JPH04284963A - Light alloy-made member containing fiber reinforced part - Google Patents

Light alloy-made member containing fiber reinforced part

Info

Publication number
JPH04284963A
JPH04284963A JP7460791A JP7460791A JPH04284963A JP H04284963 A JPH04284963 A JP H04284963A JP 7460791 A JP7460791 A JP 7460791A JP 7460791 A JP7460791 A JP 7460791A JP H04284963 A JPH04284963 A JP H04284963A
Authority
JP
Japan
Prior art keywords
fiber
orientation
fibers
compressive stress
reinforcing fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7460791A
Other languages
Japanese (ja)
Other versions
JP2803381B2 (en
Inventor
Jiyun Ookijima
大木島 純
Atsuo Tanaka
淳夫 田中
Manabu Fujine
学 藤根
Naohiko Mizuno
水野 直比古
Tamiro Nakakubo
民郎 中窪
Akira Oguri
小栗 彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP7460791A priority Critical patent/JP2803381B2/en
Publication of JPH04284963A publication Critical patent/JPH04284963A/en
Application granted granted Critical
Publication of JP2803381B2 publication Critical patent/JP2803381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pulleys (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To improve settling resistance to compressive stress in a light alloy- made member and to prevent the development of defect, such as crack in interface between fiber reinforced part and non-fibrous reinforced part. CONSTITUTION:Position 34 receiving the compressive stress in the light alloy- made member 36 is reinforced with the reinforcing fiber 10. In the case angle of the reinforcing fiber shown in the cross section along direction of the compressive stress to this direction is used to theta deg. and degree of orientation Y of the reinforcing fiber is made to be {(90-theta)/90}X100, the average aspect ratio Ra and the average degree of orientation Ya are made to be 100-2000, 10-85, respectively and also relation of Ya>-0.125XRa+50 is satisfied. Volume ratio of the reinforcing fiber is made to be >=5%.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、繊維強化部を含む軽合
金製部材に係り、更に詳細には圧縮応力を受ける部位が
繊維強化された軽合金製部材に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light alloy member including a fiber-reinforced portion, and more particularly to a light alloy member in which a portion subjected to compressive stress is fiber-reinforced.

【0002】0002

【従来の技術】例えば特公昭56−35981号公報に
記載されている如く、他の部材との接合部を有し軽金属
にて形成された部材の接合部の機械的性質を向上させる
目的で、接合部に繊維強化層を設けることが既に知られ
ている。かかる部材によれば、接合部が繊維強化されて
いない場合に比して、接合部の剛性、耐クリープ性の如
き機械的性質を向上させることができる。
BACKGROUND OF THE INVENTION For example, as described in Japanese Patent Publication No. 56-35981, for the purpose of improving the mechanical properties of a joint of a member made of light metal and having a joint with another member, It is already known to provide a fiber reinforced layer at the joint. According to such a member, mechanical properties such as rigidity and creep resistance of the joint can be improved compared to a case where the joint is not reinforced with fibers.

【0003】0003

【発明が解決しようとする課題】しかし接合部が繊維強
化される場合に於ても、接合部がボルト締結部の如く常
に一定の方向に圧縮応力を受けた状態におかれる場合に
は、接合部に比較的早期にへたりが生じ、そのため十分
な締結力を維持することができなくなることがある。ま
た接合部が部分的にのみ繊維強化される場合には、部材
が長期間使用される過程に於て繊維強化部と非繊維強化
部との間の界面に亀裂の如き欠陥が生じることがある。
[Problems to be Solved by the Invention] However, even when the joint is reinforced with fibers, if the joint is always subjected to compressive stress in a fixed direction, such as in a bolted joint, The parts may become sagging relatively early, making it impossible to maintain sufficient fastening force. Furthermore, if the joint is only partially reinforced with fibers, defects such as cracks may occur at the interface between the fiber-reinforced part and the non-fiber-reinforced part during long-term use of the component. .

【0004】本願発明者は、繊維強化部を含み該繊維強
化部にて圧縮応力を受ける従来の軽合金製部材に於ける
上述の如き問題に鑑み種々の実験的研究を行った結果、
耐へたり性を改善し亀裂等の発生を回避するためには、
上述の公報に記載されている如く強化繊維の繊維径及び
体積率を所定の範囲に設定することよりも強化繊維のア
スペクト比及び配向状態が重要であり、これらが所定の
範囲に設定されなければならないことを見出した。
The inventor of the present application has conducted various experimental studies in view of the above-mentioned problems in conventional light alloy members that include a fiber-reinforced portion and are subject to compressive stress in the fiber-reinforced portion.
In order to improve the fatigue resistance and avoid the occurrence of cracks, etc.
As stated in the above-mentioned publication, the aspect ratio and orientation state of the reinforcing fibers are more important than setting the fiber diameter and volume fraction of the reinforcing fibers within a predetermined range, and if these are not set within a predetermined range, I discovered that this is not the case.

【0005】本発明は、本願発明者が行った実験的研究
の結果得られた知見に基き、圧縮応力に対する耐へたり
性に優れ、しかも繊維強化部と非繊維強化部との間の界
面に亀裂の如き欠陥が生じることがないよう改良された
軽合金製部材を提供することを目的としている。
The present invention is based on the knowledge obtained as a result of experimental research conducted by the inventor of the present invention, and is based on the knowledge obtained as a result of experimental research conducted by the inventor of the present invention. The object of the present invention is to provide an improved light alloy member that is free from defects such as cracks.

【0006】[0006]

【課題を解決するための手段】上述の如き目的は、本発
明によれば、圧縮応力を受ける部位が繊維強化された軽
合金製部材にして、強化繊維の繊維径に対する繊維長の
比をアスペクト比Rとし、圧縮応力の方向に沿う断面に
現れる強化繊維が前記圧縮応力の方向に対しなす角度を
θ(°)として強化繊維の配向度Yを(90−θ)/9
0×100とすると、前記強化繊維の平均アスペクト比
Ra及び平均配向度Yaがそれぞれ100〜2000、
10〜85であると共にYa>−0.125×Ra+5
0を満たし、前記強化繊維の体積率が5%以上であるこ
とを特徴とする軽合金製部材によって達成される。
[Means for Solving the Problems] According to the present invention, the above-mentioned object is to provide a fiber-reinforced light alloy member in a portion receiving compressive stress, and to increase the aspect ratio of the fiber length to the fiber diameter of the reinforcing fibers. Let the ratio R be the angle that the reinforcing fibers appearing in the cross section along the direction of the compressive stress make with respect to the direction of the compressive stress as θ (°), and the degree of orientation Y of the reinforcing fibers is (90-θ)/9.
When 0x100, the average aspect ratio Ra and average orientation degree Ya of the reinforcing fibers are respectively 100 to 2000,
10 to 85 and Ya>-0.125×Ra+5
0 and is achieved by a light alloy member characterized in that the volume fraction of the reinforcing fibers is 5% or more.

【0007】[0007]

【作用】上述の如き構成によれば、強化繊維の平均アス
ペクト比Ra及び平均配向度Yaはそれぞれ100〜2
000、10〜85であると共にYa>−0.125×
Ra+50を満たすよう設定され、強化繊維の体積率は
5%以上に設定される。
[Operation] According to the above structure, the average aspect ratio Ra and average degree of orientation Ya of the reinforcing fibers are each 100 to 2.
000, 10 to 85 and Ya>-0.125×
It is set to satisfy Ra+50, and the volume percentage of the reinforcing fibers is set to 5% or more.

【0008】従って圧縮応力を担持するに有効な量の強
化繊維が圧縮応力を効果的に担持する方向に配向される
ので、後に説明する本願発明者が行った実験的研究の結
果より一層明らかとなる如く、強化繊維の平均アスペク
ト比Ra及び平均配向度Yaが上述の条件を満たさない
場合に比して、軽合金製部材の圧縮応力に対する耐へた
り性が大幅に改善される。
[0008] Therefore, the amount of reinforcing fibers effective for carrying compressive stress is oriented in a direction that effectively carries compressive stress. As can be seen, the resistance to settling of the light alloy member against compressive stress is significantly improved compared to the case where the average aspect ratio Ra and average degree of orientation Ya of the reinforcing fibers do not satisfy the above-mentioned conditions.

【0009】また平均配向度Yaは85以下に設定され
るので、繊維強化部と非繊維強化部との間の界面に於て
機械的性質が急変することに起因してこの界面に亀裂の
如き欠陥が発生することが効果的に回避される。
[0009] Furthermore, since the average degree of orientation Ya is set to 85 or less, mechanical properties suddenly change at the interface between the fiber-reinforced part and the non-fiber-reinforced part, causing cracks at this interface. The occurrence of defects is effectively avoided.

【0010】0010

【課題を解決するための手段の補足説明】本願発明者が
行った実験的研究の結果によれば、強化繊維の平均アス
ペクト比Raが2000を越えると、強化繊維の成形体
を形成する際に繊維が折損し易いため、上述の各条件を
満たす良好な繊維成形体を形成することが困難である。 従って本発明に於ては、強化繊維の平均アスペクト比R
aは上述の如く2000以下に設定される。
[Supplementary explanation of means for solving the problem] According to the results of experimental research conducted by the inventor of the present application, when the average aspect ratio Ra of reinforcing fibers exceeds 2000, when forming a molded article of reinforcing fibers, Since the fibers are easily broken, it is difficult to form a good fiber molded article that satisfies each of the above conditions. Therefore, in the present invention, the average aspect ratio R of the reinforcing fibers is
a is set to 2000 or less as described above.

【0011】また本願発明者が行った実験的研究の結果
によれば、強化繊維の体積率が5%未満の場合には繊維
成形体を形成すること自体が非常に困難であり、仮に成
形体を形成することができたとしても成形体の強度が低
いため、鋳造段階に於て成形体に割れや欠損が発生して
しまい、軽合金製部材の圧縮応力を受ける部位を良好に
繊維強化することができない。また強化繊維の体積率が
5%未満の場合には、強化繊維の平均アスペクト比Ra
及び平均配向度Yaが上述の条件を満たしていても、軽
合金製部材の圧縮応力を受ける部位の耐へたり性を十分
に向上させることができない。従って本発明に於ては、
強化繊維の体積率は5%以上に設定される。
[0011] Furthermore, according to the results of experimental research conducted by the inventor of the present application, it is extremely difficult to form a fiber molded article when the volume fraction of reinforcing fibers is less than 5%; Even if it is possible to form a compact, the strength of the compact is low, resulting in cracks and defects in the compact during the casting stage. I can't. In addition, when the volume fraction of the reinforcing fibers is less than 5%, the average aspect ratio Ra of the reinforcing fibers is
Even if the average degree of orientation Ya satisfies the above-mentioned conditions, it is not possible to sufficiently improve the fatigue resistance of the portion of the light alloy member that is subjected to compressive stress. Therefore, in the present invention,
The volume percentage of reinforcing fibers is set to 5% or more.

【0012】また圧縮成形法に比して繊維の配向状態等
を比較的制御し易い所謂吸引成形法に於ては、繊維の体
積率が25%を越える繊維成形体を形成することが困難
であり、また強化繊維の体積率が5%以上である限り耐
へたり性を十分に向上させることができるので、強化繊
維の体積率は5〜25%であってよい。
[0012] Furthermore, in the so-called suction molding method, in which it is relatively easier to control the orientation of fibers, etc. than in the compression molding method, it is difficult to form a fiber molded product with a fiber volume percentage of more than 25%. Moreover, as long as the volume fraction of the reinforcing fibers is 5% or more, the resistance to sagging can be sufficiently improved, so the volume fraction of the reinforcing fibers may be 5 to 25%.

【0013】尚平均アスペクト比Raと平均配向度Ya
との間の関係を示す上述の不等式は実験により求められ
た式であるが、これらの間に上述の如き関係が成立する
のは以下の如き理由によるものと考えられる。
Furthermore, the average aspect ratio Ra and the average degree of orientation Ya
The above-mentioned inequality indicating the relationship between .

【0014】一般に、繊維強化金属複合材料の強度特性
は強化繊維のアスペクト比及び強化繊維の体積率に依存
する。また二次元ランダムにて配向された短繊維強化複
合材料の繊維の配向面に垂直な方向の圧縮クリープ特性
はマトリックス金属のクリープ特性と実質的に同一であ
るが、配向面に平行な方向のクリープ特性はマトリック
ス金属のクリープ特性に比して遥かに優れている。従っ
てクリープ特性は圧縮応力に沿う方向にある程度の長さ
(繊維径以上)を有する強化繊維の数が多く、また繊維
長が長いほど向上するものと考えられる。即ち以下の式
が成立するものと考えられる。
Generally, the strength properties of fiber-reinforced metal composite materials depend on the aspect ratio of the reinforcing fibers and the volume fraction of the reinforcing fibers. In addition, the compressive creep properties of a two-dimensional randomly oriented short fiber-reinforced composite material in the direction perpendicular to the fiber orientation plane are substantially the same as those of the matrix metal, but the creep properties in the direction parallel to the fiber orientation plane are substantially the same as those of the matrix metal. The properties are far superior to the creep properties of matrix metals. Therefore, it is considered that the creep property improves as the number of reinforcing fibers having a certain length (longer than the fiber diameter) in the direction along the compressive stress increases and the fiber length increases. That is, it is considered that the following equation holds true.

【0015】   クリープ特性=K(繊維長)×(圧縮方向に配向さ
れた繊維の数)                (K
は比例定数)また複合材料の強化繊維として一般に使用
される短繊維の繊維径は数μm 〜数十μm であり、
繊維の成形工程中にも殆ど変化しない。これに対し繊維
長はある範囲に亘り分布し、成形工程等に於ける折損等
に起因して減小する。従って強化強化繊維の繊維径を実
質的に一定と考えると、(1)強化繊維のアスペクト比
は繊維長のみに依存するとみなすことができる。また(
2)繊維の配向度は圧縮応力の方向に沿う方向に配向さ
れている強化繊維の存在確率と考えられるので、   (圧縮方向に配向された繊維の数)=(配向度)×
(繊維の体積率)とみなすことができる。
Creep property=K (fiber length)×(number of fibers oriented in the compression direction) (K
is a proportionality constant) Furthermore, the fiber diameter of short fibers commonly used as reinforcing fibers for composite materials is from several μm to several tens of μm,
There is almost no change during the fiber forming process. On the other hand, the fiber length is distributed over a certain range and decreases due to breakage during the molding process and the like. Therefore, assuming that the fiber diameter of the reinforcing fibers is substantially constant, it can be considered that (1) the aspect ratio of the reinforcing fibers depends only on the fiber length. Also(
2) The degree of fiber orientation can be considered as the probability of existence of reinforcing fibers that are oriented in the direction of compressive stress, so (number of fibers oriented in the compression direction) = (degree of orientation) ×
(fiber volume fraction).

【0016】従って(1)及び(2)より上述の比例式
は以下の如く書換えられる。   クリープ特性=K′(アスペクト比)×(配向度)
×(繊維の体積率)                
(K′は比例定数)この式に於て、繊維の体積率には繊
維成形体の製造技術上下限があるため、クリープ特性の
下限は(アスクペクト比)及び(配向度)により規定さ
れ、従って上述の不等式はこの比例式と符号しているこ
とがわかる。
Therefore, from (1) and (2), the above proportional expression can be rewritten as follows. Creep property = K' (aspect ratio) x (degree of orientation)
× (fiber volume ratio)
(K' is a proportionality constant) In this equation, since the fiber volume fraction has upper and lower limits in the production technology of fiber molded bodies, the lower limit of the creep property is defined by (aspect ratio) and (degree of orientation), and therefore, It can be seen that the above inequality is in sign with this proportional expression.

【0017】以下に添付の図を参照しつつ、本発明を実
施例について詳細に説明する。
The invention will now be described in detail by way of example with reference to the accompanying drawings.

【0018】[0018]

【実施例】実施例1   繊維径2〜5μm 、繊維長1〜4mmのアルミナ
−シリカ繊維(イソライト工業株式会社製「アルシロン
」、50%Al2 O3 、残部SiO2 )を用意し
た。次いで図2に示されている如く、アルミナ−シリカ
繊維10及び無機質バインダを水に投入して撹拌混合す
ることにより分散液12を形成した。次いでパンチメタ
ルよりなる円筒体14と、該円筒体の一端を閉ざす円板
16と、円板16と平行に円筒体14の他端に固定され
たフランジ18とを有する成形型20を分散液12中に
浸漬し、成形型内を減圧し分散液を吸引することにより
吸引成形を行った。成形完了後に成形体を乾燥して焼成
し、更に必要な機械加工を行うことにより、図3に示さ
れている如くアルミナ−シリカ繊維10よりなり外径5
6mm、内径32mm、高さ36mmの寸法を有する円
筒形の繊維成形体22を形成した。
[Examples] Example 1 Alumina-silica fibers ("Arsilon" manufactured by Isolite Industries Co., Ltd., 50% Al2 O3, balance SiO2) having a fiber diameter of 2 to 5 μm and a fiber length of 1 to 4 mm were prepared. Next, as shown in FIG. 2, the alumina-silica fibers 10 and an inorganic binder were added to water and stirred and mixed to form a dispersion 12. Next, a mold 20 having a cylindrical body 14 made of punched metal, a disc 16 closing one end of the cylindrical body, and a flange 18 fixed to the other end of the cylindrical body 14 in parallel with the disc 16 is placed in the dispersion liquid 12. Suction molding was performed by immersing the mold in the mold, reducing the pressure inside the mold, and suctioning the dispersion liquid. After the molding is completed, the molded body is dried and fired, and by further performing necessary machining, the molded body is made of alumina-silica fiber 10 and has an outer diameter of 5 as shown in FIG.
A cylindrical fiber molded body 22 having dimensions of 6 mm, inner diameter 32 mm, and height 36 mm was formed.

【0019】この場合分散液中のアルミナ−シリカ繊維
の濃度等を変更することによりアルミナ−シリカ繊維の
体積率を5%、10%、25%の三水準に設定し、また
各体積率につき繊維の分級条件、成形条件を変化させる
ことにより、繊維の配向度、アスペクト比を種々の値に
変化させ、これにより繊維の体積率、繊維の配向度、ア
スペクト比が互いに同一である繊維成形体を2組ずつ形
成した。
In this case, by changing the concentration of alumina-silica fiber in the dispersion, the volume percentage of alumina-silica fiber was set at three levels, 5%, 10%, and 25%, and for each volume percentage, the fiber By changing the classification conditions and molding conditions, the degree of fiber orientation and aspect ratio can be changed to various values, thereby creating a fiber molded body with the same volume fraction of fibers, degree of fiber orientation, and aspect ratio. Two groups were formed.

【0020】次いで図4に示されている如く、ガソリン
エンジンのクランクシャフトプーリを鋳造するための鋳
型24のモールドキャビティ26内の所定の位置に成形
体22を配置し、プランジャ28によりゲート30を経
てモールドャビティ26内に973K(700℃)のA
l合金(JIS規格AC8A)の溶湯30Aを加圧注入
し、溶湯を700kgf/cm2 の圧力にて加圧し、
その加圧状態を溶湯が完全に凝固するまで保持した。
Next, as shown in FIG. 4, the molded body 22 is placed at a predetermined position in a mold cavity 26 of a mold 24 for casting a crankshaft pulley of a gasoline engine, and is passed through a gate 30 by a plunger 28. A of 973K (700℃) inside mold cavity 26
30A of molten metal of l alloy (JIS standard AC8A) was injected under pressure, and the molten metal was pressurized at a pressure of 700 kgf/cm2.
The pressurized state was maintained until the molten metal completely solidified.

【0021】溶湯が完全に凝固した後鋳型24よりプー
リ粗材を取出し、該粗材に対し所定の機械加工を行うこ
とにより、図1に示されている如くボルト挿通孔32の
周りのボス部34がアルミナ−シリカ繊維10により複
合強化されたAl合金よりなるクランクシャフトプーリ
36を形成した。
After the molten metal has completely solidified, the pulley rough material is taken out from the mold 24 and a predetermined machining process is performed on the rough material to form a boss portion around the bolt insertion hole 32 as shown in FIG. 34 formed a crankshaft pulley 36 made of an Al alloy compositely reinforced with alumina-silica fibers 10.

【0022】次いで各組の一方のプーリを6気筒300
0CCのガソリンエンジンのクランクシャフトにボス部
の初期面圧が15kgf/mm2 になるようボルト締
結によって組付け、エンジンを6500rpmにて30
0時間運転させる耐久試験を行った。この場合試験前後
のプーリ締結ボルトの軸力を測定し、軸力の保持率(試
験終了後の軸力/初期軸力×100)が95%以上のも
のを合格とし、それ未満のものを不合格と評価した。尚
軸力の保持率の評価基準を95%に設定したのは、鋳鉄
製のプーリの場合に於ける軸力の保持率が95%である
ことによる。
Next, one pulley of each set is connected to a 6-cylinder 300
Assemble the crankshaft of a 0CC gasoline engine with bolts so that the initial surface pressure of the boss part is 15kgf/mm2, and run the engine at 6500 rpm for 30 minutes.
A durability test was conducted in which the device was operated for 0 hours. In this case, measure the axial force of the pulley fastening bolt before and after the test, and pass if the axial force retention rate (axial force after test/initial axial force x 100) is 95% or more, and fail if it is less than that. Rated as passing. The evaluation standard for the axial force retention rate was set at 95% because the axial force retention rate in the case of cast iron pulleys is 95%.

【0023】これらの試験の結果を図5に示す。尚図5
に於て、菱形、丸、正方形の記号はそれぞれ繊維の体積
率が5%、10%、25%である場合を示しており、特
に白抜きの各記号は軸力の保持率が合格であることを示
しており、黒塗りの各記号は軸力の保持率が不合格であ
ることを示している。
The results of these tests are shown in FIG. Figure 5
In , the diamond, circle, and square symbols indicate cases where the fiber volume percentage is 5%, 10%, and 25%, respectively, and the white symbols in particular indicate that the axial force retention rate is acceptable. Each black symbol indicates that the axial force retention rate is unacceptable.

【0024】また図5に於ける繊維の平均配向度Yaは
以下の如く求められた。上述の耐久試験に供されなかっ
た各プーリを図6に示されている如くボルト挿通孔32
の軸線38に平行な互いに直交する二平面にてボス部3
4を切断し、これらの切断面を研摩して光学顕微鏡にて
観察し、切断面に現れた繊維のうち長軸が明らかに認め
られる繊維を各面につき10本ずつ無作為に抽出し、各
繊維について図7に示されている如く圧縮応力の方向、
即ち軸線38に平行な直線40と各繊維10とのなす角
度θを求め、上述の定義式に従って各繊維毎に配向度Y
を計算し、20本全ての繊維についての配向度の平均値
を平均配向度Yaとした。
Further, the average degree of orientation Ya of the fibers in FIG. 5 was determined as follows. Each pulley that was not subjected to the above-mentioned durability test was inserted into the bolt insertion hole 32 as shown in FIG.
The boss portion 3 is parallel to the axis 38 of the
4, the cut surfaces were polished and observed with an optical microscope, and among the fibers that appeared on the cut surface, 10 fibers with clearly recognized long axes were randomly extracted from each surface. The direction of compressive stress as shown in Figure 7 for the fibers,
That is, the angle θ between the straight line 40 parallel to the axis 38 and each fiber 10 is determined, and the degree of orientation Y is calculated for each fiber according to the above-mentioned formula.
was calculated, and the average value of the degrees of orientation for all 20 fibers was taken as the average degree of orientation Ya.

【0025】図5より、ボス部に十分な耐へたり性を確
保するためには、 (1)繊維の平均アスペクト比Raが100以上である
こと (2)繊維の平均配向度Yaが10以上であること(3
)平均アスペクト比Ra及び平均配向度Yaが下記の関
係を満すこと Ya>−0.125×Ra+50 が必要であることが解る。
From FIG. 5, in order to ensure sufficient resistance to fatigue in the boss portion, (1) the average aspect ratio Ra of the fibers is 100 or more, (2) the average orientation degree Ya of the fibers is 10 or more. Being (3)
) It is understood that the average aspect ratio Ra and the average degree of orientation Ya need to satisfy the following relationship: Ya>-0.125×Ra+50.

【0026】尚図5にも示されている如く、平均アスペ
クト比が2000を越える場合には繊維の折損等に起因
して良好な繊維成形体を形成することができなかった。
As shown in FIG. 5, when the average aspect ratio exceeds 2000, a good fiber molded article could not be formed due to breakage of the fibers.

【0027】実施例2   上述の実施例1に於て良好な結果が得られたプーリ
のうち、図5に於て符号A〜Iが付されたプーリに対し
403K(130℃)のシリコンオイル中に1.8ks
(30min)浸漬した後、243K(−30℃)のシ
リコンオイル中に1.8ks浸漬する冷熱サイクルを1
00サイクル行った後、実施例1の場合と同一の要領及
び条件にて再度耐久試験を行った。
Example 2 Among the pulleys for which good results were obtained in the above-mentioned Example 1, the pulleys labeled A to I in FIG. 1.8ks to
(30 min), then immersed in silicone oil at 243K (-30°C) for 1.8ks for 1 cooling/heating cycle.
After 00 cycles, the durability test was conducted again under the same procedure and conditions as in Example 1.

【0028】その結果軸力の保持率はA〜Iの何れのプ
ーリの場合にも良好であったが、A、D、Gの三つのプ
ーリに於ては繊維強化部と非繊維強化部との間の界面に
亀裂が生じていることが認められた。従って繊維強化部
と非繊維強化部との間に亀裂の如き欠陥が生じないよう
にするためには、平均配向度Yaは85以下でなければ
ならないことが解る。
As a result, the axial force retention rate was good for all pulleys A to I, but for the three pulleys A, D, and G, there was a difference between the fiber reinforced part and the non-fiber reinforced part. It was observed that cracks had formed at the interface between the two. Therefore, it can be seen that the average degree of orientation Ya must be 85 or less in order to prevent defects such as cracks from occurring between the fiber-reinforced portion and the non-fiber-reinforced portion.

【0029】実施例3   平均繊維径3μm 、平均繊維長900μm のア
ルミナ繊維(ICI社製、97%Al2 O3 、残部
SiO2 )が使用され、繊維の体積率が10%に設定
された点を除き、上述の実施例1の場合と同一の要領に
て繊維の平均配向度が10である成形体Jと、平均配向
度が56である成形体Kの二種類の成形体を形成した。 次いでAl合金の溶湯として973(700℃)のAl
合金(JIS規格AC4C)の溶湯が使用された点を除
き実施例1の場合と同一の要領及び条件にてボス部がア
ルミナ繊維にて強化されたクランクシャフトプーリを形
成し、これらのプーリについて実施例1の場合と同一の
要領及び条件にて耐久試験を行った。
Example 3 Alumina fibers (manufactured by ICI, 97% Al2O3, balance SiO2) with an average fiber diameter of 3 μm and an average fiber length of 900 μm were used, except that the volume percentage of the fibers was set at 10%. In the same manner as in Example 1 described above, two types of molded bodies were formed: a molded body J in which the average fiber orientation degree was 10, and a molded body K in which the average fiber orientation degree was 56. Next, Al at 973 (700°C) was used as a molten Al alloy.
A crankshaft pulley with a boss reinforced with alumina fiber was formed in the same manner and under the same conditions as in Example 1, except that molten alloy (JIS standard AC4C) was used, and the test was carried out on these pulleys. A durability test was conducted under the same procedure and conditions as in Example 1.

【0030】その結果上述の条件(1)〜(3)の全て
を満たす成形体Kを用いて形成されたプーリの軸力の保
持率は96%であったのに対し、上述の条件(3)を満
たさない成形体Jを用いて形成されたプーリの軸力の保
持率は88%であった。
As a result, the retention rate of the axial force of the pulley formed using the molded body K that satisfies all of the above conditions (1) to (3) was 96%; ) The retention rate of the axial force of the pulley formed using the molded body J which did not satisfy the following was 88%.

【0031】以上に於ては本発明を特定の実施例につい
て詳細に説明したが、本発明は上述の実施例に限定され
るものではなく、本発明の範囲内にて他の種々の実施例
が可能であることは当業者にとって明らかであろう。
Although the present invention has been described in detail with respect to specific embodiments above, the present invention is not limited to the above-mentioned embodiments, and various other embodiments may be made within the scope of the present invention. It will be clear to those skilled in the art that this is possible.

【0032】[0032]

【発明の効果】以上の説明より明らかである如く、本発
明によれば、圧縮応力を担持するに有効な量の強化繊維
が圧縮応力を効果的に担持する方向に配向されるので、
強化繊維の平均アスペクト比Ra及び平均配向度Yaが
本発明の条件を満さない場合に比して、軽合金製部材の
圧縮応力に対する耐へたり性を大幅に改善することがで
きる。
Effects of the Invention As is clear from the above description, according to the present invention, reinforcing fibers in an amount effective to support compressive stress are oriented in a direction that effectively supports compressive stress.
Compared to the case where the average aspect ratio Ra and the average degree of orientation Ya of the reinforcing fibers do not satisfy the conditions of the present invention, the resistance to settling of the light alloy member against compressive stress can be significantly improved.

【0033】また強化繊維の平均配向度Yaは85以下
に設定されるので、繊維強化部と非繊維強化部との間の
界面に亀裂の如き欠陥が発生することを効果的に回避し
、これにより軽合金製部材の耐久性を向上させることが
できる。
Furthermore, since the average degree of orientation Ya of the reinforcing fibers is set to 85 or less, defects such as cracks can be effectively avoided from occurring at the interface between the fiber-reinforced portion and the non-fiber-reinforced portion. Accordingly, the durability of the light alloy member can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による軽合金製部材の一つの実施例とし
てのクランクシャフトプーリを示す断面図である。
FIG. 1 is a sectional view showing a crankshaft pulley as one embodiment of a light alloy member according to the present invention.

【図2】吸引成形の要領を示す説明図である。FIG. 2 is an explanatory diagram showing the procedure of suction molding.

【図3】図2に示された吸引成形により形成された繊維
成形体を示す斜視図である。
FIG. 3 is a perspective view showing the fiber molded body formed by suction molding shown in FIG. 2;

【図4】図3に示された繊維成形体を用いて行われる鋳
造工程を示す断面図である。
4 is a sectional view showing a casting process performed using the fiber molded body shown in FIG. 3. FIG.

【図5】アルミナ−シリカ繊維の平均アスペクト比Ra
及び平均配向度Yaが種々の値に設定されたクランクシ
ャフトプーリについて行われた耐久試験の結果を示すグ
ラフある。
[Figure 5] Average aspect ratio Ra of alumina-silica fibers
There is also a graph showing the results of durability tests conducted on crankshaft pulleys in which the average degree of orientation Ya was set to various values.

【図6】クランクシャフトプーリのボス部に於ける繊維
の平均配向度Yaを求める要領を示す説明図である。
FIG. 6 is an explanatory diagram showing the procedure for determining the average degree of orientation Ya of fibers in the boss portion of the crankshaft pulley.

【図7】繊維が圧縮応力の方向に対しなす角度θを示す
説明図である。
FIG. 7 is an explanatory diagram showing the angle θ that fibers make with respect to the direction of compressive stress.

【符号の説明】[Explanation of symbols]

10…アルミナ−シリカ繊維 20…成形型 22…繊維成形体 24…鋳型 26…モールドキャビティ 34…ボス部 36…クランクシャフトプーリ 10...Alumina-silica fiber 20...Molding mold 22...Fiber molded body 24...Mold 26...Mold cavity 34…Boss part 36...Crankshaft pulley

Claims (1)

【特許請求の範囲】[Claims] 圧縮応力を受ける部位が繊維強化された軽合金製部材に
して、強化繊維の繊維径に対する繊維長の比をアスペク
ト比Rとし、圧縮応力の方向に沿う断面に現れる強化繊
維が前記圧縮応力の方向に対しなす角度をθ(°)とし
て強化繊維の配向度Yを(90−θ)/90×100と
すると、前記強化繊維の平均アスペクト比Ra及び平均
配向度Yaがそれぞれ100〜2000、10〜85で
あると共にYa>−0.125×Ra+50を満たし、
前記強化繊維の体積率が5%以上であることを特徴とす
る軽合金製部材。
The part receiving compressive stress is a light alloy member reinforced with fibers, the ratio of the fiber length to the fiber diameter of the reinforcing fibers is set as R, and the reinforcing fibers appearing in the cross section along the direction of the compressive stress are in the direction of the compressive stress. When the angle formed with respect to 85 and satisfies Ya>-0.125×Ra+50,
A light alloy member characterized in that the volume percentage of the reinforcing fibers is 5% or more.
JP7460791A 1991-03-14 1991-03-14 Light alloy members including fiber reinforced parts Expired - Fee Related JP2803381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7460791A JP2803381B2 (en) 1991-03-14 1991-03-14 Light alloy members including fiber reinforced parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7460791A JP2803381B2 (en) 1991-03-14 1991-03-14 Light alloy members including fiber reinforced parts

Publications (2)

Publication Number Publication Date
JPH04284963A true JPH04284963A (en) 1992-10-09
JP2803381B2 JP2803381B2 (en) 1998-09-24

Family

ID=13552031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7460791A Expired - Fee Related JP2803381B2 (en) 1991-03-14 1991-03-14 Light alloy members including fiber reinforced parts

Country Status (1)

Country Link
JP (1) JP2803381B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1178231B1 (en) * 2000-07-31 2013-04-24 General Electric Company Mechanical coupling for cooperating rotatable members

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1178231B1 (en) * 2000-07-31 2013-04-24 General Electric Company Mechanical coupling for cooperating rotatable members

Also Published As

Publication number Publication date
JP2803381B2 (en) 1998-09-24

Similar Documents

Publication Publication Date Title
EP0108213B1 (en) Method for making composite material object by plastic processing
JPS61293649A (en) Casting method for fiber-reinforced caliper
JPS5893841A (en) Fiber reinforced metal type composite material
JPS6198948A (en) Piston for internal-combustion engine
EP0208727A1 (en) A metal matrix composite and method for its production
JPH04284963A (en) Light alloy-made member containing fiber reinforced part
US6509088B2 (en) Metal matrix composites with improved fatigue properties
JP3102205B2 (en) Aluminum alloy sliding member
Carswell et al. Environmental fatigue stress failure mechanism for glass fibre mat reinforced polyester
Griswold Jr et al. Comparison of fatigue properties of nodular cast iron production and Y-block castings
Kominar Thermo-mechanical regulation of residual stresses in polymers and polymer composites
Devoor et al. Study the Tensile and Compression Behaviour of LM 25 Aluminium Alloy Reinforced with Steel Wire
Akdemir et al. Investigation of microstructure and mechanical properties of steel fibre–cast iron composites
JPS62244565A (en) Production of metallic member containing closed loop-shaped carbon fiber reinforced section
Chigal et al. Mechanical testing of Al6061/silicon carbide metal matrix composite
Fujii et al. Durability and degradation mechanism of E and ECR glass reinforced vinylester resin under acid and alkali conditions
JPH01224600A (en) Composite material for sliding
Long et al. Influence of microstructure on axial strength of unidirectional continuous fibre reinforced aluminium matrix composites
RU2286507C2 (en) Method of strengthening thin-walled pressure vessels
Kolosov et al. Impregnation of fibrous fillers with polymeric binders 6. Effect of parameters of ultrasound treatment on strength properties of wound fibrous composites
JPS62228438A (en) Metallic structure
Rosso et al. Liquid hot isostatic pressing process to improve properties of thixoformed parts
Chau et al. Direct observation of compressive deformation of PBO fibre in the SEM
JPH01116039A (en) Potassium titanate whisker reinforced metallic composite material
WO2022109656A1 (en) Pseudoelastic shape-memory alloy fibres

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080717

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080717

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090717

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees