accordance with the pencil method specified in SC 3002. ○...Pencil hardness 2H or more △...Pencil hardness F~H ×...Pencil hardness B or less

【0026】実施例2〜6 実施例1で用いたと同様の銅箔を用い、表1に示す組成
濃度のメッキ浴及び電解条件を用いたほかは実施例1と
同様の操作を行ない、インジウム−亜鉛層を形成した銅
箔を製造した。これらの銅箔について実施例1と同様に
メッキ金属被着量の分析及び各種特性試験を実施し、そ
の結果を一括して表1及び表2に示した。
Examples 2 to 6 The same operations as in Example 1 were carried out except that the same copper foil as used in Example 1 was used, and the plating bath with the composition concentration shown in Table 1 and the electrolytic conditions were used. A copper foil with a zinc layer formed thereon was manufactured. As in Example 1, these copper foils were analyzed for the amount of plating metal deposited and various characteristic tests were carried out, and the results are collectively shown in Tables 1 and 2.

【0027】比較例1〜5 実施例1で用いたと同様の銅箔を用い、表1に示す組成
濃度のメッキ浴及び電解条件を用いたほかは実施例1と
同様の操作を行ない、インジウム層を形成した銅箔(比
較例1、2)、亜鉛層を形成した銅箔(比較例3、4)
及び亜鉛・クロム層を形成した銅箔(比較例5)を製造
した。これらの銅箔について実施例1と同様にメッキ金
属被着量の分析及び各種特性試験を実施し、その結果を
一括して表1及び表2に示した。
Comparative Examples 1 to 5 The same operations as in Example 1 were carried out except that the same copper foil as used in Example 1 was used and the plating bath with the composition concentration shown in Table 1 and the electrolytic conditions were used to form an indium layer. Copper foil with zinc layer formed (Comparative Examples 1 and 2), Copper foil with zinc layer formed (Comparative Examples 3 and 4)
And a copper foil with a zinc/chromium layer formed thereon (Comparative Example 5) was manufactured. As in Example 1, these copper foils were analyzed for the amount of plating metal deposited and various characteristic tests were carried out, and the results are collectively shown in Tables 1 and 2.

【0028】実施例1〜6は本発明のインジウム−亜鉛
層を形成した銅箔であるが、インジウムと亜鉛のメッキ
金属量を好適な範囲に保つことにより陰極処理後の銅箔
面の色調は処理前と同じ銅色を呈し、また各温度条件に
対する耐熱変色性についても、表記のように変色するこ
となく、優れた耐熱変色性を示している。特に、300
℃の高い熱履歴に対しても変色することがなく、極めて
高い温度雰囲気下においても優れた耐熱変色性を示すこ
とが判明した。また半田広がり性、レジストインク密着
性についても良好な結果を示している。一方、比較例1
及び比較例2はインジウム層を形成した銅箔であるが、
耐熱変色性の効果は得られていない。比較例2は比較例
1よりもインジウム被着量の多いインジウム層を形成し
た例であるが、メッキ処理後の銅箔面は灰白色を呈し、
これを加熱すると黒色に変色するものであった。比較例
3及び比較例4は、亜鉛層を形成した銅箔である。比較
例3は200℃付近から耐熱変色性は低下しはじめ、茶
褐色に変色した。また比較例4は比較例3よりも亜鉛被
着量の多い亜鉛層を形成した場合であり、加熱すると黄
銅色を呈し、いずれも実用上の支障を回避できない。比
較例5は、クロム−亜鉛層を形成した銅箔であるが、2
00℃付近から変色の度合は大きくなる傾向を示した。
Examples 1 to 6 are copper foils on which the indium-zinc layer of the present invention is formed, and by keeping the amounts of indium and zinc plating within a suitable range, the color tone of the copper foil surface after cathodic treatment is improved. It exhibits the same copper color as before treatment, and also exhibits excellent heat resistance to discoloration under various temperature conditions without discoloration as indicated. In particular, 300
It has been found that it does not discolor even under high temperature heat history, and exhibits excellent heat discoloration resistance even in an extremely high temperature atmosphere. It also shows good results in terms of solder spreadability and resist ink adhesion. On the other hand, Comparative Example 1
and Comparative Example 2 is a copper foil with an indium layer formed,
No effect on heat discoloration resistance was obtained. Comparative Example 2 is an example in which an indium layer with a larger amount of indium deposited than Comparative Example 1 was formed, but the copper foil surface after plating had a grayish white color.
When heated, it turned black. Comparative Example 3 and Comparative Example 4 are copper foils with a zinc layer formed thereon. In Comparative Example 3, the heat discoloration resistance began to decrease at around 200° C., and the color changed to brownish brown. Moreover, Comparative Example 4 is a case in which a zinc layer with a larger amount of zinc coating than Comparative Example 3 is formed, and when heated, it takes on a brass color, and in both cases practical problems cannot be avoided. Comparative Example 5 is a copper foil with a chromium-zinc layer formed, but 2
The degree of discoloration tended to increase from around 00°C.

【0029】したがって、上記、本発明のインジウム−
亜鉛層を有する銅箔は、各特性試験の結果において優れ
ていることが判明した。このことは、インジウムと亜鉛
双方の相乗作用から、インジウム単独の層又は亜鉛単独
の層を形成した場合とは全く異なった性質が発現し、特
に耐熱変色性に有益をもたらせているものと考えられる
。本発明のインジウム−亜鉛層上にクロメート層(Cr
量5〜80μg/dm2)を浸漬処理又は電解処理によ
り形成させた場合、加湿後(40℃  90%  3日
間)のさび、変色の発生を抑制させる効果が得られる。
Therefore, the above-mentioned indium-
The copper foil with a zinc layer was found to be superior in the results of each property test. This indicates that due to the synergistic effect of both indium and zinc, properties that are completely different from those obtained when a layer of indium alone or a layer of zinc alone is formed are developed, and this is particularly beneficial in heat discoloration resistance. Conceivable. A chromate layer (Cr
When formed by dipping treatment or electrolytic treatment at an amount of 5 to 80 μg/dm2), the effect of suppressing the occurrence of rust and discoloration after humidification (40° C., 90% for 3 days) can be obtained.

【0030】[0030]

【表1】[Table 1]

【0031】[0031]

【表2】[Table 2]

【0032】[0032]

【発明の効果】以上の説明から明らかなように、本発明
のプリント回路用銅箔は、極めて美麗な外観を保持して
いると共に、高温雰囲気にさらされても何ら変色するこ
となく耐熱変色性に優れ、しかもプリント回路用銅箔に
不可欠とされる半田との接合性やレジストインクとの密
着性も良好である。また、本発明の方法は製造工程中で
有害な六価クロム化合物を用いないことから作業環境の
汚染問題を生じるおそれは全くない。加えて製造上の管
理面においても、支障となる問題点もなく、その工業的
価値は極めて大である。
Effects of the Invention As is clear from the above description, the copper foil for printed circuits of the present invention maintains an extremely beautiful appearance, and has heat resistance and discoloration without any discoloration even when exposed to high temperature atmosphere. Furthermore, it has good bonding properties with solder and adhesion with resist ink, which are essential for copper foil for printed circuits. Furthermore, since the method of the present invention does not use harmful hexavalent chromium compounds during the manufacturing process, there is no risk of contaminating the working environment. In addition, there are no problems in terms of manufacturing control, and its industrial value is extremely large.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  銅箔の少なくとも片面にインジウム−
亜鉛層を有するプリント回路用銅箔。
[Claim 1] At least one side of the copper foil is indium-
Copper foil for printed circuits with a zinc layer.
【請求項2】  インジウムイオンと亜鉛イオンを含む
メッキ浴を用い、該メッキ浴中で銅箔を陰極処理し、該
銅箔の少なくとも片面にインジウム−亜鉛層を形成する
プリント回路用銅箔の製造方法。
2. Manufacturing a copper foil for printed circuits, using a plating bath containing indium ions and zinc ions, cathodizing the copper foil in the plating bath to form an indium-zinc layer on at least one side of the copper foil. Method.
JP3073660A 1991-03-14 1991-03-14 Copper foil for printed circuit and method of manufacturing the same Expired - Lifetime JP2537108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3073660A JP2537108B2 (en) 1991-03-14 1991-03-14 Copper foil for printed circuit and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3073660A JP2537108B2 (en) 1991-03-14 1991-03-14 Copper foil for printed circuit and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04285192A true JPH04285192A (en) 1992-10-09
JP2537108B2 JP2537108B2 (en) 1996-09-25

Family

ID=13524654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3073660A Expired - Lifetime JP2537108B2 (en) 1991-03-14 1991-03-14 Copper foil for printed circuit and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2537108B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168481A (en) * 1999-12-08 2001-06-22 Ibiden Co Ltd Copper-clad laminate, and circuit substrate for printed wiring board and manufacturing method therefor
US6489035B1 (en) 2000-02-08 2002-12-03 Gould Electronics Inc. Applying resistive layer onto copper
US6489034B1 (en) 2000-02-08 2002-12-03 Gould Electronics Inc. Method of forming chromium coated copper for printed circuit boards
JP2015156301A (en) * 2014-02-20 2015-08-27 シャープ株式会社 Zinc electrode, zinc air cell, and electrodeposition method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168481A (en) * 1999-12-08 2001-06-22 Ibiden Co Ltd Copper-clad laminate, and circuit substrate for printed wiring board and manufacturing method therefor
JP4486196B2 (en) * 1999-12-08 2010-06-23 イビデン株式会社 Single-sided circuit board for multilayer printed wiring board and manufacturing method thereof
US6489035B1 (en) 2000-02-08 2002-12-03 Gould Electronics Inc. Applying resistive layer onto copper
US6489034B1 (en) 2000-02-08 2002-12-03 Gould Electronics Inc. Method of forming chromium coated copper for printed circuit boards
JP2015156301A (en) * 2014-02-20 2015-08-27 シャープ株式会社 Zinc electrode, zinc air cell, and electrodeposition method

Also Published As

Publication number Publication date
JP2537108B2 (en) 1996-09-25

Similar Documents

Publication Publication Date Title
US4387006A (en) Method of treating the surface of the copper foil used in printed wire boards
US5534128A (en) Non-cyanide copper-zinc electroplating bath, method of surface treatment of copper foil for printed wiring board using the same and copper foil for printed wiring board
US5389446A (en) Copper foil for printed circuits
US5338619A (en) Copper foil for printed circuits and method of producing same
US4376154A (en) Copper foil for a printed circuit and a method for the production thereof
US4647315A (en) Copper stainproofing technique
JPH0224037B2 (en)
US5250363A (en) Chromium-zinc anti-tarnish coating for copper foil having a dark color
US5230932A (en) Chromium-zinc anti-tarnish coating for copper foil
JPH08236930A (en) Copper foil for printed circuit and its manufacture
US7037597B2 (en) Copper foil for printed-wiring board
JP2517503B2 (en) Surface treatment method for copper foil for printed circuits
JPH04285192A (en) Copper foil for printed circuit and its manufacture
JPS587077B2 (en) Copper foil for printed circuits and its manufacturing method
JPH02294490A (en) Surface treatment for rolled copper foil
JPS6133908B2 (en)
US5332486A (en) Anti-oxidant coatings for copper foils
JPH0732307B2 (en) Surface treatment method for copper foil for printed circuits
JPH0685455A (en) Surface treatment of copper foil for printed circuit use
JPH04338694A (en) Copper foil for printed circuit and manufacture thereof
JPH0259639B2 (en)
JPH05275817A (en) Manufacture of copper foil
JP2005353918A (en) Copper foil for printed-wiring board and manufacturing method thereof
JPS6133906B2 (en)
JPS6133907B2 (en)

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 14