JPH0428194A - Parallel high-frequency induction heating method - Google Patents

Parallel high-frequency induction heating method

Info

Publication number
JPH0428194A
JPH0428194A JP13252290A JP13252290A JPH0428194A JP H0428194 A JPH0428194 A JP H0428194A JP 13252290 A JP13252290 A JP 13252290A JP 13252290 A JP13252290 A JP 13252290A JP H0428194 A JPH0428194 A JP H0428194A
Authority
JP
Japan
Prior art keywords
heating
coils
frequency
heating coils
induction heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13252290A
Other languages
Japanese (ja)
Inventor
Takijiro Shimamoto
島本 滝二郎
Takayuki Kono
隆之 河野
Masanobu Uchida
内田 政信
Takaaki Kamaike
蒲池 孝昭
Masasuke Ushijima
牛島 正祐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NETSUSAN HIITO KK
Mitsubishi Heavy Industries Ltd
Original Assignee
NETSUSAN HIITO KK
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NETSUSAN HIITO KK, Mitsubishi Heavy Industries Ltd filed Critical NETSUSAN HIITO KK
Priority to JP13252290A priority Critical patent/JPH0428194A/en
Publication of JPH0428194A publication Critical patent/JPH0428194A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To lessen magnetic-field interference between plural heating coils so as to cause each of the heating coils to surely do induction heating by setting the frequency of each of currents applied respectively to the plural heating coils wound round an object of paramagnetic body being heated to a high frequency. CONSTITUTION:Heating coils 2, 3 are respectively wound round a steel pipe 1 whereto such heat treatment as annealing or the like is given in proximity to the pipe. A high-frequency power unit 4 has an independent oscillator, and it has its input side P connected to each of commercial electric wires l and applies a high-frequency current(not less than 600Hz) to the heating coil 2 from its output side S. Also a high-frequency power unit 5 has an independent oscillator, and it has its input side P connected to each of the electric wires l and applies a high-frequency current(not less than 600Hz) to the coil 3 from its output side S. By applying the currents each having not less than 600Hz respectively to the coils 2, 3 in this manner, the electromagnetic mutual interference of the coils 2, 3 is evaded, so that each of the coils 2, 3 can efficiently do induction heating of the steel pipe even if the frequencies and phases of currents flowing respectively through the coils 2, 3 are different from one another.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は並列高周波誘導加熱方法に関し、例えば鋼管の
焼なまし等の熱処理に適用して有用である。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a parallel high frequency induction heating method, and is useful when applied to, for example, heat treatment such as annealing of steel pipes.

〈従来の技術〉 従来では、鋼管を用いた配管などの溶接継手に焼なまし
等の熱処理を施すには、次のような方法がとられていた
<Prior Art> Conventionally, the following methods have been used to heat treat, such as annealing, a welded joint such as piping using a steel pipe.

(イ) アセチレンやプロパン等の可燃ガスを燃焼させ
、燃焼炎を溶接継手に直接吹きつける方法。
(a) A method in which combustible gas such as acetylene or propane is combusted and the combustion flame is blown directly onto the welded joint.

(ロ)電気ヒータを溶接継手に近接して配置し、通電に
より電気ヒータから生じた輻射熱によって溶接継手を加
熱する方法。
(b) A method in which an electric heater is placed close to the welded joint, and the welded joint is heated by radiant heat generated from the electric heater when energized.

し→ 例えば鋼管の外周に沿って導線を巻き付けて加熱
コイルを形成し、この加熱コイルに、50Hzや60七
の商用電流を通電させたり、116〜30造の高周波電
流を通電させたりすることにより、鋼管に誘導電流を生
じさせてそのジュール熱により加熱する方法。
→ For example, by winding a conductor along the outer periphery of a steel pipe to form a heating coil, and passing a commercial current of 50Hz or 60Hz, or a high frequency current of 116 to 30Hz to this heating coil. , a method that generates an induced current in a steel pipe and heats it using the Joule heat.

鋼管、例えば火力発電用プラントの主蒸気管等の厚内・
大径の管を焼なましするには、上記←→の方法、即ち加
熱コイルを用いた誘導加熱方法が用いられている。この
ような誘導加熱方法を採用した場合において、電源が一
台では加熱電力が不足するとき、あるいは加熱帯を広く
する要求があるときには、複数の電源を使用し複数の加
熱コイルにそれぞれ電力を供給するようにしている。
Steel pipes, such as the main steam pipes of thermal power plants, etc.
In order to anneal large diameter tubes, the above method ←→, that is, the induction heating method using a heating coil is used. When using this type of induction heating method, if a single power supply does not provide enough heating power, or if there is a need to widen the heating zone, multiple power supplies can be used to supply power to multiple heating coils. I try to do that.

ここで複数の電源及び複数の加熱コイルを用いて焼きな
ましをする従来技術を、第3図を基に説明する。同図に
示すように鋼管1には2つの加熱コイル2,3が巻回さ
れている。
Here, a conventional technique for annealing using a plurality of power supplies and a plurality of heating coils will be explained with reference to FIG. As shown in the figure, two heating coils 2 and 3 are wound around a steel pipe 1.

変圧晋で構成した電源6,7はそれぞれ、次側U、Vで
商用電線jから商用周波数の電力を受電し、二次側u、
V’から加熱コイル2゜3に交流電流を供給する。この
ため加熱コイル2,3に交流磁界が生じジュール熱によ
り鋼管1が誘導加熱される。
The power supplies 6 and 7 configured with transformers receive commercial frequency power from the commercial power line j at the secondary sides U and V, respectively, and the secondary sides U, V, respectively.
An alternating current is supplied from V' to the heating coil 2°3. Therefore, an alternating magnetic field is generated in the heating coils 2 and 3, and the steel pipe 1 is heated by induction by Joule heat.

〈発明が解決しようとする課題〉 ところで第3図に示す従来技術では、電源(変圧gl 
 6,7の一次側のそれぞれの端子U、Vは商用電源に
対し同一極性に接続し、且つ、二次側のそれぞれの端子
u、vは同一方向に巻かれた加熱コイル2,3に対し同
一極性に接続しなければならない。いずれかの接続極性
を誤った場合には、加熱コイル2で生じた磁界と加熱コ
イル3で生じた磁界とが逆極性となって打ち消し合い、
鋼管lの加熱ができなくなる。よって接続極性を間違わ
ないように細心の注意を払う必要があるが、錯誤により
誤接続することがあった。
<Problem to be solved by the invention> By the way, in the prior art shown in FIG.
The respective terminals U and V on the primary side of 6 and 7 are connected to the commercial power supply with the same polarity, and the respective terminals U and V on the secondary side are connected to the heating coils 2 and 3 wound in the same direction. Must be connected with the same polarity. If one of the connection polarities is incorrect, the magnetic field generated by the heating coil 2 and the magnetic field generated by the heating coil 3 will have opposite polarities and cancel each other out.
It becomes impossible to heat the steel pipe l. Therefore, it is necessary to be extremely careful not to make a mistake in the connection polarity, but incorrect connections have sometimes occurred due to mistake.

一方、サイリスタインバータやトランジスタインバータ
を用いた交流電源が、誘導加熱電源として用いられてい
るが、このタイプのインバータ型交流電源は、一般に出
力周波数は低く、1つの加熱コイルを用いて誘導加熱を
するのに採用されているにすぎない。このタイプのイン
バータ型交流電源を2台用いて近接配置した2つの加熱
コイルにそれぞれ電流を流したとしても、つまり、第3
図において電源6,7の代わりにインバータ型交流電源
を用いたとしても、効率のよい加熱はできない。なぜな
らば、インバータ型交流電源は、内蔵した発振回路が自
動発振しているため、同一仕様のものでも各インバータ
型交流電源の周波数及び位相がわずかに異なってしまう
からである。このように周波数及び位相が異なると、双
方のコイルによる磁界が一部打ち消し合い加熱効率が低
下してしまうのである。
On the other hand, AC power supplies using thyristor inverters or transistor inverters are used as induction heating power supplies, but this type of inverter type AC power supply generally has a low output frequency and performs induction heating using a single heating coil. It's just that it's being adopted. Even if two inverter-type AC power supplies of this type are used to supply current to two heating coils placed close to each other, in other words, the third
Even if an inverter-type AC power source is used in place of the power sources 6 and 7 in the figure, efficient heating cannot be achieved. This is because inverter-type AC power supplies have a built-in oscillation circuit that automatically oscillates, so even if the inverter-type AC power supplies have the same specifications, the frequency and phase of each inverter-type AC power supply will be slightly different. If the frequencies and phases differ in this way, the magnetic fields from both coils will partially cancel out, resulting in a decrease in heating efficiency.

特に温度や他の条件が変化したときには、インバータ型
交流電源に内蔵した自動発振型の発振回路の周波数及び
位相が変動しやすくなるので、2つのインバータ型交流
電源の出力周波数及び位相が大きくずれることがあり、
この場合には加熱効率が大幅に低下してしまう。
Especially when the temperature or other conditions change, the frequency and phase of the automatic oscillation circuit built into the inverter-type AC power supply tend to fluctuate, so the output frequency and phase of the two inverter-type AC power supplies may deviate significantly. There is,
In this case, the heating efficiency will be significantly reduced.

本発明は、上記従来技術に鑑み、複数の加熱コイルを用
いて加熱する際に、電源の接続極性を合せることが不要
でしかも効率の良い加熱のできる並列高周波誘導加熱方
法を提供するものである。
In view of the above-mentioned prior art, the present invention provides a parallel high-frequency induction heating method that eliminates the need to match the connection polarity of power supplies when heating using a plurality of heating coils, and allows efficient heating. .

く課題を解決するための手段〉 上記課題を解決する本発明は、 常磁性体の被加熱物に複数の加熱コイルを巻回し、独立
した複数の高周波電源から各加熱コイルに個別に600
Hz以上の高周波電流を供給することを特徴とする。
Means for Solving the Problems> The present invention to solve the above problems consists of winding a plurality of heating coils around a paramagnetic object to be heated, and individually applying 600 volts to each heating coil from a plurality of independent high-frequency power sources.
It is characterized by supplying a high frequency current of Hz or more.

く作   用〉 常磁性体の被加熱物に巻回した複数の加熱コイルに流す
電流の周波数を、600)fz以上にすると、加熱コイ
ルどうしの磁界の干渉がきわめて小さくなり、各加熱コ
イルごとに確実に誘導加熱ができる。
Effect〉 When the frequency of the current flowing through multiple heating coils wound around a paramagnetic object to be heated is set to 600) fz or more, the interference of the magnetic fields between the heating coils becomes extremely small, and each heating coil Reliable induction heating.

く実 施 例〉 第1図は本発明方法を適用した第1の実施例を示す。同
図に示すように、焼鈍等の熱処理がされる鋼管1には、
2つの加熱コイル2゜3が近接して巻回されている。高
周波電源4は独立した発振器を有しており、入力側Pが
商用f41s7に接続され出力側Sがら加熱コイル2に
高周波電流(600Hz以上)を流している。また高周
波電源5は独立した発振器を有しており、入力側Pが商
用電@lに接続され出力側Sから加熱コイル3に高周波
電流(600Hz以上)を流している。このように加熱
コイル2,3に600)tz以上の電流を流すと、加熱
コイル2,3による電磁的な相互干渉が無くなり (理
由は後述する)、双方の加熱コイル2,3に流れる電流
の周波数や位相が違っていても、各加熱コイル2,3ご
とに誘導加熱が効率よくできる。したがって商用電線i
と高周波電源4,5との接続、ならびに高周波電源4,
5と加熱コイル2,3との接続は、極性合せをする必要
はない。
Embodiment FIG. 1 shows a first embodiment to which the method of the present invention is applied. As shown in the figure, the steel pipe 1 undergoes heat treatment such as annealing.
Two heating coils 2°3 are wound closely. The high frequency power supply 4 has an independent oscillator, and the input side P is connected to the commercial f41s7, and the high frequency current (600 Hz or more) is passed through the heating coil 2 from the output side S. The high frequency power source 5 has an independent oscillator, and the input side P is connected to the commercial power supply @1, and a high frequency current (600 Hz or more) is passed through the heating coil 3 from the output side S. When a current of 600) tz or more is passed through the heating coils 2 and 3 in this way, mutual electromagnetic interference between the heating coils 2 and 3 is eliminated (the reason will be explained later), and the current flowing through both heating coils 2 and 3 is reduced. Even if the frequencies and phases are different, induction heating can be efficiently performed for each heating coil 2 and 3. Therefore, commercial electric line i
and the connection with the high frequency power supplies 4 and 5, as well as the high frequency power supplies 4 and 5.
5 and the heating coils 2 and 3 do not need to be polarized.

ここで実験データを示しておく。tl[1は外径が43
0〔■〕で、加熱コイル2,3(よコイル線材の断面積
が38[n;)で20巻である場合、供給電流周波数及
び加熱コイル2゜3の間隔りを次表に示すようにしたと
ころ、各加熱コイル2,3により鋼管3の加熱が効率よ
く確実にできた。この表から、供給電流周波数が6QO
Hz以上であれば、効率の良い誘導加熱ができることが
わかる。
Here, we will show the experimental data. tl [1 has an outer diameter of 43
0 [■], heating coils 2 and 3 (the cross-sectional area of the coil wire is 38 [n;) and 20 turns, the supply current frequency and the spacing between the heating coils 2゜3 are as shown in the table below. As a result, the steel pipe 3 could be heated efficiently and reliably by each of the heating coils 2 and 3. From this table, we can see that the supply current frequency is 6QO
It can be seen that efficient induction heating can be performed at Hz or higher.

次に、加熱コイルに高周波電流を流したときに、近接し
た加熱コイルに電磁的な相互干渉が無くなる理由を説明
する。この理由は次の2つである。
Next, the reason why there is no mutual electromagnetic interference between adjacent heating coils when a high frequency current is passed through the heating coils will be explained. There are two reasons for this.

(it  加熱コイルから生じた高周波磁界にさらされ
た鋼管中を流れる浸透電流は、表皮効果により鋼管の表
面部分のみを流れるので、隣接した加熱コイルへの影響
が小さくなっている。
(it) The penetrating current that flows through the steel pipe exposed to the high-frequency magnetic field generated by the heating coil flows only through the surface portion of the steel pipe due to the skin effect, so the influence on the adjacent heating coil is reduced.

(iil  電流周波数が高くなると、鋼材の磁区の反
転が時間的に追従できず、コイル幅よりも外の領域に出
ていく磁界成分が少なくなる。このことを更に詳述する
。例えば、常磁性体にコイルを巻き直流電流を流し一方
向に磁化し、次に逆方向に電流を流した場合、磁性体は
ヒステリシス曲線に従い反対方向に磁化されるが、磁性
体内の磁区がすべて反対方向にそろうためには、ある時
間が必要である。磁区がすべて同一方向になる前にさら
に電流が反転すると、磁性体は磁化されない状態と同様
になる。高周波電流(交流)を加熱コイルに流す場合、
このような状態になっており、二組の加熱コイルを磁性
体(m管)に巻いた場合、双方の加熱コイルの干渉は周
波数が高いほど少なくなる。ヒステリシス曲線の磁化力
に対し、完全に磁束密度が追従する時間は、磁性体の透
磁率、保磁力、残留磁気、磁性体の大きさ厚さ、および
磁化力などによって定まる。
(iii) As the current frequency increases, the reversal of the magnetic domains of the steel material cannot be followed over time, and the magnetic field component that goes out to the area outside the coil width decreases.This will be explained in more detail.For example, paramagnetic If a coil is wound around a body and a direct current is passed through it, magnetizing it in one direction, and then passing a current in the opposite direction, the magnetic body will be magnetized in the opposite direction according to the hysteresis curve, but all the magnetic domains in the magnetic body will align in the opposite direction. A certain amount of time is required for this to occur.If the current is further reversed before all the magnetic domains are in the same direction, the magnetic material will be in the same state as if it were not magnetized.When high-frequency current (alternating current) is passed through the heating coil,
In such a state, when two sets of heating coils are wound around a magnetic material (m-tube), the higher the frequency, the less interference between both heating coils. The time required for the magnetic flux density to completely follow the magnetizing force of the hysteresis curve is determined by the permeability, coercive force, residual magnetism, size and thickness of the magnetic body, magnetizing force, etc. of the magnetic body.

第2図は本発明方法を適用した第2の 実施例を示す。この実施例では、#W1に4つの加熱コ
イル11,12,13゜14を巻回し、商用電線4に接
続された高周波電源21,22,23,24から各加熱
コイル11,12,13,14に個別に600Hz以上
の高周波電流を流している。この実施例もコイル相互間
の干渉は無く、4つの加熱コイル11,1213.14
により加熱幅が広くなる。もちろん高周波電源21〜2
4の接続極性は任意にしてよい。
FIG. 2 shows a second embodiment to which the method of the present invention is applied. In this embodiment, four heating coils 11, 12, 13 degrees 14 are wound around #W1, and each heating coil 11, 12, 13, 14 is connected to a high frequency power source 21, 22, 23, 24 connected to a commercial electric line 4. A high frequency current of 600 Hz or more is applied to each of the two. This embodiment also has no interference between the coils, and there are four heating coils 11, 1213.14.
This increases the heating width. Of course high frequency power supply 21-2
The connection polarity of 4 may be arbitrary.

〈発明の効果〉 複数の加熱コイルを被加熱物に巻回し、しかも加熱コイ
ル相互を近接配置していても、各加熱コイルに流す電流
を600七以上の高周波電流としているので、各加熱コ
イルに流れる電流周波数や位相が異なっていても、加熱
コイル相互の干渉なく誘導加熱が効率良くできる。換言
するならば、加熱コイルを複数ならべて加熱する並列加
熱運転ができることになる。このとき複数の電源の一次
側及び二次側の接続極性は任意にしてよく、接続時に極
性に対し注意を払う必要がなくなり、作業者の負担が減
る。
<Effects of the Invention> Even if a plurality of heating coils are wound around the object to be heated and the heating coils are placed close to each other, the current flowing through each heating coil is a high frequency current of 6007 or more, so that each heating coil has a high frequency current of 600. Even if the flowing current frequencies and phases are different, induction heating can be performed efficiently without mutual interference between the heating coils. In other words, it is possible to perform parallel heating operation in which a plurality of heating coils are lined up and heated. At this time, the connection polarity of the primary side and secondary side of the plurality of power supplies can be set arbitrarily, and there is no need to pay attention to the polarity when connecting, which reduces the burden on the operator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を適用した第1の実施例を示す構成
図、第2図は第2の実施例を示す構成図、第3図は従来
技術を示す構成図である。 図 面 中、 1は鋼管、 2.3,11,12,13゜ イル、 4.5,21,22,23゜ 電源、 Iは商用電線である。 14は加熱コ 24は高周波
FIG. 1 is a block diagram showing a first embodiment to which the method of the present invention is applied, FIG. 2 is a block diagram showing the second embodiment, and FIG. 3 is a block diagram showing a conventional technique. In the drawing, 1 is a steel pipe, 2. 3, 11, 12, 13 degrees, 4. 5, 21, 22, 23 degrees are power supplies, and I is a commercial electric wire. 14 is a heating coil 24 is a high frequency

Claims (1)

【特許請求の範囲】[Claims] 常磁性体の被加熱物に複数の加熱コイルを巻回し、独立
した複数の高周波電源から各加熱コイルに個別に600
Hz以上の高周波電流を供給することを特徴とする並列
高周波誘導加熱方法。
Multiple heating coils are wound around a paramagnetic object to be heated, and each heating coil is individually supplied with 600 Hz from multiple independent high-frequency power sources.
A parallel high-frequency induction heating method characterized by supplying a high-frequency current of Hz or more.
JP13252290A 1990-05-24 1990-05-24 Parallel high-frequency induction heating method Pending JPH0428194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13252290A JPH0428194A (en) 1990-05-24 1990-05-24 Parallel high-frequency induction heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13252290A JPH0428194A (en) 1990-05-24 1990-05-24 Parallel high-frequency induction heating method

Publications (1)

Publication Number Publication Date
JPH0428194A true JPH0428194A (en) 1992-01-30

Family

ID=15083278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13252290A Pending JPH0428194A (en) 1990-05-24 1990-05-24 Parallel high-frequency induction heating method

Country Status (1)

Country Link
JP (1) JPH0428194A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004127854A (en) * 2002-10-07 2004-04-22 Dai Ichi High Frequency Co Ltd Moving heating method and moving heating device
US6920575B2 (en) 2000-03-22 2005-07-19 International Business Machines Corporation Power source switching unit with integrated charging circuit for selectively coupling an external power source, a computer load, and batteries, for providing temporary power during coupling, and for charging batteries
CN102359694A (en) * 2011-09-14 2012-02-22 周久健 System and method for automatically regulating temperature of interlayer airflow inductive heated material pipe

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4970243A (en) * 1972-09-18 1974-07-08
JPS5125228A (en) * 1974-08-26 1976-03-01 Nissan Motor
JPS59114782A (en) * 1982-12-10 1984-07-02 ナウチノ−プロイズヴオドストヴエンノエ オピエデイネニエポ テクノロギ− マシノストロエニア “ツニイトマシ“ Member induction heater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4970243A (en) * 1972-09-18 1974-07-08
JPS5125228A (en) * 1974-08-26 1976-03-01 Nissan Motor
JPS59114782A (en) * 1982-12-10 1984-07-02 ナウチノ−プロイズヴオドストヴエンノエ オピエデイネニエポ テクノロギ− マシノストロエニア “ツニイトマシ“ Member induction heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6920575B2 (en) 2000-03-22 2005-07-19 International Business Machines Corporation Power source switching unit with integrated charging circuit for selectively coupling an external power source, a computer load, and batteries, for providing temporary power during coupling, and for charging batteries
JP2004127854A (en) * 2002-10-07 2004-04-22 Dai Ichi High Frequency Co Ltd Moving heating method and moving heating device
CN102359694A (en) * 2011-09-14 2012-02-22 周久健 System and method for automatically regulating temperature of interlayer airflow inductive heated material pipe

Similar Documents

Publication Publication Date Title
US7582851B2 (en) Gradient induction heating of a workpiece
CA2622088C (en) Pulse resonating device
ES2296919T3 (en) SIMULTANEOUS WARMING AND AGITATION BY INDUCTION OF A FUSED METAL.
JPH11233247A (en) Induction heating coil and induction heating device using the induction heating coil
DE69635752D1 (en) INDUCTION WELDING OF TUBES WITH THE HELP OF MULTIPLE INDUCTION COILS
JP2010071624A (en) Fluid heating device
US7704364B2 (en) Full wave rectified power water treatment device
JPH0428194A (en) Parallel high-frequency induction heating method
KR0171051B1 (en) Apparatus for induction heating of bearings or the like
US5349165A (en) Induction heater system for fusing plastics
CN109701473B (en) Star-delta form three-phase induction thermal reactor
GB2105159A (en) Induction heating apparatus
JP3482342B2 (en) Induction heating device on the side of metal plate
JP2005100935A (en) Pipe induction heating device
EP2890217B1 (en) Control device for induction heating units
JPS56127139A (en) Heater for fluid in pipe
JPH0355790A (en) High-frequency heating method and its device
JPH0992449A (en) Induction heater
US9055616B2 (en) Method and apparatus for inductively heating an electrically conductive workpiece
JP7314024B2 (en) Electromagnetic induction heating device
JP2007294207A (en) High-frequency induction heating apparatus and its heating method
RU2594770C1 (en) Device for induction heating
JPS58201281A (en) Method of electrically heating pipeline
US3585354A (en) Phase shift voltage cancellation system
SU856043A1 (en) Inductor for local heating of articles