JPH04284819A - Method for removing irritating gas generated from vessel with heat gernerating function - Google Patents

Method for removing irritating gas generated from vessel with heat gernerating function

Info

Publication number
JPH04284819A
JPH04284819A JP3051459A JP5145991A JPH04284819A JP H04284819 A JPH04284819 A JP H04284819A JP 3051459 A JP3051459 A JP 3051459A JP 5145991 A JP5145991 A JP 5145991A JP H04284819 A JPH04284819 A JP H04284819A
Authority
JP
Japan
Prior art keywords
container
agent
exothermic agent
powder
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3051459A
Other languages
Japanese (ja)
Inventor
Junichi Kodama
順一 児玉
Mitsuaki Takahashi
高橋 美津秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3051459A priority Critical patent/JPH04284819A/en
Publication of JPH04284819A publication Critical patent/JPH04284819A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24VCOLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24V30/00Apparatus or devices using heat produced by exothermal chemical reactions other than combustion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cookers (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To absorb and remove irritating gas which is generated when a heating agent burns by using alkali substances mainly composed of one or more of Ca, Na, and K as insulation material in a vessel with heat generating functions wherein self-burning heating agent composed of iron oxide and powder of silicon is used. CONSTITUTION:A vessel with heat generating functions has an arrangement such that a self-burning heating agent composed of iron oxide powder, metallic and alloyed powder of silicon and a silicon-iron alloy, and an ignition agent 2 composed of oxide powder of iron oxide and one or more of copper oxide and boron powder are filled into a heating vessel in contact with each other, and an ignition device 3 and insulation material 4 are provided under the agent 1. And, as the material 4, an alkali substance mainly composed of one or more of Ca, Na, K is used. As the alkali substance, any substance which chemically reacts and adsorb irritating gas generated when the agent 1 burns can be used and, concretely, material mainly composed of alkali components such as calcium oxide, calcium carbonate, sodium hydroxide, potassium hydroxide can be used.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は水、油その他液体および
固体を電気、可燃性ガス、炭化水素類のエネルギーや燃
料を用いずに迅速に加熱するための熱源として酸化鉄粉
末と珪素および珪素鉄合金粉末を混合して成る熱量密度
の高い自己燃焼性発熱剤を利用した加熱容器の加熱時に
発生する刺激性ガスおよび煙を除去する方法に関するも
のである。
[Industrial Application Field] The present invention uses iron oxide powder, silicon, and silicon as a heat source for rapidly heating water, oil, other liquids, and solids without using energy or fuel such as electricity, flammable gas, or hydrocarbons. The present invention relates to a method for removing irritating gas and smoke generated when heating a heating container using a self-combusting exothermic agent with high calorific density mixed with iron alloy powder.

【0002】0002

【従来の技術】近年、生石灰の水和反応発熱を利用した
発熱商品が操作の容易性、簡便性から商品として実用化
され、駅弁の加熱、酒のお燗用熱源、殺虫剤の殺虫剤成
分の大気蒸散商品等商品化されている。また生石灰に比
べより高温でかつ瞬時に反応し、熱量密度が高い特徴を
有する自己燃焼性発熱体を利用した加熱システムも提案
されている。例えば特開昭63−152572号公報に
発熱機能付き容器として過マンガン酸カリウムと鉄粉末
からなる自己燃焼性発熱剤を被加熱物を充填容器の内側
に凸に設けた容器内に過マンガン酸カリウムと金属粉末
の混合物あるいは酸化物粉末と金属および合金粉末から
なる発熱剤を充填し、発熱剤の露出面の全面を覆うよう
に断熱材を載設され、かつ通気性を有する断熱材からな
り、通気性断熱材として岩石粉末、火山灰、ガラス粉こ
れらの発泡体であるバーミキュライト、パーライト等の
無機多孔性物質を使用し、無機多孔体の有する通気性を
フィルターとして利用する方法が提案されている。特開
平2−49612号公報には「加熱装置付き容器」とし
て酸化物と金属および合金粉末からなる自己燃焼性発熱
剤に自己燃焼性発熱剤より着火が容易な酸化鉄とほう素
粉末からなる着火剤を接して設け、この発熱剤が燃焼時
に発生する煙、刺激性ガスを除去するために発熱剤下部
にアルミナ、シリカ、カーボン等の粒子あるいは繊維を
用いることにより断熱の機能とフィルターの機能を持た
せた容器が提案されている。
[Prior Art] In recent years, heat-generating products that utilize the heat generated by the hydration reaction of quicklime have been put into practical use due to their ease of operation and simplicity, and have been used to heat station lunches, as a heat source for warming sake, and as insecticide ingredients in insecticides. Atmospheric transpiration products and other products have been commercialized. In addition, a heating system using a self-combusting heating element that reacts instantly at a higher temperature than quicklime and has a high calorific density has also been proposed. For example, in JP-A No. 63-152572, a self-combusting exothermic agent consisting of potassium permanganate and iron powder is used as a container with a heat generating function, and the object to be heated is filled with potassium permanganate in a container with a convex shape on the inside of the container. and a heat-generating agent made of a mixture of metal powder or oxide powder and metal and alloy powder, and a heat-insulating material is placed so as to cover the entire exposed surface of the heat-generating agent, and is made of a breathable heat-insulating material, A method has been proposed in which inorganic porous materials such as rock powder, volcanic ash, glass powder, foamed materials of these materials such as vermiculite and perlite are used as breathable heat insulating materials, and the breathability of the inorganic porous material is utilized as a filter. JP-A-2-49612 describes a "container with a heating device" in which a self-combusting exothermic agent made of oxides, metals, and alloy powders is used as an ignition agent consisting of iron oxide and boron powder, which are easier to ignite than self-combustible exothermic agents. In order to remove the smoke and irritating gases generated when the exothermic agent burns, particles or fibers of alumina, silica, carbon, etc. are used under the exothermic agent to provide insulation and filter functions. A holding container is suggested.

【0003】しかし、これら従来の方法では多孔質通気
性粒子、炭素繊維等の表面への煙粒子および刺激性ガス
の臭い粒子の付着除去を目的とした素材を断熱材に利用
することを提案しているが、このような断熱材料を利用
して物理吸着を行わせることにより発熱剤の発生する刺
激性ガスを吸着することは瞬間的に燃焼し、なおかつ高
温にさらされる自己燃焼性発熱剤を利用した加熱容器に
おいてははなはだ期待することは困難で、目的を達成す
るためには非常に多くの断熱素材を設置し、発生ガスと
十分な接触時間を確保し、断熱材の温度を常温程度まで
に低下しなければ十分な物理吸着効果は得られず、目的
を達成できなかった。しかしこのような方法では断熱材
の使用量が多くなることにより、加熱容器の体積増加、
重量の増加となり加熱容器の携帯性は著しく損なわれ実
用に適さない課題があった。
However, in these conventional methods, it has been proposed to use materials such as porous breathable particles and carbon fibers for the purpose of removing adhesion of smoke particles and odor particles of irritating gases to the surface of the insulation material. However, using such heat insulating materials to physically adsorb the irritating gases generated by exothermic agents burns instantaneously and is also effective against self-combusting exothermic agents that are exposed to high temperatures. It is difficult to expect much from the heating vessel used, and in order to achieve this goal, we must install a large number of insulating materials, ensure sufficient contact time with the generated gas, and bring the temperature of the insulating materials to room temperature. If the physical adsorption effect did not decrease to , a sufficient physical adsorption effect could not be obtained, and the objective could not be achieved. However, with this method, the amount of insulation material used increases, resulting in an increase in the volume of the heating container.
The increased weight significantly impairs the portability of the heating container, making it unsuitable for practical use.

【0004】0004

【発明が解決しようとする課題】上記課題に鑑み、本発
明は自己燃焼性発熱剤が燃焼したときに発生する刺激性
ガスおよび煙を除去し、より軽量かつコンパクトな加熱
容器を製造するために、少ない使用量で自己燃焼性発熱
剤の発生する刺激性ガスおよび煙を実用上問題ないレベ
ルまで低減可能な化学的に吸着、除去する方法を提供す
るものである。
[Problems to be Solved by the Invention] In view of the above problems, the present invention aims to remove the irritating gas and smoke generated when a self-combusting exothermic agent burns, and to manufacture a lighter and more compact heating container. The present invention provides a method for chemically adsorbing and removing irritating gas and smoke generated by a self-combusting exothermic agent to a practically acceptable level with a small amount of use.

【0005】[0005]

【課題を解決するための手段】本発明は発明者らが種々
の実験を重ねた結果なされたものであり、その要旨とす
るところは酸化鉄の粉末と珪素、珪素鉄合金の金属およ
び合金粉末からなる自己燃焼性発熱剤と該発熱剤に接し
て酸化鉄粉、酸化銅の1種類以上の酸化物粉末とほう素
粉末からなる着火剤を加熱容器に充填し、発熱剤下部に
着火装置と断熱材を有する発熱機能付き容器において、
断熱材にCa,Na,Kの一種類以上を主成分とするア
ルカリ物質、通気性多孔質材料とアルカリ物質を混合し
た素材またはアルカリ水溶液を含浸処理した通気性多孔
質材料および繊維状断熱素材を使用することを特徴とす
る自己燃焼性発熱剤利用発熱機能付き加熱容器の発生す
る刺激性ガス除去方法と加熱容器下部に設けたガス抜き
穴を有する金属性容器蓋を装てんする場合、通気性断熱
材とガス抜き穴を有する金属性容器の間でガスの排出経
路内にCa,Na,Kの一種類以上を主成分とするアル
カリ水溶液を含浸処理した煙除去機能を有するフィルタ
ーを設けたことを特徴とする発熱機能付き容器の刺激性
ガスおよび煙除去方法である。
[Means for Solving the Problems] The present invention was made as a result of various experiments conducted by the inventors, and the gist thereof is to use iron oxide powder, silicon, silicon-iron alloy metal, and alloy powder. A heating container is filled with a self-combusting exothermic agent consisting of a self-combusting exothermic agent, and an ignition agent consisting of one or more oxide powders such as iron oxide powder and copper oxide, and boron powder in contact with the exothermic agent, and an igniter is installed at the bottom of the exothermic agent. In a container with a heat generating function that has a heat insulating material,
The insulation material is an alkaline material whose main component is one or more of Ca, Na, and K, a material that is a mixture of a breathable porous material and an alkaline material, or a breathable porous material impregnated with an alkaline aqueous solution and a fibrous heat insulating material. A method for removing irritating gas generated by a heating container with a heat generating function using a self-combusting exothermic agent, and a method for removing irritating gases generated by a heating container with a heat generating function using a self-combusting exothermic agent, and when installing a metal container lid with a gas vent hole provided at the bottom of the heating container, a breathable heat insulation method is used. A filter with a smoke removal function impregnated with an alkaline aqueous solution containing one or more of Ca, Na, and K as main components is installed in the gas exhaust path between the metal container and the metal container with gas vent holes. This is a method for removing irritating gases and smoke from a container with a heat generating function.

【0006】ここで使用されるアルカリ物質としては自
己燃焼性発熱剤が燃焼時に発生する刺激性ガスと化学反
応して吸着できる物質であれば使用可能で、具体的には
酸化カルシウム、炭酸カルシウム、水酸化カルシウム、
水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、
炭酸カリウム等のアルカリ成分を主成分とする素材が使
用でき、通気性多孔質材料としてはゼオライト、パーラ
イト、活性炭、バーミキュライト等が適用でき、繊維状
断熱素材としてはロックウール、ガラスウール、セラミ
ックウール等が適用可能であるが、いずれ通気性を有し
、発熱剤が発生する熱を吸収、断熱し発生ガスを通過さ
せる機能を有していればこれらの素材に特に限定されな
い。
[0006] As the alkaline substance used here, any substance that can chemically react with and adsorb the irritating gas generated during combustion of the self-combusting exothermic agent can be used. Specifically, calcium oxide, calcium carbonate, Calcium hydroxide,
Sodium hydroxide, potassium hydroxide, sodium carbonate,
Materials whose main component is an alkaline component such as potassium carbonate can be used. Zeolite, perlite, activated carbon, vermiculite, etc. can be used as breathable porous materials, and rock wool, glass wool, ceramic wool, etc. can be used as fibrous insulation materials. However, the material is not particularly limited to these materials as long as it is breathable, has the function of absorbing and insulating the heat generated by the exothermic agent, and allowing the generated gas to pass through.

【0007】さらに発熱機構を充填し、ガス抜き穴を有
する金属性容器でシールする際に通気性断熱材とガス抜
き穴を有する金属性容器の間で、ガスの排出経路内に通
気性粒状断熱材が金属容器のガス抜き穴からの脱落を防
止し、刺激性ガスの除去および発熱剤の発生する煙の除
去に使用されるフィルターとしては耐熱性を有するセラ
ミックあるいはガラス製のものが好ましいが、紙製およ
び合成繊維のものでも使用可能であり、このフィルター
材料をCa,Na,Kの一種類以上を主成分とするアル
カリ水溶液で処理して使用することにより自己燃焼性発
熱剤が発生する刺激性ガスと煙の除去が可能となる。
Furthermore, when filling the heat generating mechanism and sealing it with a metal container having gas vent holes, air permeable granular insulation is placed in the gas exhaust path between the breathable heat insulating material and the metal container having gas vent holes. A filter made of heat-resistant ceramic or glass is preferably used to prevent the material from falling out of the gas vent hole of the metal container and to remove irritating gases and smoke generated by exothermic agents. Paper and synthetic fiber filter materials can also be used, and when this filter material is treated with an alkaline aqueous solution containing one or more of Ca, Na, and K as its main components, it can be used to prevent irritation caused by the generation of self-combusting exothermic agents. It is possible to remove toxic gases and smoke.

【0008】これらのアルカリ物質の刺激性ガスの吸着
は従来の通気性多孔質物質の物理吸着に比べ短時間で化
学的に反応が行われ、従来の物理吸着法に比べより短時
間で効率良く刺激性ガスの反応吸収、吸着ができ、自己
燃焼性発熱体の加熱、昇温により脱着することがなく有
効なガス吸着法でありさらにガスの発生量からすればほ
んのわずかの利用で大きな吸着効果が得られる方法であ
る。
[0008] The adsorption of irritating gases by these alkaline substances is a chemical reaction that takes place in a shorter time than conventional physical adsorption using air-permeable porous materials, and is more efficient in a shorter time than conventional physical adsorption methods. It is an effective gas adsorption method that can reactively absorb and adsorb irritating gases, and does not desorb due to heating or temperature rise of a self-combusting heating element. Furthermore, considering the amount of gas generated, it has a large adsorption effect with only a small amount of use. This is the method to obtain.

【0009】以下、本発明の作用について詳細に説明す
る。自己燃焼性発熱剤に工業的に利用される酸化鉄粉は
主に鉄鋼製品の酸洗廃液を加熱して得られるために塩化
水素をかなり成分的には残存している。さらに鉄鋼製品
から起因する硫黄分も多いために発熱剤が反応して加熱
される時にこれらの成分がガス化あるいは反応して燃焼
排ガスとして排出される。このガス組成としては塩素系
、硫黄系のガスが推定され、特に塩化水素、硫化水素、
亜硫酸ガスはほんのわずかの量でも刺激的な臭いを与え
、さらにこれらのガスは人体に対しても有害である。こ
のために特に食品等の加熱商品への適用を困難なものに
する可能性があった。このガスの発生については自己燃
焼性発熱剤が瞬間的な反応であるために精度良い解析を
行うことが困難でありその組成、発生のタイミング等は
明らかには成っていなかったが本発明者らは自己燃焼性
発熱剤原料として平均粒径0.8μm、Fe2 O3 
含有率99.5%の工業グレードの酸化鉄粉、平均粒径
10μm、Si含有率98.5%の珪素粉末を使用し、
2対1の重量割合で均一に混合した自己燃焼性発熱剤8
0gに昭和化学社製の酸化鉄粉試薬0.85gとヘルマ
ンシースタルク社のほう素含有率96%以上のアモルフ
ァスほう素粉末0.15gを混合して着火剤として用い
、断熱材に顆粒状のゼオライト粉末を35g、直径55
mm、高さ50mmの金属性容器に充填して、容器底か
ら排出される自己燃焼製発熱剤の発生する排出ガスにつ
いてニオイセンサー、ガス検知管の測定機器を使用して
排出ガスの臭い強度の連続的な測定分析や排出ガスの組
成、濃度について詳細な検討を行った。その結果、加熱
容器から排出される刺激性ガスの発生ピークは発熱剤を
燃焼した直後で、その後は余り刺激性ガスの発生はない
こと、発熱剤燃焼後30秒以内に発生するガス組成とし
ては塩化水素と硫化水素が主体として発生していること
がわかり、これらの組成のガスは刺激臭がほとんど検出
されなくなった1分後にはほとんど検出されなかった。 亜硫酸ガス、二硫化炭素は自己燃焼性発熱剤着火後1分
程度から最大濃度が検出されることがわかったが、その
発生量はわずかで、人間の嗅覚や人体に対する影響はほ
とんど問題無いレベルであった。
The operation of the present invention will be explained in detail below. Iron oxide powder, which is used industrially as a self-combusting exothermic agent, is mainly obtained by heating waste liquid from pickling of steel products, so it contains a considerable amount of hydrogen chloride. Furthermore, since steel products contain a large amount of sulfur, these components are gasified or reacted when the exothermic agent reacts and is heated, and are emitted as combustion exhaust gas. The composition of this gas is estimated to be chlorine-based and sulfur-based gases, especially hydrogen chloride, hydrogen sulfide,
Even a small amount of sulfur dioxide gas gives off a pungent odor, and these gases are also harmful to humans. This may make it particularly difficult to apply to heated products such as foods. Regarding the generation of this gas, it is difficult to perform accurate analysis because the self-combusting exothermic agent causes an instantaneous reaction, and its composition and timing of generation have not been clarified. Fe2O3 has an average particle size of 0.8μm and is used as a raw material for a self-combusting exothermic agent.
Using industrial grade iron oxide powder with a content of 99.5%, silicon powder with an average particle size of 10 μm and a Si content of 98.5%,
Self-combusting exothermic agent 8 uniformly mixed in a 2:1 weight ratio
0g, mixed with 0.85g of iron oxide powder reagent manufactured by Showa Kagaku Co., Ltd. and 0.15g of amorphous boron powder with a boron content of 96% or more manufactured by Hermann Schiesz Starck and used as an ignition agent. 35g of zeolite powder, diameter 55
A metal container with a height of 50 mm and a height of 50 mm is filled into a metal container, and the exhaust gas generated by the self-combusting exothermic agent is discharged from the bottom of the container. Continuous measurement analysis and detailed examination of exhaust gas composition and concentration were conducted. As a result, the generation peak of the irritating gas discharged from the heating container is immediately after the exothermic agent is combusted, and after that there is not much irritating gas generated, and the composition of the gas generated within 30 seconds after the exothermic agent is combusted is It was found that hydrogen chloride and hydrogen sulfide were mainly generated, and gases with these compositions were hardly detected one minute after the irritating odor was almost no longer detected. It was found that the maximum concentration of sulfur dioxide gas and carbon disulfide can be detected approximately one minute after the self-combusting exothermic agent ignites, but the amount generated is small and the level of impact on the human sense of smell and the human body is almost negligible. there were.

【0010】このような刺激性ガスの発生タイミング、
ガス組成を詳細に調査した結果、従来の物理吸着を主体
にしたガス吸着法はガスとの接触時間を長くし、圧力を
加えることにより効率よくガス吸着できるものであり、
瞬間的に発生するガスを十分に吸着除去することが出来
ないこと、さらに断熱素材は自己燃焼性発熱剤により最
大1000℃以上にまで加熱されるために着火直後初期
に吸着された刺激性ガス組成は加熱されることにより脱
着し、ほとんど効果を発揮しないことがわかったもので
ある。
[0010] The timing of generation of such irritating gas,
As a result of detailed investigation of the gas composition, we found that the conventional gas adsorption method, which mainly uses physical adsorption, can efficiently adsorb gas by increasing the contact time with the gas and applying pressure.
It is not possible to sufficiently adsorb and remove the instantaneously generated gas, and furthermore, because the insulation material is heated to a maximum of 1000°C or more by the self-combusting exothermic agent, the irritating gas composition that is adsorbed in the early stage immediately after ignition. was found to be desorbed by heating and to have little effect.

【0011】また発熱剤に塩素、硫黄含有率の低い鉄鉱
石を1μm以下にまで破砕して製造した酸化鉄粉を原料
に使用して発熱剤を製造して加熱容器に組み込んで排出
ガスの調査を行った結果も発熱剤の着火燃焼直後に同様
な刺激性のガスの発生を確認し、発熱剤に塩素、硫黄の
高い原料を使用した場合と余り変化がなかった。この場
合には発熱剤を着火燃焼させるために発熱剤に接して設
けられた酸化鉄粉とほう素粉末からなる着火剤の発生ガ
スと考えられ着火剤、発熱剤ともに刺激性ガスを発生す
ることがわかった。この発生ガスの刺激性除去方法とし
て強制的にガスの排出孔を閉塞して発熱剤の燃焼ガスを
容器の外部に排出させない方法によっても刺激性ガスの
除去は可能であるがこの場合には、燃焼ガスの発生によ
る密閉容器内部の圧力増加による容器破損、爆発の恐れ
があり安全上の問題があること、さらに発熱剤着火操作
のために外部と連通した部分が必要なためにこのシール
が困難なこと等により実用的ではない。このような詳細
な調査結果をもとに発熱剤の発生する刺激性ガス組成を
瞬時に吸着し、コスト的にも十分適用可能な方法につい
て種々の検討を行った結果本願が発明されたもので、自
己燃焼性発熱剤の燃焼時に発生する刺激性ガスと化学反
応する素材を使用することにより化学吸着が可能との結
論を得たものである。発熱剤の発生する排出ガス量は発
熱剤重量80gで約100CCであり、この場合の排出
ガス中塩化水素濃度は最大1000ppm、硫化水素は
30ppm であった。亜硫酸ガス、二硫化炭素はそれ
ぞれ10ppm でほとんど気にならないレベルであっ
た。この結果から塩化水素、硫化水素の吸着を主体に検
討を行った結果、これらのガス組成の化学吸着素材とし
てはアルカリ性物質が有効であることを見いだして断熱
材素材として粉末状で得られる酸化カルシウム、炭酸カ
ルシウム、水酸化カルシウム、およびゼオライト、パー
ライトの多孔質通気性粒状材料およびロックウール、セ
ラミックウール等の繊維状の通気性断熱材料を水酸化ナ
トリウム水溶液処理し、粒子および繊維表面や気孔内部
に水酸化ナトリウム粒子を析出させた材料を使用して自
己燃焼性発熱剤を燃焼させたときに発生する刺激性ガス
除去効果の調査を行った。その結果、酸化カルシウム、
炭酸カルシウムを断熱材素材として使用した場合には従
来のゼオライトおよびパーライトの使用時に発生した最
大1200ppm の塩化水素濃度が400ppm 以
下の1/3以下にまで低減し、さらに硫化水素濃度も3
0ppm から10ppm以下にまで低減し、排出ガス
刺激臭は実質的にほとんど気にならないレベルにまで低
減できた。本法により自己燃焼性発熱剤が発生する刺激
性ガス組成の化学吸着除去が可能であることを確認した
。化学吸着による刺激性ガスとの反応についてはカルシ
ウム素材が塩化水素ガスと反応して塩化カルシウムと水
を生成する反応によるものである。また硫化水素ガスと
カルシウムは反応して硫化カルシウムあるいは硫化水素
カルシウムとなり塩化水素、硫化水素の反応吸着を行う
。この場合、水酸化カルシウムは水の生成量が多く、断
熱材として直接使用した場合には加熱されることにより
水蒸気が発生し、また酸化カルシウムは完全乾燥状態で
保存、シールしないと外気中の水分と反応して容易に水
酸化カルシウムになり、管理が繁雑となる。このような
反応のもとでは金属性の加熱容器に断熱材として充填す
るには工業的に安価で安定して供給可能な素材が好まし
く、この点では炭酸カルシウムとして石灰石の使用が好
ましい。
[0011] Also, as a heat generating agent, iron oxide powder produced by crushing iron ore with a low chlorine and sulfur content to a size of 1 μm or less is used as a raw material to produce a heat generating agent, and the heat generating agent is incorporated into a heating container to investigate exhaust gas. The results also confirmed that a similar irritating gas was generated immediately after the exothermic agent was ignited and burned, and there was not much difference from the case when the exothermic agent used was a raw material with high chlorine and sulfur content. In this case, it is thought that the gas is generated from an ignition agent made of iron oxide powder and boron powder that is placed in contact with the exothermic agent to ignite and burn the exothermic agent, and both the igniter and the exothermic agent generate irritating gas. I understand. It is possible to remove the irritating gas by forcibly closing the gas exhaust hole to prevent the exothermic combustion gas from being discharged to the outside of the container, but in this case, This sealing is difficult because there is a risk of container damage and explosion due to the increased pressure inside the sealed container due to the generation of combustion gas, and there is a safety issue because a part that communicates with the outside is required to ignite the exothermic agent. It is not practical due to the following reasons. Based on the results of such detailed research, we conducted various studies on methods that can instantly adsorb the irritating gas composition generated by exothermic agents and are cost-effective, and the present application was invented as a result. It was concluded that chemical adsorption is possible by using a material that chemically reacts with the irritating gas generated during combustion of a self-combusting exothermic agent. The amount of exhaust gas generated by the exothermic agent was about 100 CC when the weight of the exothermic agent was 80 g, and the concentration of hydrogen chloride in the exhaust gas in this case was 1000 ppm at maximum, and hydrogen sulfide was 30 ppm. Sulfur dioxide gas and carbon disulfide were each at a barely noticeable level of 10 ppm. Based on this result, we mainly investigated the adsorption of hydrogen chloride and hydrogen sulfide, and found that alkaline substances are effective as chemical adsorption materials for these gas compositions. , calcium carbonate, calcium hydroxide, and porous breathable granular materials such as zeolite and perlite, as well as fibrous breathable heat insulating materials such as rock wool and ceramic wool, are treated with an aqueous sodium hydroxide solution to coat the particles and fiber surfaces and inside the pores. We investigated the effect of removing irritating gases generated when a self-combusting exothermic agent is combusted using a material in which sodium hydroxide particles are precipitated. As a result, calcium oxide,
When calcium carbonate is used as a heat insulating material, the hydrogen chloride concentration, which occurs when conventional zeolite and pearlite are used, is reduced to less than 1/3 of 400 ppm, and the hydrogen sulfide concentration is also reduced by 3.
It was reduced from 0 ppm to 10 ppm or less, and the irritating odor of exhaust gas was reduced to a level where it was practically not noticeable. It was confirmed that this method enables chemisorption removal of irritating gas compositions generated by self-combusting exothermic agents. The reaction with irritating gases due to chemisorption is due to a reaction in which the calcium material reacts with hydrogen chloride gas to produce calcium chloride and water. Furthermore, hydrogen sulfide gas and calcium react to form calcium sulfide or calcium hydrogen sulfide, which reacts and adsorbs hydrogen chloride and hydrogen sulfide. In this case, calcium hydroxide produces a large amount of water, and if it is used directly as an insulating material, it will generate water vapor when heated, and if calcium oxide is not stored in a completely dry state and sealed, it will absorb moisture in the outside air. It easily reacts with calcium hydroxide, making management complicated. Under such a reaction, a material that is industrially inexpensive and can be stably supplied is preferable for filling a metal heating container as a heat insulating material, and from this point of view, it is preferable to use limestone as calcium carbonate.

【0012】さらに多孔質吸水性材料であるゼオライト
、パーライト、活性炭等や繊維状の断熱材としてロック
ウール、セラミックウール、ガラスウール等の素材にア
ルカリ素材を水溶液化して吸水させて乾燥する事によっ
ても微細な気孔内部や粒子および繊維表面にアルカリ物
質の微粒子が析出し、塩化水素および硫化水素の刺激性
ガス組成との化学反応により吸着可能で固体のカルシウ
ム素材を充填した場合と同様な刺激性ガスの低減効果を
確認した。この場合の反応は塩化水素と反応して塩化ナ
トリウムと水を生成する反応、硫化水素とは硫化ナトリ
ウム、硫化水素ナトリウムとなる反応である。
Furthermore, porous water-absorbing materials such as zeolite, perlite, and activated carbon, and fibrous heat-insulating materials such as rock wool, ceramic wool, and glass wool can be made into an aqueous solution of an alkaline material, allowed to absorb water, and then dried. Fine particles of alkaline substances are precipitated inside minute pores and on the surface of particles and fibers, which can be adsorbed by a chemical reaction with the irritating gas composition of hydrogen chloride and hydrogen sulfide, producing an irritating gas similar to that when filled with solid calcium material. The reduction effect was confirmed. The reaction in this case is a reaction in which it reacts with hydrogen chloride to produce sodium chloride and water, and hydrogen sulfide turns into sodium sulfide and sodium hydrogen sulfide.

【0013】塩化水素との主な反応は以下の式によると
推定される。カルシウム系の成分は1モルで塩化水素2
モルが反応し、塩化カルシウム1モル、水1モルを生成
する反応で、炭酸カルシウムの場合は1モルの炭酸ガス
の発生、水酸化カルシウムは2モルの水の発生を伴う。 ナトリウム系の場合には1モルで塩化水素1モルの吸着
が可能である。この反応式から排出ガスが100CCで
塩化水素濃度が1000ppm であった場合の酸化カ
ルシウム、炭酸カルシウム、水酸化ナトリウムの必要量
はそれぞれ0.11mg、0.21mg、0.18mg
であり、非常にわずかの使用量で充分であることがわか
り、従ってゼオライト、パーライト、バーミキュライト
等の通気性多孔質材料に混合する場合においてもその使
用量はわずかで充分な効果が得られるものである。 2HCl+CaO→CaCl2 +H2 O2HCl+
CaCO3 →CaCl2 +H2 O+CO2 2H
Cl+Ca(OH)2 →CaCl2 +2H2 OH
Cl+NaOH→NaCl+H2 O2HCl+Na2
 CO3 →2NaCl+H2 O+CO2 硫化水素
に関しては硫化物を生成するか硫化水素化物を生成する
かで吸着可能なモル数は変わり硫化水素化物を生成する
場合の方が吸着効率は高い。硫化水素ガスは以下の反応
により化学吸着されるものと考えられ、100CCのガ
ス中30ppm の硫化水素は酸化カルシウム、炭酸カ
ルシウム、水酸化ナトリウムの使用重量は最大0.01
mgで十分であり塩化水素よりさらに微量の使用で吸着
が可能である。 H2 S+CaO→CaS+H2 O 2H2 S+CaO→Ca(SH)2 +H2 OH2
 S+CaCO3 →CaS+H2 O+CO2 2H
2 S+CaCO3 →Ca(SH)2 +H2 O+
CO2  H2 S+2NaOH→Na2 S+2H2 OH2 
S+NaOH→NaHS+H2 OKもNaと同様な反
応機構で刺激性ガスの吸着が可能である。
The main reaction with hydrogen chloride is estimated to be based on the following equation. 1 mole of calcium-based components produces 2 hydrogen chloride
This is a reaction in which 1 mol of calcium chloride and 1 mol of water are produced by the reaction of 1 mol of calcium chloride, and in the case of calcium carbonate, 1 mol of carbon dioxide gas is generated, and in the case of calcium hydroxide, 2 mol of water is generated. In the case of sodium, 1 mole can adsorb 1 mole of hydrogen chloride. From this reaction equation, when the exhaust gas is 100 cc and the hydrogen chloride concentration is 1000 ppm, the required amounts of calcium oxide, calcium carbonate, and sodium hydroxide are 0.11 mg, 0.21 mg, and 0.18 mg, respectively.
It has been found that a very small amount is sufficient, and therefore, sufficient effects can be obtained even when mixed with breathable porous materials such as zeolite, perlite, and vermiculite. be. 2HCl+CaO→CaCl2 +H2 O2HCl+
CaCO3 →CaCl2 +H2 O+CO2 2H
Cl+Ca(OH)2 →CaCl2 +2H2 OH
Cl+NaOH→NaCl+H2 O2HCl+Na2
CO3 →2NaCl+H2 O+CO2 Regarding hydrogen sulfide, the number of moles that can be adsorbed changes depending on whether sulfide or hydrogen sulfide is generated, and the adsorption efficiency is higher when hydrogen sulfide is generated. Hydrogen sulfide gas is thought to be chemically adsorbed by the following reaction, and 30 ppm of hydrogen sulfide in 100 cc of gas can be absorbed by the weight of calcium oxide, calcium carbonate, and sodium hydroxide at a maximum of 0.01.
mg is sufficient, and adsorption is possible with a much smaller amount than hydrogen chloride. H2 S+CaO→CaS+H2 O 2H2 S+CaO→Ca(SH)2 +H2 OH2
S+CaCO3 →CaS+H2 O+CO2 2H
2 S+CaCO3 →Ca(SH)2 +H2 O+
CO2 H2 S+2NaOH→Na2 S+2H2 OH2
S+NaOH→NaHS+H2 OK also has the same reaction mechanism as Na and can adsorb irritating gases.

【0014】さらに、固形の炭酸カルシウム等の物質を
断熱材として使用した場合には、従来法とほぼ同様な断
熱効果が得られ被加熱物への熱伝導の効率を阻害するこ
となく目的の加熱特性を有することが確認でき、従来の
断熱素材とアルカリ物質を混合して使用する場合にも、
アルカリ水溶液で通気性多孔質材料を処理して使用して
も何等熱特性の変化は認められなかった。
Furthermore, when a substance such as solid calcium carbonate is used as a heat insulating material, a heat insulating effect similar to that of the conventional method can be obtained, and the desired heating can be achieved without impeding the efficiency of heat conduction to the heated object. It has been confirmed that it has the following characteristics, and even when using a mixture of conventional insulation materials and alkaline substances,
Even when the breathable porous material was treated with an alkaline aqueous solution and used, no change in thermal properties was observed.

【0015】また断熱材と自己燃焼性発熱剤の発生ガス
を排出するガス抜き孔を有する容器蓋の間でガスの排出
経路内に煙除去用のフィルターを設けることにより発熱
剤が燃焼時に発生する煙および発熱剤を充填、保持して
いる金属性容器内面が加熱されることにより発生する煙
の除去が可能となる。このフィルターは一般の空調用に
使用されているものが使用可能であり、排出ガスがこの
フィルターを通過する際に煙粒子がフィルター内部にト
ラップ除去される。このフィルターを発熱剤が燃焼時に
発生する刺激性ガスと反応吸着するアルカリ物質の水溶
液で処理することにより刺激性ガスの除去効果をも合わ
せて持たすことができ、煙と刺激性ガスの同時除去が可
能となる。このフィルターは断熱材の下部に設置される
ためにさほど高温にはさらされないが最高温度は200
℃近くにもなることがあるために耐熱性を有するガラス
繊維あるいはセラミック繊維のフィルターの使用が好ま
しい。
Furthermore, by providing a filter for removing smoke in the gas exhaust path between the heat insulating material and the container lid having a gas vent hole for discharging the gas generated by the self-combustible exothermic agent, the exothermic agent is generated during combustion. It becomes possible to remove the smoke generated by heating the inner surface of the metal container filled with and holding the smoke and exothermic agent. This filter can be one used for general air conditioning, and when exhaust gas passes through this filter, smoke particles are trapped inside the filter and removed. By treating this filter with an aqueous solution of an alkaline substance that reacts and adsorbs the irritating gas generated when the exothermic agent burns, it can also have the effect of removing irritating gases, allowing simultaneous removal of smoke and irritating gases. It becomes possible. This filter is installed under the insulation material so it is not exposed to very high temperatures, but the maximum temperature is 200
Since the temperature may reach close to ℃, it is preferable to use a heat-resistant glass fiber or ceramic fiber filter.

【0016】[0016]

【実施例】以下、実施例について説明する。 実施例1 Fe2 O3 純度99%以上で平均粒径0.8μmの
工業グレードの酸化鉄粉とSi純度98%以上で平均粒
径10.8μmの珪素粉末を重量比2/1で高速回転混
合機を使用して回転数3000RPM で5分間均一混
合を行った後に直径55mm、高さ50mmの形状で板
厚0.24mmのブリキ容器に発熱剤80gを秤量、充
填し酸化鉄とほう素の混合粉末1gを着火剤として発熱
剤表面の中央に置いて、1000kgf の荷重でプレ
スして発熱剤を容器に充填した。この発熱剤の下部に火
花発生気孔を有した着火治具を挿入し、さらに断熱材と
して酸化カルシウム、炭酸カルシウム、水酸化カルシウ
ムの粉末あるいはゼオライト、パーライト、セラミック
ウールを10重量%濃度の水酸化ナトリウム水溶液に浸
漬後乾燥処理した通気性多孔質素材を空間部分に充填し
、ガス抜き孔を有する金属性の蓋を押し込んで脱落防止
を兼ねて密閉した。この容器を使用して図1に示す構造
の加熱容器を試作し、排出ガスの臭いの強度レベルの官
能チェックとともに塩化水素、硫化水素の濃度を検地管
法で測定した。 その結果を表1に示した。比較材として従来法のままの
ゼオライトおよびパーライトを充填した場合の測定結果
をも合わせて示す
[Example] Examples will be described below. Example 1 Fe2O3 Industrial grade iron oxide powder with a purity of 99% or more and an average particle size of 0.8 μm and silicon powder with a Si purity of 98% or more and an average particle size of 10.8 μm were mixed at a weight ratio of 2/1 in a high-speed rotating mixer. After homogeneous mixing for 5 minutes at a rotation speed of 3000 RPM using 1 g of the exothermic agent was placed at the center of the surface of the exothermic agent as an igniter, and pressed under a load of 1000 kgf to fill the container with the exothermic agent. An ignition jig with spark-generating pores is inserted into the lower part of the exothermic agent, and calcium oxide, calcium carbonate, calcium hydroxide powder or zeolite, perlite, or ceramic wool is added as a heat insulating material to sodium hydroxide at a concentration of 10% by weight. The space was filled with an air-permeable porous material that had been immersed in an aqueous solution and then dried, and a metal lid with gas vent holes was pushed in to seal it to prevent it from falling off. Using this container, a heating container having the structure shown in FIG. 1 was prototyped, and the concentration of hydrogen chloride and hydrogen sulfide was measured by the geotechnical method along with a sensory check of the odor intensity level of the exhaust gas. The results are shown in Table 1. Measurement results when filled with zeolite and pearlite using the conventional method are also shown as comparison materials.

【0017】[0017]

【表1】[Table 1]

【0018】この結果、従来法はゼオライトの使用で塩
化水素濃度は最大800ppm 、ほとんどガス吸着能
がないパーライトの使用で1000ppmに達し、硫化
水素も30ppm 検出された。官能チェックによって
観察された刺激臭は鼻につんと硫化水素臭を感じ、塩酸
臭、および腐った卵のような臭いを感じた。これに対し
て本発明による方法ではいずれも塩化水素ガス濃度は1
00ppm 以下で、硫化水素ガス濃度も10ppm 
以下と大幅に低減し、官能による観察でもほとんど気に
ならないものであり実用上何等問題は感じないレベルで
あった。固体状の炭酸カルシウム、水酸化カルシウムを
断熱材として使用した場合も、水酸化ナトリウムの水溶
液でゼオライト、パーライトおよびセラミックウールを
処理したものでもガス吸着能に条件の差はほとんど無く
どの方法でも同様な効果を有していた。このとき、被加
熱部に15℃の水320CCを容器に入れて自己燃焼性
発熱剤を着火したが、本願も従来法もどの条件の水も昇
温最高温度は2.5分で99℃まで達して加熱特性は変
わらず、容器の底の温度は160〜180℃の範囲で充
分な断熱性を有していた。
As a result, in the conventional method, the hydrogen chloride concentration reached a maximum of 800 ppm when zeolite was used, and reached 1000 ppm when pearlite, which has almost no gas adsorption ability, was used, and hydrogen sulfide was also detected at 30 ppm. The pungent odor observed in the sensory check was a pungent odor of hydrogen sulfide, hydrochloric acid, and rotten egg-like odor. On the other hand, in the method according to the present invention, the hydrogen chloride gas concentration is 1
00ppm or less, hydrogen sulfide gas concentration is also 10ppm
It was significantly reduced to below, and was hardly noticeable even in sensory observation, and was at a level that did not pose any practical problems. Whether solid calcium carbonate or calcium hydroxide is used as a heat insulator or zeolite, perlite, or ceramic wool is treated with an aqueous solution of sodium hydroxide, there is almost no difference in gas adsorption capacity under any conditions, and the results are the same regardless of the method. It was effective. At this time, 320 cc of water at 15°C was placed in a container in the heated area, and a self-combusting exothermic agent was ignited. However, in both the present application and the conventional method, the maximum temperature of water raised under any conditions was 99°C in 2.5 minutes. The temperature at the bottom of the container remained in the range of 160 to 180°C, and the heating properties remained unchanged.

【0019】実施例2 Fe2 O3 純度99%以上で平均粒径0.8μmの
工業グレードの酸化鉄粉とSi純度98%以上で平均粒
径10.8μmの珪素粉末を重量比2/1で高速回転混
合機を使用して回転数3000RPM で5分間均一混
合を行った後に直径55mm、高さ50mmの形状で板
厚0.24mmのブリキ容器に発熱剤80gを秤量、充
填し酸化鉄とほう素の混合粉末1gを着火剤として発熱
剤表面の中央に置いて、1000kgf の荷重でプレ
スして発熱剤を容器に充填した。この発熱剤の下部に火
花発生気孔を有した着火治具を挿入し、さらに断熱材と
して炭酸カルシウムと従来剤のゼオライトを使用し、ガ
ス抜き孔を有する金属性の蓋を押し込んで内容物を固定
する際に断熱材と金属性の蓋の間に厚さ1.5mm、圧
損10mm水柱の耐熱性セラミック繊維と耐熱ポリアミ
ドの合成繊維のフィルターを10重量%濃度の水酸化ナ
トリウム水溶液に浸漬、乾燥処理して設け、脱落防止を
兼ねて密閉した。この容器を使用して図1に示す構造の
加熱容器を試作し、排出ガスの臭いの強度レベル、煙の
排出状況の官能チェックとともに塩化水素、硫化水素の
濃度を検地管法で測定した。その結果を表2に示した。
Example 2 Fe2O3 Industrial grade iron oxide powder with a purity of 99% or more and an average particle size of 0.8 μm and silicon powder with a Si purity of 98% or more and an average particle size of 10.8 μm were mixed at a weight ratio of 2/1 at high speed. After uniformly mixing for 5 minutes at 3000 RPM using a rotary mixer, 80 g of the exothermic agent was weighed and filled into a 0.24 mm thick tin container with a diameter of 55 mm and a height of 50 mm, and iron oxide and boron were mixed. 1 g of the mixed powder was placed as an igniter at the center of the surface of the exothermic agent, and pressed under a load of 1000 kgf to fill the container with the exothermic agent. An ignition jig with spark-generating pores is inserted into the bottom of the exothermic agent, calcium carbonate and conventional zeolite are used as insulation materials, and a metal lid with gas vent holes is pushed in to secure the contents. During this process, a filter made of heat-resistant ceramic fibers and heat-resistant polyamide synthetic fibers with a thickness of 1.5 mm and a pressure drop of 10 mm between the insulation material and the metal lid is immersed in a 10% by weight aqueous sodium hydroxide solution and dried. It was installed as a seal and sealed to prevent it from falling off. Using this container, a heating container with the structure shown in Figure 1 was prototyped, and the intensity level of the odor of the exhaust gas and the sensory check of the smoke emission status were performed, as well as the concentrations of hydrogen chloride and hydrogen sulfide were measured using the geotechnical method. The results are shown in Table 2.

【0020】[0020]

【表2】[Table 2]

【0021】比較材として従来法のままのゼオライトお
よびパーライトを充填し、断熱材と金属性の蓋の間にフ
ィルターを設けない条件での測定結果をも合わせて示す
。この結果、従来法はゼオライトの使用で塩化水素濃度
は最大800ppm 、ほとんどガス吸着能がないパー
ライトの使用で1000ppm に達し、硫化水素も2
0ppm 検出された。官能チェックによって観察され
た刺激臭は鼻につんと感じ、塩酸臭、および腐った卵の
ような臭いを感じ、さらに自己燃焼性発熱剤着火直後か
ら約30〜60秒の間煙がわずかながら排出された。こ
れに対して本発明によるアルカリ処理をしたフィルター
を設けた方法ではいずれも塩化水素ガス濃度は100p
pm 以下で、硫化水素ガス濃度も10ppm 以下と
大幅に低減し、官能による臭い観察でもほとんど気にな
らず、さらに煙の排出もほとんど認められず実用上何等
問題は感じないレベルであった。特に断熱材に炭酸カル
シウムを使用した場合には臭い成分濃度はさらに低くな
りより顕著な改善効果が得られた。このとき、被加熱部
に15℃の水320CCを容器にいれて自己燃焼性発熱
剤を着火したが、本願も従来法もどの条件の水も昇温最
高温度は2.5分で99℃まで達して加熱特性は変わら
ず、容器の底の温度は160〜180℃の範囲で充分な
断熱性を有していた。
[0021] As a comparison material, the measurement results are also shown under the condition that zeolite and pearlite were filled as in the conventional method and no filter was provided between the heat insulating material and the metal lid. As a result, in the conventional method, the hydrogen chloride concentration reached a maximum of 800 ppm when using zeolite, and reached 1000 ppm when using perlite, which has almost no gas adsorption ability, and the hydrogen sulfide concentration also reached 2.
0ppm detected. The irritating odor observed in the sensory check was pungent and smelled like hydrochloric acid and rotten eggs, and a small amount of smoke was emitted for about 30 to 60 seconds immediately after the self-combusting exothermic agent ignited. Ta. On the other hand, in the method using the alkali-treated filter according to the present invention, the hydrogen chloride gas concentration was 100p.
pm or less, the hydrogen sulfide gas concentration was significantly reduced to 10 ppm or less, and the odor was hardly noticed by sensory observation.Furthermore, almost no smoke was emitted, which was at a level that caused no practical problems. In particular, when calcium carbonate was used as a heat insulating material, the concentration of odor components was further reduced, resulting in a more significant improvement effect. At this time, 320 cc of water at 15°C was placed in a container in the heated area, and a self-combusting exothermic agent was ignited. However, in both the present application and the conventional method, the maximum temperature of water under any conditions was raised to 99°C in 2.5 minutes. The temperature at the bottom of the container remained in the range of 160 to 180°C, and the heating properties remained unchanged.

【0022】[0022]

【発明の効果】本発明は高い熱量密度を有する酸化鉄と
珪素粉末を主体とした自己燃焼性発熱剤を利用した加熱
容器の発生する刺激臭および煙をアルカリ性物質、およ
びアルカリ処理した断熱材の使用、アルカリ処理したフ
ィルターの使用により除去する方法であり、従来の発熱
剤を加圧成形していた方法に比べると粉末のまま容器内
により容易に低コストで効果的に除去可能な方法であり
、従来法に比べ塩化水素濃度を1/5、硫化水素濃度を
1/5程度に低減し、ほとんど臭いが感じられない程度
にすることができ、さらにフィルターの使用により煙の
除去もできる食品等の加熱容器としても何等問題なく十
分実用可能な、実用性の高い発明である。
Effects of the Invention The present invention eliminates the irritating odor and smoke generated by a heating container that uses a self-combusting exothermic agent mainly composed of iron oxide and silicon powder, which have a high calorific density, by using an alkaline substance and an alkali-treated heat insulating material. This method uses a filter that has been treated with alkali to remove the exothermic agent, and compared to the conventional method of press-molding the exothermic agent, it can be removed more easily and effectively at a lower cost by keeping the exothermic agent in a container as a powder. Compared to conventional methods, the hydrogen chloride concentration can be reduced to 1/5 and the hydrogen sulfide concentration to about 1/5, making it possible to reduce the odor to an almost imperceptible level.In addition, smoke can be removed by using a filter, etc. This is a highly practical invention that can be used as a heating container without any problems.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】加熱システムの容器構造例。FIG. 1: An example of a container structure of a heating system.

【符号の説明】[Explanation of symbols]

1  発熱剤 2  着火剤 3  着火装置 4  断熱材 5  フィルター 6  ガス抜き孔を有する容器蓋 7  発熱部材充填容器 8  被加熱物充填容器 9  水 1. Exothermic agent 2 Ignition agent 3 Ignition device 4 Insulation material 5 Filter 6 Container lid with gas vent hole 7 Heat generating component filling container 8 Container filled with heated material 9 Water

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  酸化鉄の粉末と珪素、珪素鉄合金の金
属および合金粉末からなる自己燃焼性発熱剤と該発熱剤
に接して酸化鉄粉、酸化銅の1種類以上の酸化物粉末と
ほう素粉末からなる着火剤を加熱容器に充填し、発熱剤
下部に着火装置と断熱材を有する発熱機能付き容器にお
いて、断熱材にCa,Na,Kの一種類以上を主成分と
するアルカリ物質を使用することを特徴とした自己燃焼
性発熱剤利用発熱機能付き加熱容器から発生する刺激性
ガス除去方法。
Claim 1: A self-combusting exothermic agent made of iron oxide powder, silicon, silicon-iron alloy metal, and alloy powder, and in contact with the exothermic agent, one or more oxide powders such as iron oxide powder and copper oxide. A heating container is filled with an ignition agent made of raw powder, and in a container with a heat generating function that has an ignition device and a heat insulating material under the heat generating agent, an alkaline substance containing one or more of Ca, Na, and K as a main component is added to the heat insulating material. A method for removing irritating gases generated from a heating container with a heat generating function using a self-combusting exothermic agent.
【請求項2】  発熱機能付き容器の断熱材に通気性多
孔質材料とCa,Na,Kの一種類以上を主成分とした
アルカリ物質を混合した素材を使用することを特徴とし
た請求項1記載の自己燃焼性発熱剤利用発熱機能付き加
熱容器から発生する刺激性ガス除去方法。
[Claim 2] Claim 1, characterized in that the heat insulating material of the container with a heat generating function is made of a mixture of a breathable porous material and an alkaline substance containing one or more of Ca, Na, and K as main components. A method for removing irritating gases generated from a heating container with a heat generating function using a self-combusting exothermic agent as described above.
【請求項3】  発熱機能付き容器の断熱材にCa,N
a,Kの一種類以上を主成分としたアルカリ水溶液を含
浸処理した通気性多孔質材料および繊維状断熱物質を使
用することを特徴とした請求項1記載の自己燃焼性発熱
剤利用発熱機能付き加熱容器から発生する刺激性ガス除
去方法。
[Claim 3] Ca, N is added to the heat insulating material of the container with heat generation function.
2. The heat generating function using a self-combusting exothermic agent according to claim 1, characterized in that a breathable porous material impregnated with an alkaline aqueous solution containing one or more of K and K as main components and a fibrous heat insulating material are used. A method for removing irritating gases generated from heating containers.
【請求項4】  酸化鉄の粉末と珪素、珪素鉄合金の金
属および合金粉末からなる自己燃焼性発熱剤と該発熱剤
に接して酸化鉄粉、酸化銅の1種類以上の酸化物粉末と
ほう素粉末からなる着火剤を加熱容器に充填し、発熱剤
下部に着火装置と通気性断熱材を有する発熱機能付き容
器において、これらの下部にガス抜き穴を有する金属性
容器蓋を装てんする場合、断熱材とガス抜き穴を有する
金属性容器の間で、ガスの排出経路内にCa,Na,K
の一種類以上を主成分とするアルカリ水溶液を含浸処理
した煙除去機能を有するフィルターを設けたことを特徴
とする発熱機能付き容器の刺激性ガスおよび煙除去方法
4. A self-combusting exothermic agent comprising iron oxide powder, silicon, silicon-iron alloy metal, and alloy powder, and in contact with the exothermic agent, one or more oxide powders such as iron oxide powder and copper oxide. When a heating container is filled with an ignition agent made of raw powder, and a container with a heat generating function has an ignition device and a breathable heat insulating material under the exothermic agent, and a metal container lid with a gas vent hole is installed at the bottom of these containers, Ca, Na, K in the gas exhaust path between the insulation material and the metal container with gas vent holes.
1. A method for removing irritating gases and smoke from a container with a heat generating function, characterized in that a filter having a smoke removing function is impregnated with an alkaline aqueous solution containing one or more types of as a main component.
JP3051459A 1991-03-15 1991-03-15 Method for removing irritating gas generated from vessel with heat gernerating function Withdrawn JPH04284819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3051459A JPH04284819A (en) 1991-03-15 1991-03-15 Method for removing irritating gas generated from vessel with heat gernerating function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3051459A JPH04284819A (en) 1991-03-15 1991-03-15 Method for removing irritating gas generated from vessel with heat gernerating function

Publications (1)

Publication Number Publication Date
JPH04284819A true JPH04284819A (en) 1992-10-09

Family

ID=12887521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3051459A Withdrawn JPH04284819A (en) 1991-03-15 1991-03-15 Method for removing irritating gas generated from vessel with heat gernerating function

Country Status (1)

Country Link
JP (1) JPH04284819A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110207067A1 (en) * 2003-03-13 2011-08-25 Peter Simon Lechner Heat-generating mixture and device and method for heat generation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110207067A1 (en) * 2003-03-13 2011-08-25 Peter Simon Lechner Heat-generating mixture and device and method for heat generation

Similar Documents

Publication Publication Date Title
Sitthikhankaew et al. Comparative study of hydrogen sulfide adsorption by using alkaline impregnated activated carbons for hot fuel gas purification
JP2020037107A (en) Method for reducing heavy metal exudation from activated carbon
RU2515451C2 (en) Bromine chloride-based compositions based, intended for removal of mercury from products of fuel combustion
WO2006001607A1 (en) Oxygen generating composition
Wasewar et al. Adsorption of selenium using bagasse fly ash
US8696931B2 (en) Method of production of activated carbon for removal of mercury gas
US20080289498A1 (en) Process for the production of carbonaceous adsorption agents doped with elementary sulfur and a process for waste gas cleaning using such adsorption agents
ES2625059T3 (en) Means for the purification of fluids, procedure for its preparation and use
US6155254A (en) Self-contained device for chemically producing high-pressure breathing oxygen
JPH04284819A (en) Method for removing irritating gas generated from vessel with heat gernerating function
ES2739629T3 (en) Process for fluid purification
JP5689878B2 (en) Solid inorganic composition, process for its preparation and its use for reducing heavy metals in flue gas
Tsvetkov et al. HCl Neutralization by Alkaline Sorbents in the Gasification of Chloride-Containing Fuel in the Filtration Combustion Mode
CN100528300C (en) Exhaust gas treating agent, method for treating exhaust gas and apparatus for treating exhaust gas
WO1995033560A1 (en) Catalyst for the deep oxidation of organic compounds and carbon monoxide
EA023454B1 (en) Fuel and combustible mixture used as a substitute for fossil fuels in thermoelectric power plants, industrial and central heating furnaces
RU2383489C2 (en) Method of producing cold oxygen gas and device for realising said method
JPH06102149B2 (en) Oxidizing composition
KR100562512B1 (en) A material for purifying smog, odor, heavy metals, noxious gas with flying ash, a bottom ash accumulated in the bottom of a trash burner and so on and purifying method to use the material
JPS63305823A (en) Lid having heat generating function
Suzuki et al. REMOVAL TECHNOLOGY OF HARMFUL MATERIALS IN HOT EXHAUST GAS USING ECO-FUNCTIONAL CERAMICS
RU2171138C1 (en) Adsorbent for cleaning emission gases
JPH1170315A (en) Treatment of high temperature gas
CA1095703A (en) Gas generator and method of manufacturing the gas generator
Constant et al. Physical Properties and Composition Effects on the Reactivity of Calcium-Based Sulfur Sorbents

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514