JPH0428372B2 - - Google Patents

Info

Publication number
JPH0428372B2
JPH0428372B2 JP58031431A JP3143183A JPH0428372B2 JP H0428372 B2 JPH0428372 B2 JP H0428372B2 JP 58031431 A JP58031431 A JP 58031431A JP 3143183 A JP3143183 A JP 3143183A JP H0428372 B2 JPH0428372 B2 JP H0428372B2
Authority
JP
Japan
Prior art keywords
unit
holder
plane
nmr
tomographic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58031431A
Other languages
Japanese (ja)
Other versions
JPS59157547A (en
Inventor
Nobuo Hioki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP58031431A priority Critical patent/JPS59157547A/en
Publication of JPS59157547A publication Critical patent/JPS59157547A/en
Publication of JPH0428372B2 publication Critical patent/JPH0428372B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/58Calibration of imaging systems, e.g. using test probes, Phantoms; Calibration objects or fiducial markers such as active or passive RF coils surrounding an MR active material

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【発明の詳細な説明】 この発明は例えば核磁気共鳴(NMR)を用い
て被測定物(一般に人体)の断層面画像を形成す
る装置、いわゆるNMR−CT装置における磁場
の不均一にもとずく歪量を測定するために用いら
れる検定用試料、いわゆるフアントムに関する。
[Detailed Description of the Invention] This invention is based on the non-uniformity of the magnetic field in a so-called NMR-CT device, which is a device that forms a tomographic image of an object to be measured (generally a human body) using nuclear magnetic resonance (NMR), for example. The present invention relates to a so-called phantom, which is a test sample used to measure the amount of strain.

NMR−CT装置は例えば特開昭54−158988号
公報に示されている。NMR−CT装置で得られ
るNMR断層画像の断層面は、被測定物に与えて
いる磁場の同一強度面(均一面)で決まる。しか
るにその磁場の空間的均一度にはある誤差がある
ため、前記断層面は必ずしも平面とはならず、磁
場の不均一度に伴う歪が生じる。この歪量を定量
的に断層面内の各位置毎に測定する手段は従来は
なかつた。
An NMR-CT apparatus is disclosed, for example, in Japanese Patent Application Laid-open No. 158988/1983. The tomographic plane of an NMR tomographic image obtained by an NMR-CT device is determined by the same intensity plane (uniform plane) of the magnetic field applied to the object to be measured. However, since there is a certain error in the spatial uniformity of the magnetic field, the tomographic plane is not necessarily flat, and distortion occurs due to the non-uniformity of the magnetic field. Conventionally, there has been no means to quantitatively measure the amount of strain at each position within the tomographic plane.

この発明の目的はNMR−CT装置において断
層面内の各位置毎に歪量を定量的に測定すること
を可能とするフアントムを提供することにある。
An object of the present invention is to provide a phantom that enables an NMR-CT apparatus to quantitatively measure the amount of strain at each position within a tomographic plane.

この発明によれば一平面内に、複数の同一のユ
ニツトがホルダに保持される。この各ユニツトは
核磁気共鳴に対する感応性が異なる少くとも二つ
の材質部分よりなり、これら材質部分は上記平面
と直角方向において連続的に変化している。これ
らユニツトの分布はほぼ均一とすることが好まし
く、かつ前記一平面内で各ユニツトの材質部分は
互に同一とされる。またホルダはNMR信号を出
さない材質とすることが好ましい。
According to this invention, a plurality of identical units are held in a holder within one plane. Each unit consists of at least two material sections having different sensitivities to nuclear magnetic resonance, and these material sections change continuously in a direction perpendicular to the plane. Preferably, the distribution of these units is substantially uniform, and the material portions of each unit are the same within the one plane. Further, the holder is preferably made of a material that does not emit NMR signals.

第1図はユニツトの一例を示し、円柱状部材1
1にその一端面より円錐型の内部空間12が同軸
心的に形成され、蓋13で空間12の開口側が蓋
されている。円柱状部材11は例えばプラスチツ
ク(例えばポリメチルメタアクリルレート、
PMMA)で作られ、空間12にはしかるべき濃
度の硫酸銅溶液、塩化マンガン、水、水素ガス、
プロトン含有高分子材料などの部材14が満たさ
れる。このように部材11及び14は核磁気共鳴
に対する感応性が異なるものである。この例では
部材11はNMR感応性がゼロで、部材14にの
みNMR感応性がもたされている。このようにユ
ニツト15はNMR感応性が異なる二つの部材1
1,14よりなり、かつこれら部材11,14は
ユニツトの長さ方向において連続的に変化し、つ
まりユニツト15の長さ方向と垂直な断面におけ
る部材11,14の大きさ形状がユニツト長さ方
向の各位置により徐徐に変化し、この例では部材
11の断面の円板状リングの内径が蓋13から離
れるに従つて小さくなり、逆に部材14の断面の
円の直径が大きくなる。
FIG. 1 shows an example of a unit, in which a cylindrical member 1
A conical inner space 12 is coaxially formed from one end surface of the space 1, and the opening side of the space 12 is covered with a lid 13. The columnar member 11 is made of, for example, plastic (for example, polymethyl methacrylate,
PMMA), and space 12 contains copper sulfate solution of appropriate concentration, manganese chloride, water, hydrogen gas,
A member 14, such as a proton-containing polymeric material, is filled. In this way, members 11 and 14 have different sensitivities to nuclear magnetic resonance. In this example, member 11 has zero NMR sensitivity, and only member 14 has NMR sensitivity. In this way, the unit 15 has two members 1 with different NMR sensitivities.
1 and 14, and these members 11 and 14 change continuously in the length direction of the unit, that is, the size and shape of the members 11 and 14 in the cross section perpendicular to the length direction of the unit 15 changes in the length direction of the unit. In this example, the inner diameter of the disc-shaped ring in the cross section of the member 11 becomes smaller as it moves away from the lid 13, and conversely, the diameter of the circle in the cross section of the member 14 becomes larger.

ユニツト15の端部外周面にねじが形成され、
そのねじに蓋13のつば部16の内周面に形成さ
れたねじが締付けられ、これが完全に締付けた状
態で部材11の端面が蓋13の内面に接し、その
端面からつば部16の端面までの間隔d1が一定値
とされる。蓋13に空気抜き小孔17が形成され
ている。
A thread is formed on the outer peripheral surface of the end of the unit 15,
A screw formed on the inner circumferential surface of the flange 16 of the lid 13 is tightened to the screw, and when this is completely tightened, the end surface of the member 11 contacts the inner surface of the lid 13, and from that end surface to the end surface of the flange 16. The interval d 1 is assumed to be a constant value. A small air vent hole 17 is formed in the lid 13.

同一のユニツト15の複数個がホルダに保持さ
れる。ホルダ17は例えば第2図及び第3図に示
すように方形の板状をしており、これに保持用孔
18が行、列に形成されている。この保持用孔1
8はユニツト15を挿入保持できるような大きさ
形状とされ、この例では部材11の外周径よりも
わずか大きい径の円形孔とされている。この例に
示したように保持用孔18はほぼ均一の分布で形
成される。ホルダ17はその一対の対向辺にこれ
と直角な支持片19がそれぞれ取付けられ、支持
片19により例えば立てた状態に保持できる。ホ
ルダ17及び19もNMRに対し感応しないもの
が好ましく、例えばPMMA樹脂で作られる。
A plurality of identical units 15 are held in a holder. The holder 17 has a rectangular plate shape, for example, as shown in FIGS. 2 and 3, and holding holes 18 are formed in rows and columns. This holding hole 1
The hole 8 has a size and shape that allows the unit 15 to be inserted and held therein, and in this example, it is a circular hole having a diameter slightly larger than the outer peripheral diameter of the member 11. As shown in this example, the holding holes 18 are formed with a substantially uniform distribution. The holder 17 is provided with support pieces 19 perpendicular to each of its pair of opposing sides, and can be held, for example, in an upright position by the support pieces 19. Holders 17 and 19 are also preferably NMR insensitive and are made of, for example, PMMA resin.

各ユニツト15はホルダ17の各保持用孔18
に挿入保持される。その一つの保持状態を第4図
に示すように、部材11が保持用孔18に嵌合挿
入され、蓋のつば部16の端面がホルダ17の板
面に対接される。このようにして各ユニツト15
の長手方向はホルダ17の板面と垂直な状態とさ
れ、かつホルダ17の板面と平行な一つの面にお
いて、ユニツト15の部材11,14の断面形状
(大きさも含む)はすべてのユニツト間で同一と
なる。
Each unit 15 is connected to each holding hole 18 of the holder 17.
is inserted and retained. As shown in FIG. 4, one of the holding conditions is such that the member 11 is fitted and inserted into the holding hole 18, and the end surface of the flange portion 16 of the lid is brought into contact with the plate surface of the holder 17. In this way, each unit 15
The longitudinal direction of the unit 15 is perpendicular to the plate surface of the holder 17, and in one plane parallel to the plate surface of the holder 17, the cross-sectional shape (including the size) of the members 11 and 14 of the unit 15 is the same as that between all units. are the same.

歪量測定に際してはユニツト15を保持したホ
ルダ17を、NMR−CT装置の走査断層の中心
面位置に、ユニツト15の長手方向の予め決めら
れた位置、この例ではホルダ17の長さ方向にお
ける中心面21aを一致させて配置する。この位
置合せを容易にするためホルダ17の側面に中心
線20が形成されてある。この状態でその断層面
を走査してNMR−CT断層画像を形成させる。
この断層画像は、各ユニツト15の部材14の円
形断面が、保持用孔18の配列で現われる。この
断層画像に現われた円の大きさを測定することに
より、実際の断層面の位置の中心21aからのず
れ(歪)を測定できる。
When measuring the amount of strain, the holder 17 holding the unit 15 is placed at a predetermined position in the longitudinal direction of the unit 15, in this example, at the center of the holder 17 in the longitudinal direction. The surfaces 21a are arranged so as to coincide with each other. A center line 20 is formed on the side surface of the holder 17 to facilitate this alignment. In this state, the tomographic plane is scanned to form an NMR-CT tomographic image.
In this tomographic image, a circular cross section of the member 14 of each unit 15 appears as an array of holding holes 18. By measuring the size of the circle appearing in this tomographic image, the deviation (distortion) of the actual position of the tomographic plane from the center 21a can be measured.

第4図において実際の断層面の位置が中心21
aの位置ならば、その位置の部材14の円形断面
と対応した大きさの円像22aが得られる。しか
し断層面が中心21aよりも蓋13側にずれた位
置21bになると、円像22aより大きな直径の
円像22bが得られる。逆に断層面が中心21a
より蓋13と反対側にずれた位置21cになる
と、円像22aより小さな直径の円像22cが得
られる。従つて得られる円像22の大きさから断
層面のずれ、すなわちスライス面位置の歪の定量
的測定ができる。
In Figure 4, the actual fault plane position is at the center 21
If the position is a, a circular image 22a having a size corresponding to the circular cross section of the member 14 at that position is obtained. However, when the tomographic plane reaches a position 21b shifted toward the lid 13 side from the center 21a, a circular image 22b having a larger diameter than the circular image 22a is obtained. On the contrary, the fault plane is the center 21a
When the position 21c is shifted further to the side opposite to the lid 13, a circular image 22c having a smaller diameter than the circular image 22a is obtained. Therefore, from the size of the circular image 22 obtained, it is possible to quantitatively measure the displacement of the tomographic plane, that is, the distortion of the slice plane position.

ホルダ17は例えば第5図に示すようにzx面
内に配され、そのホルダ17に保持されている各
ユニツト15ごとに前記歪測定を行うことによ
り、走査面(断層面)全体でのスライス面の歪が
測定できる。第6図に得られた画像例を示す。各
ユニツト15の位置(xi,zi)での実際の断層面
の位置yiが円像22の大きさとして測定できる。
The holder 17 is placed in the zx plane, for example, as shown in FIG. strain can be measured. FIG. 6 shows an example of the image obtained. The actual position y i of the tomographic plane at the position (x i , z i ) of each unit 15 can be measured as the size of the circular image 22 .

ユニツト15はホルダ17の板面と直角な方向
で二つの部材11,14が連続的に変化していれ
ばよい。従つて例えば第7図及び第8図に示すよ
うに、楔形部材11,14を互に逆にしてその1
側面を対接させ、全体として直方体状ユニツト1
5とすることもできる。この場合の断層面の位置
21a,21b,21cに対応して第9図に示す
方形像23a,23b,23cがそれぞれ得られ
る。またNMR−CT装置においては一般に断層
面は電気的に決められるが、これらの矢状断(サ
ジタル像)、冠状断(コロール)の断層面につい
ても、ホルダ17を横にしたり(yz面)寝かせ
たり(xy面)する事により、同様に断層面の歪
の測定が可能である。
The unit 15 only needs to have two members 11 and 14 that change continuously in a direction perpendicular to the plate surface of the holder 17. Therefore, as shown in FIGS. 7 and 8, for example, the wedge-shaped members 11 and 14 are reversed and one of them is
A rectangular parallelepiped unit 1 with its sides facing each other
It can also be set to 5. In this case, rectangular images 23a, 23b, and 23c shown in FIG. 9 are obtained corresponding to the tomographic plane positions 21a, 21b, and 21c, respectively. In addition, in NMR-CT devices, the tomographic plane is generally determined electrically, but these sagittal (sagittal) and coronal (coronal) tomographic planes can also be determined by laying the holder 17 horizontally (yz plane). It is also possible to measure the strain on the tomographic plane by moving the plane (xy plane).

以上述べたようにこの発明のフアントムを用い
てNMR−CT装置の断層面の歪を測定できるこ
とにより、装置の較正が可能となり、患者診断に
おける疾患位置の正しい把握が可能となる。
As described above, by being able to measure the strain on the tomographic plane of an NMR-CT device using the phantom of the present invention, it becomes possible to calibrate the device and to accurately determine the location of a disease in patient diagnosis.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明により用いられるユニツトの
一例を示す断面図、第2図はこの発明に用いられ
るホルダの一例を示す正面図、第3図は第2図の
側面図、第4図はユニツト15をホルダ17に取
付けた状態を示す断面図、第5図はこの発明のフ
アントムの配置と断層面との関係を示す図、第6
図はフアントムのNMR−CT画像の例を示す図、
第7図はユニツトの他の例を示す斜視図、第8図
は第7図の正面図、第9図は第8図のユニツトの
各種断面位置に対する像を示す図である。 11,14:部材、12:空間、13:蓋、1
5:ユニツト、17:ホルダ、18:保持用孔。
Fig. 1 is a sectional view showing an example of a unit used in this invention, Fig. 2 is a front view showing an example of a holder used in this invention, Fig. 3 is a side view of Fig. 2, and Fig. 4 is a sectional view showing an example of a holder used in this invention. 15 is a sectional view showing the state in which the phantom is attached to the holder 17, FIG. 5 is a view showing the relationship between the arrangement of the phantom of the present invention and the tomographic plane,
The figure shows an example of a Phantom NMR-CT image.
7 is a perspective view showing another example of the unit, FIG. 8 is a front view of the unit shown in FIG. 7, and FIG. 9 is a diagram showing images of the unit shown in FIG. 8 at various sectional positions. 11, 14: member, 12: space, 13: lid, 1
5: Unit, 17: Holder, 18: Holding hole.

Claims (1)

【特許請求の範囲】[Claims] 1 核磁気共鳴に対する感応性が異なる少なくと
も二つの材質部分よりなり、これら材質部分の長
手方向と垂直な断面における大きさ形状が長手方
向において連続的に変化している複数のユニツト
と、これら複数のユニツトをその長手方向とほぼ
直角な面内で支持するホルダとよりなるNMR−
CT断層面歪測定用フアントム。
1 A plurality of units consisting of at least two material parts having different sensitivities to nuclear magnetic resonance, the size and shape of which in a cross section perpendicular to the longitudinal direction of these material parts change continuously in the longitudinal direction; NMR consisting of a holder that supports the unit in a plane approximately perpendicular to its longitudinal direction.
Phantom for CT tomographic strain measurement.
JP58031431A 1983-02-25 1983-02-25 Phantom for measuring nmr-ct tomographic surface distortion Granted JPS59157547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58031431A JPS59157547A (en) 1983-02-25 1983-02-25 Phantom for measuring nmr-ct tomographic surface distortion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58031431A JPS59157547A (en) 1983-02-25 1983-02-25 Phantom for measuring nmr-ct tomographic surface distortion

Publications (2)

Publication Number Publication Date
JPS59157547A JPS59157547A (en) 1984-09-06
JPH0428372B2 true JPH0428372B2 (en) 1992-05-14

Family

ID=12331043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58031431A Granted JPS59157547A (en) 1983-02-25 1983-02-25 Phantom for measuring nmr-ct tomographic surface distortion

Country Status (1)

Country Link
JP (1) JPS59157547A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816762A (en) * 1987-01-26 1989-03-28 North American Philips Corporation Three-dimensional metric, perfusion and metabolic compartment spectroscopy phantom
US5432449A (en) * 1993-02-25 1995-07-11 General Electric Company Test apparatus for magnetic resonance imaging systems
JP4603862B2 (en) * 2004-11-22 2010-12-22 学校法人金沢工業大学 Calibration phantom for magnetic resonance imaging equipment
KR100623090B1 (en) * 2006-03-07 2006-09-13 가톨릭대학교 산학협력단 A phantom for testing the magnetic resonance spectroscopy(mrs) efficiency
JP4688830B2 (en) * 2006-08-07 2011-05-25 カソリック ユニバーシティー インダストリー アカデミー コオペレーション ファウンデーション Phantom for magnetic resonance spectroscopy performance evaluation using magnetic resonance imaging equipment
JP6118394B2 (en) * 2012-03-28 2017-04-19 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Quality assurance apparatus and method for radiation therapy planning based on magnetic resonance
WO2013161910A1 (en) * 2012-04-24 2013-10-31 株式会社東芝 Pet-mri device

Also Published As

Publication number Publication date
JPS59157547A (en) 1984-09-06

Similar Documents

Publication Publication Date Title
US4551678A (en) Phantom for nuclear magnetic resonance machine
US4664129A (en) Optical movement sensor
EP0133722B1 (en) Phantom for nmr apparatus
US4644276A (en) Three-dimensional nuclear magnetic resonance phantom
US4613819A (en) Nuclear magnetic resonance imaging apparatus
WO2018054024A1 (en) Functional magnetic resonance imaging quality detection body model and method
JP2016147094A (en) Method for calibration of diffusion tensor imaging pulse sequences used in mri
EP3082603B1 (en) Universal phantom structure for quality inspections both on computerized tomography and on magnetic resonance tomography
JPH0428372B2 (en)
JPS62186853A (en) Phantom for evaluating capacity of nuclear magnetic resonance scanner
JPS58218950A (en) Apparatus for detecting chemical and/or physical state in living body by non- insert method
JPS61105448A (en) Automatic shimming device and phantom used for said device
CA2987792A1 (en) Cerebrospinal diffusion phantom
CA2199578C (en) Magnetic field source movable phantom head
CN110811621B (en) Magnetic resonance diffusion tensor imaging quality control comprehensive test phantom
Gamba et al. Measurement of electrical current density distribution in a simple head phantom with magnetic resonance imaging
US4408124A (en) BRH Test pattern for gamma camera performance (an evaluator)
CN108761361B (en) Adjustable high-uniformity nuclear magnetic resonance sensor magnet structure and measuring device
JPH0584873B2 (en)
Löwa et al. A multi-purpose phantom kit for magnetic particle imaging
Dowell et al. Quality assurance for diffusion MRI
JPS61120048A (en) Phantom for nmr imaging device
CN109009114B (en) Image performance detection device of three-azimuth magnetic resonance imaging equipment
JPH0233382B2 (en)
JPH09266892A (en) Phantom for esr imaging and phantom fixing tool