JPH04280938A - Production of ni-base superalloy member - Google Patents

Production of ni-base superalloy member

Info

Publication number
JPH04280938A
JPH04280938A JP4369691A JP4369691A JPH04280938A JP H04280938 A JPH04280938 A JP H04280938A JP 4369691 A JP4369691 A JP 4369691A JP 4369691 A JP4369691 A JP 4369691A JP H04280938 A JPH04280938 A JP H04280938A
Authority
JP
Japan
Prior art keywords
weight
based superalloy
less
solidification
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4369691A
Other languages
Japanese (ja)
Other versions
JP3084764B2 (en
Inventor
Toshiharu Noda
野 田 俊 治
Akihiro Suzuki
鈴 木 昭 弘
Tomohito Iikubo
飯久保 知 人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP03043696A priority Critical patent/JP3084764B2/en
Publication of JPH04280938A publication Critical patent/JPH04280938A/en
Application granted granted Critical
Publication of JP3084764B2 publication Critical patent/JP3084764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve the ductility, etc., of an Ni-base superalloy member by specifying the relationship between the solidification velocity of a molten metal and the temp. gradient at the solidification boundary at the time of casting a member composed of an Ni-base superalloy with a specific composition. CONSTITUTION:A member of an Ni-base superalloy which has a composition containing, by weight, 11-23% Cr and 0.5-4.0% Ti as essential elements, containing one or two kinds among <=20% Co, <=6% W, and <=10% Mo, and also 1.0-6.5% Nb, <=2.0% Ta, 0.2-4.0% Al and <=37% Fe as selective elements, and having the balance Ni with impurities is produced by means of casting. At this time, casting is performed under the condition where the relationship between the solidification rate Rcm/h of the molten Ni-base superalloy and the temp. gradient G deg.C/cm at the solidification boundary satisfies G/R>=0.5 deg.C.h/ cm<2>. By this method, the ductility, etc., of the Ni-base superalloy member (stock, parts, product, etc.) can be improved to a greater extent.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高温における強度,靭
性もしくは耐熱性や耐食性などに優れていることが要求
される素材,部品ないしは製品、例えば航空機エンジン
のタービン部材や原子炉容器内の締結ボルト等の耐熱も
しくは耐食部材として利用するのに適したNi基超合金
部材を製造するのに利用されるNi基超合金部材の製造
方法に関するものである。
[Industrial Application Field] The present invention is applicable to materials, parts, or products that are required to have excellent strength, toughness, heat resistance, and corrosion resistance at high temperatures, such as aircraft engine turbine parts and fastenings in nuclear reactor vessels. The present invention relates to a method for manufacturing a Ni-based superalloy member that is used to manufacture a Ni-based superalloy member suitable for use as a heat-resistant or corrosion-resistant member such as a bolt.

【0002】0002

【従来の技術】近年、ジェットエンジンやガスタービン
などの動力機関においては、その高性能化および高効率
化などのために、タービン各部の高温化が不可欠となっ
ており、このような高温化に耐えうるタービン部材の開
発が求められるようになっている。
[Background Art] In recent years, in order to improve the performance and efficiency of power engines such as jet engines and gas turbines, it has become essential to raise the temperature of each part of the turbine. There is a growing need to develop durable turbine components.

【0003】この種のタービン部材に要求される特性は
、高温での遠心力に耐えうる優れたクリープ破断強度,
疲労強度ならびに靭性,高温燃焼ガス雰囲気に対する耐
熱性や耐食性などである。
Characteristics required for this type of turbine member are excellent creep rupture strength that can withstand centrifugal force at high temperatures;
These include fatigue strength, toughness, heat resistance to high-temperature combustion gas atmospheres, and corrosion resistance.

【0004】このような用途に適する材料としては、従
来より、Ni基超合金が多く採用されており、溶製した
Ni基超合金の溶湯を鋳造して製造するようにしていた
Conventionally, Ni-based superalloys have been widely used as materials suitable for such uses, and they have been manufactured by casting a molten Ni-based superalloy.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
Ni基超合金部材の鋳造による製造に際しては、Ni基
超合金溶湯の凝固条件を格別コントロールすることなし
に鋳造を行っていたため、鋳造組織には、凝固偏析によ
って、(Fe,Cr,Ni)2 (Mo,Ti,Nb)
であらわされる六方晶の金属間化合物であるLaves
(ラーベス)相がデンドライト境界に形成されることが
あり、このようなLaves相が形成されたときにはN
i基超合金部材の延性等が低下することがあるという問
題点があり、このような問題点を解決することが課題と
して存在していた。
[Problems to be Solved by the Invention] However, in the conventional production of Ni-based superalloy members by casting, casting was performed without particularly controlling the solidification conditions of the molten Ni-based superalloy, so that the casting structure , due to solidification segregation, (Fe, Cr, Ni)2 (Mo, Ti, Nb)
Laves, a hexagonal intermetallic compound represented by
(Laves) phase may be formed at dendrite boundaries, and when such a Laves phase is formed, N
There is a problem that the ductility etc. of the i-based superalloy member may be reduced, and it has been a problem to solve this problem.

【0006】[0006]

【発明の目的】本発明は、上記した従来の課題を解決す
るためになされたもので、鋳造により製造されたNi基
超合金部材(素材,部品,製品等)の延性等の低下を防
止し、延性等のより一層の向上をはかることが可能であ
るNi基超合金部材を製造できるようにすることを目的
としている。
[Object of the Invention] The present invention has been made to solve the above-mentioned conventional problems, and prevents a decrease in ductility etc. of Ni-based superalloy members (materials, parts, products, etc.) manufactured by casting. The purpose of the present invention is to manufacture a Ni-based superalloy member that can further improve ductility and the like.

【0007】[0007]

【課題を解決するための手段】本発明に係わるNi基超
合金部材の製造方法は、Ni基超合金部材を鋳造により
製造するに際し、Ni基超合金溶湯の凝固速度Rcm/
hと、凝固界面の温度勾配G℃/cmとの関係が、G/
R≧0.5℃・h/cm2 を満足する状態で鋳造を行
う構成としたことを特徴としており、実施態様において
は、Ni基超合金溶湯の凝固速度Rcm/hと、凝固界
面の温度勾配G℃/cmとの関係が、G/R≧1.0℃
・h/cm2 を満足する状態で鋳造を行う構成とした
ことを特徴としており、同じく実施態様においては、N
i基超合金が単結晶用合金である構成としたり、あるい
は等軸晶用合金ないしは一方向凝固柱状晶用合金である
構成としたことを特徴としており、同じく実施態様にお
いては、Ni基超合金が、 Cr:11〜23重量%、 Ti:0.5〜4.0重量%、 を必須元素として含み、 Co:20重量%以下、 W:6重量以下%およびMo:10重量%以下のうちの
1種または2種、 Nb:1.0〜6.5重量%、 Ta:2.0重量%以下、 Al:0.2〜4.0重量%、 Fe:37重量%以下、 を選択元素として含み、残部Niおよび不純物よりなる
構成としたり、あるいは単結晶化の場合を考慮して粒界
強化元素等の規定を緩めて、 C:0.15重量%以下、 B:0.01重量%以下、 Zr:0.30%重量%以下、 に規制した構成としたことを特徴としており、上記した
Ni基超合金部材の製造方法に係わる発明の構成を前述
した従来の課題を解決するための手段としている。
[Means for Solving the Problems] A method for manufacturing a Ni-based superalloy member according to the present invention is such that when manufacturing a Ni-based superalloy member by casting, the solidification rate Rcm/
The relationship between h and the temperature gradient G°C/cm at the solidification interface is G/cm.
It is characterized by a configuration in which casting is performed in a state that satisfies R≧0.5°C・h/cm2, and in an embodiment, the solidification rate Rcm/h of the Ni-based superalloy molten metal and the temperature gradient at the solidification interface are The relationship with G℃/cm is G/R≧1.0℃
・It is characterized by having a configuration in which casting is performed in a state that satisfies N.
It is characterized in that the i-based superalloy is an alloy for single crystals, or an alloy for equiaxed crystals or an alloy for unidirectionally solidified columnar crystals, and in the same embodiment, the Ni-based superalloy contains Cr: 11 to 23% by weight, Ti: 0.5 to 4.0% by weight, as essential elements, Co: 20% by weight or less, W: 6% by weight or less, and Mo: 10% by weight or less. One or two of the following, Nb: 1.0 to 6.5% by weight, Ta: 2.0% by weight or less, Al: 0.2 to 4.0% by weight, Fe: 37% by weight or less, select elements C: 0.15% by weight or less, B: 0.01% by weight. Hereinafter, Zr: 0.30% by weight or less is characterized by a structure regulated to below, and the structure of the invention related to the method for manufacturing the above-mentioned Ni-based superalloy member is to solve the above-mentioned conventional problems. It is used as a means.

【0008】本発明に係わるNi基超合金部材の製造方
法では、Ni基超合金溶湯の凝固速度Rcm/hと、凝
固界面の温度勾配G℃/cmとの関係が、G/R≧0.
5℃・h/cm2 、より望ましくはG/R≧1.0℃
・h/cm2 を満足する状態にして鋳造を行うように
しているが、この理由は、上記G/Rの値が0.5℃・
hcm2 よりも小さいと、鋳造組織において、凝固偏
析によって、(Fe,Cr,Ni)2 (Mo,Ti,
Nb)であらわされる六方晶の金属間化合物であるLa
ves(ラーベス)相がデンドライト境界に形成される
可能性が大きくなり、この結果、Laves相の形成に
より延性等の低下などという不具合が生じるようになる
ためである。
In the method for manufacturing a Ni-based superalloy member according to the present invention, the relationship between the solidification rate Rcm/h of the molten Ni-based superalloy and the temperature gradient G°C/cm at the solidification interface is such that G/R≧0.
5℃・h/cm2, more preferably G/R≧1.0℃
・We try to perform casting under conditions that satisfy h/cm2, but the reason for this is that the above G/R value is 0.5℃・
hcm2, (Fe, Cr, Ni)2 (Mo, Ti,
La, a hexagonal intermetallic compound represented by Nb)
This is because the possibility that the Laves phase will be formed at the dendrite boundary increases, and as a result, problems such as a decrease in ductility and the like will occur due to the formation of the Laves phase.

【0009】また、本発明に係わるNi基超合金部材の
製造方法においては、Ni基超合金が単結晶用合金であ
るようにすることも必要に応じて望ましく、あるいは従
来より多用されている等軸晶用合金や一方向凝固柱状晶
用合金であるようにすることもできる。
In addition, in the method for producing a Ni-based superalloy member according to the present invention, it is preferable that the Ni-based superalloy be a single crystal alloy, or an alloy that has been frequently used in the past. It is also possible to use an alloy for axial crystals or an alloy for unidirectionally solidified columnar crystals.

【0010】このような前者に示した単結晶用Ni基超
合金よりなる単結晶体は、従来の普通鋳造等軸晶合金や
一方向凝固柱状晶合金と異なり、粒界がないために融点
直下で溶体化処理することが可能であり、凝固偏析を完
全に除去したγ相(不規則面心立方格子よりなるマトリ
ックス合金相),γ´相(L12 型規則格子よりなる
金属間化合物相)ならびにγ´´相(DO22型規則格
子よりなる金属間化合物相)からなる均質組織を得るこ
とができるものとなっているので、高温でのクリープ破
断強度や疲労強度を低下させることなく耐熱性や耐食性
をより一層向上させることが可能である点で有利なもの
となる。
Unlike the conventional normally cast equiaxed crystal alloys and unidirectionally solidified columnar crystal alloys, the single crystal body made of the Ni-base superalloy for single crystals shown in the former example has no grain boundaries, so the temperature is just below the melting point. γ phase (matrix alloy phase consisting of irregular face-centered cubic lattice), γ' phase (intermetallic compound phase consisting of L12 type ordered lattice), and Since it is possible to obtain a homogeneous structure consisting of the γ'' phase (an intermetallic compound phase consisting of a DO22-type regular lattice), it has excellent heat resistance and corrosion resistance without reducing creep rupture strength or fatigue strength at high temperatures. This is advantageous in that it is possible to further improve the

【0011】本発明に係わるNi基超合金部材の製造方
法において適用されるNi基超合金としては、例えば、
Niマトリックス中にCr,Co,Mo,W,Nb,T
a,Ti,Al等を含有させたものがあり、商品名とし
ては、Incoloy,Inconel,M252,N
imonic,Pyromet,Refractory
,Rene,Udimet,Unitemp,Wasp
aloyなどと称されるものがある。
[0011] Examples of the Ni-based superalloy used in the method for manufacturing a Ni-based superalloy member according to the present invention include:
Cr, Co, Mo, W, Nb, T in the Ni matrix
There are products containing a, Ti, Al, etc., and the product names include Incoloy, Inconel, M252, N
imonic, Pyromet, Refractory
, Rene, Udimet, Unitemp, Wasp
There is something called alloy.

【0012】そして、具体的な合金組成例としては、次
に例示する化学成分組成を有するものが用いられる。
As a specific example of the alloy composition, those having the following chemical compositions are used.

【0013】Cr:11〜23重量% Crは合金の高温における耐熱性や耐食性を改善するの
に有効な元素であり、このような効果を得るためには1
1重量%以上とすることが望ましい。そして、Cr含有
量の増加に伴ってその効果は大きくなるが、多くなりす
ぎると固溶強化元素の固溶限を下げるとともに、脆化相
であるTCP相が析出して高温強度を害することがある
ため、23重量%以下とすることが望ましい。
Cr: 11 to 23% by weight Cr is an effective element for improving the heat resistance and corrosion resistance of alloys at high temperatures.
It is desirable that the content be 1% by weight or more. The effect increases as the Cr content increases, but if the Cr content increases too much, the solid solubility limit of the solid solution strengthening element will be lowered, and the TCP phase, which is a brittle phase, will precipitate, impairing high-temperature strength. Therefore, it is desirable that the content be 23% by weight or less.

【0014】Co:20重量%以下 CoはNi基超合金部材の耐熱性や耐食性を向上させる
のに有効な元素であるので、20重量%以下の範囲で含
有させることも望ましい。
Co: 20% by weight or less Co is an effective element for improving the heat resistance and corrosion resistance of Ni-based superalloy members, so it is also desirable to include it in a range of 20% by weight or less.

【0015】W:6重量%以下およびMo:10重量%
以下のうちの1種または2種 W,Moはマトリックスであるγ相に主として固溶し、
固溶強化によりクリープ強度および疲労強度を高めるの
に有効な元素である。そして、このような効果を十分に
得る必要があるときにはWは1.0重量%以上,Moは
2.5重量%以上とすることが望ましい。しかし、W,
Moは部材の高温における耐食性を低下させたり、針状
のα−(W,Mo)が析出してクリープ強度,疲労強度
および靭性を低下させたりすることがあるため、Wは6
重量%以下、Moは10重量%以下とすることが望まし
い。
W: 6% by weight or less and Mo: 10% by weight
One or two of the following W, Mo are mainly dissolved in the γ phase which is the matrix,
It is an effective element for increasing creep strength and fatigue strength through solid solution strengthening. When it is necessary to sufficiently obtain such effects, it is desirable that W be at least 1.0% by weight and Mo be at least 2.5% by weight. However, W,
Mo may reduce the corrosion resistance of the member at high temperatures, and acicular α-(W, Mo) may precipitate, reducing creep strength, fatigue strength, and toughness.
It is desirable that Mo be 10% by weight or less.

【0016】Nb:1.0〜6.5重量%Ta:2.0
重量%以下 Nb,Taは、γ´相およびγ相´´に[Ni3 (A
l,Nb,Ta)]の形で固溶して固溶強化することに
より、クリープ強度や疲労強度を向上させるが、このよ
うな効果を得る必要があるときにはNb量を1.0重量
%以上とすることが望ましい。しかし、多すぎるとクリ
ープ強度,疲労強度を低下させる傾向となるのでNbは
6.5重量%以下、Taは2.0重量%以下とすること
が望ましい。
[0016] Nb: 1.0 to 6.5% by weight Ta: 2.0
Nb and Ta in weight% or less are added to [Ni3 (A
Creep strength and fatigue strength are improved by solid solution strengthening in the form of Nb (Nb, Nb, Ta)], but when it is necessary to obtain such effects, the amount of Nb is increased to 1.0% by weight or more. It is desirable to do so. However, if the content is too large, creep strength and fatigue strength tend to decrease, so it is desirable that Nb be 6.5% by weight or less and Ta be 2.0% by weight or less.

【0017】Ti:0.5〜4.0重量%Tiはγ´相
およびγ´´相に[Ni3 (Al,Ti)]の形で固
溶することにより固溶強化するほか、合金の高温におけ
る耐食性を改善する効果があるので0.5重量%以上含
有させることも望ましい。しかし、多量に添加すると、
耐食性が劣化する傾向となるため、4.0重量%以下と
することが望ましい。
Ti: 0.5 to 4.0% by weight Ti not only strengthens the alloy by forming a solid solution in the γ' phase and γ'' phase in the form of [Ni3 (Al, Ti)], but also strengthens the alloy at high temperatures. It is also desirable to contain 0.5% by weight or more since it has the effect of improving the corrosion resistance of. However, when added in large quantities,
Since corrosion resistance tends to deteriorate, the content is preferably 4.0% by weight or less.

【0018】Al:0.2〜4.0重量%Alは析出強
化相であるγ´相[Ni3 Al]の構成元素であり、
Al添加による効果を得る必要があるときには0.2〜
4.0重量%の範囲とすることが望ましい。
Al: 0.2 to 4.0% by weight Al is a constituent element of the γ′ phase [Ni3Al], which is a precipitation strengthening phase,
When it is necessary to obtain the effect of Al addition, 0.2~
A desirable range is 4.0% by weight.

【0019】Fe:37重量%以下 FeはNiの代替元素として添加しうる元素であり、3
7重量%まではNi基超合金の特性を大きく劣化させる
ことなしに含有させることが可能である。
Fe: 37% by weight or less Fe is an element that can be added as a substitute element for Ni.
It is possible to contain up to 7% by weight without significantly deteriorating the properties of the Ni-based superalloy.

【0020】C:0.15重量%以下 B:0.01重量%以下 Zr:0.30重量%以下 これらの元素は従来の普通鋳造等軸晶合金および一方向
凝固柱状晶合金において粒界強化元素として用いられる
元素であるが、単結晶化した場合にはこれらの粒界強化
元素は必要なく、むしろ次に示すように有害元素となる
ため、適宜規制することも望ましい。
C: 0.15% by weight or less B: 0.01% by weight or less Zr: 0.30% by weight or less These elements strengthen grain boundaries in conventional normally cast equiaxed crystal alloys and directionally solidified columnar crystal alloys. These grain boundary strengthening elements are used as elements, but when single crystallized, these grain boundary strengthening elements are not necessary, but rather become harmful elements as shown below, so it is desirable to regulate them appropriately.

【0021】Cは炭化物(TiC,NbC,TaC等)
を形成し、塊状に析出する。この炭化物は、合金の融点
に比べて溶融温度が低く、合金の融点直下で行う溶体化
処理では局部溶融を起こすため、容体化処理温度を上げ
ることができず、単結晶の容体化温度範囲を狭くするの
で、単結晶化する場合にはCを0.15重量%以下とす
ることも望ましい。
C is a carbide (TiC, NbC, TaC, etc.)
It forms and precipitates in lumps. This carbide has a low melting temperature compared to the melting point of the alloy, and local melting occurs when solution treatment is performed just below the melting point of the alloy, making it impossible to raise the temperature of the solidification treatment, which limits the temperature range of single crystal solidification. In order to narrow the range, it is also desirable that the C content be 0.15% by weight or less in the case of single crystallization.

【0022】Bはホウ化物[(Cr,Ni,Ti,Mo
)3 B2]を形成し、合金の粒界に析出する。ホウ化
物も炭化物と同様に合金の融点に比べ低融点であり、単
結晶の溶体化処理温度を低下させ、溶体化処理温度範囲
を狭くするので、単結晶化する場合にはBを0.01重
量%以下とすることも望ましい。
B is a boride [(Cr, Ni, Ti, Mo
)3B2] and precipitates at the grain boundaries of the alloy. Like carbides, borides have a lower melting point than that of alloys, lowering the solution treatment temperature of single crystals and narrowing the solution treatment temperature range, so when forming single crystals, reduce B by 0.01 It is also desirable that the amount is less than % by weight.

【0023】Zrは合金の固相線温度を下げ、凝固温度
範囲を広くするため、単結晶化に対し有害であるので、
単結晶化する場合にはZrを0.30重量%以下とする
ことも望ましい。
Zr lowers the solidus temperature of the alloy and widens the solidification temperature range, so it is harmful to single crystallization.
In the case of single crystallization, it is also desirable that Zr be 0.30% by weight or less.

【0024】本発明に係わるNi基超合金部材の製造方
法は、上記したNi基超合金が適用されうるものであり
、例えば、Inconel系合金に適用する場合に、I
nconel718をベースにしかつ単結晶化の場合を
考慮して粒界強化元素等の規定を緩めた合金を考慮した
ときには、Cr:15.0〜23.0重量%、Mo:2
.5〜3.5重量%、Nb:4.5〜5.5重量%、T
i:0.5〜1.5重量%、Al:0.2〜0.9重量
%、Fe:13.0〜25.0重量%、Ta:1.0重
量%以下、Zr:0.3重量%以下、C:0.15重量
%以下、B:0.01重量%以下、残部Niおよび不純
物よりなるNi基超合金を用いることができる。
The method for manufacturing a Ni-based superalloy member according to the present invention can be applied to the above-mentioned Ni-based superalloy. For example, when applied to an Inconel alloy,
When considering an alloy based on nconel 718 with relaxed regulations on grain boundary strengthening elements etc. in consideration of single crystallization, Cr: 15.0 to 23.0% by weight, Mo: 2
.. 5-3.5% by weight, Nb: 4.5-5.5% by weight, T
i: 0.5-1.5% by weight, Al: 0.2-0.9% by weight, Fe: 13.0-25.0% by weight, Ta: 1.0% by weight or less, Zr: 0.3 A Ni-based superalloy consisting of C: 0.15% by weight or less, B: 0.01% by weight or less, and the balance being Ni and impurities can be used.

【0025】[0025]

【発明の作用】本発明に係わるNi基超合金部材の製造
方法によれば、Ni基超合金部材を鋳造により製造する
に際し、Ni基超合金溶湯の凝固速度Rcm/hと、凝
固界面の温度勾配G℃/cmとの関係が、G/R≧0.
5℃・h/cm2 を満足する状態で鋳造を行う構成と
し、凝固界面の温度勾配Gに対して合金溶湯の凝固速度
Rが大きくなり過ぎないようにしたから、鋳造後の組織
において凝固偏析により延性低下等の原因となる有害な
Laves相がデンドライト境界に形成されがたくなく
なるので、Ni基超合金部材の延性等がより一層向上し
たものとなる。
According to the method for manufacturing a Ni-based superalloy member according to the present invention, when manufacturing a Ni-based superalloy member by casting, the solidification rate Rcm/h of the molten Ni-based superalloy and the temperature of the solidification interface are controlled. The relationship with the gradient G°C/cm is G/R≧0.
5℃・h/cm2, and the solidification rate R of the molten alloy was not too large with respect to the temperature gradient G at the solidification interface. Since the harmful Laves phase, which causes a decrease in ductility, is less likely to be formed at dendrite boundaries, the ductility, etc. of the Ni-based superalloy member is further improved.

【0026】[0026]

【実施例】この実施例では、真空誘導溶解によって表1
に示す化学成分組成のNi基超合金を用意した。
[Example] In this example, Table 1 was prepared by vacuum induction melting.
A Ni-based superalloy having the chemical composition shown below was prepared.

【0027】[0027]

【表1】[Table 1]

【0028】次に、上記Ni基超合金素材を切り出して
直径20mmの単結晶用鋳型に入れ、真空誘導溶解を行
った後、鋳造に際して一方向凝固させて単結晶体を製作
したが、この鋳造に際して、凝固速度Rcm/hと、凝
固界面の温度勾配G℃/cmとの関係で表わされる凝固
条件をコントロールした。
Next, the above Ni-base superalloy material was cut out and placed in a single crystal mold with a diameter of 20 mm, vacuum induction melting was performed, and a single crystal was produced by unidirectional solidification during casting. At this time, the solidification conditions expressed by the relationship between the solidification rate Rcm/h and the temperature gradient G°C/cm at the solidification interface were controlled.

【0029】この結果、凝固条件とLaves相との関
係は、図1に示すごとくであった。
As a result, the relationship between solidification conditions and Laves phase was as shown in FIG. 1.

【0030】図1に示すように、G/Rの値が小さくな
るとLaves相の生成量が増加する傾向にあることが
認められ、G/R≧0.5°C・h/cm2 とするこ
とによって、Laves相が2体積%以下となり、従来
の凝固条件をコントロールしない場合に比べて延性をお
よそ20%向上させることができることが認められた。
As shown in FIG. 1, it is recognized that the amount of Laves phase produced tends to increase as the value of G/R decreases, and it is recommended that G/R≧0.5°C·h/cm2. It was confirmed that the Laves phase was 2% by volume or less, and the ductility could be improved by about 20% compared to the conventional case where the solidification conditions were not controlled.

【0031】また、本発明に係わるNi基超合金部材の
製造方法は、単結晶化させる場合だけでなく、等軸晶や
一方向凝固柱状晶組織とする場合にも上記G/Rの鋳造
条件とすることによって延性の向上を実現できることが
認められた。
[0031] Furthermore, the method for producing a Ni-base superalloy member according to the present invention is applicable not only to single crystallization but also to formation of equiaxed or unidirectionally solidified columnar crystal structures using the above G/R casting conditions. It was recognized that ductility could be improved by

【0032】[0032]

【発明の効果】本発明に係わるNi基超合金部材の製造
方法では、Ni基超合金部材を鋳造により製造するに際
し、Ni基超合金溶湯の凝固速度Rcm/hと、凝固界
面の温度勾配G℃/cmとの関係が、G/R≧0.5℃
・h/cm2 を満足する状態で鋳造を行うようにした
から、Ni基超合金部材(素材,部品,製品等)の延性
等をより一層向上させたものとすることが可能であると
いう著しく優れた効果がもたらされる。
Effects of the Invention In the method for manufacturing a Ni-based superalloy member according to the present invention, when manufacturing a Ni-based superalloy member by casting, the solidification rate Rcm/h of the molten Ni-based superalloy and the temperature gradient G at the solidification interface are controlled. The relationship with ℃/cm is G/R≧0.5℃
・Since casting is performed under conditions that satisfy h/cm2, it is possible to further improve the ductility of Ni-based superalloy members (materials, parts, products, etc.), which is a remarkable advantage. This will bring about a positive effect.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】Ni基超合金溶湯の凝固速度R(cm/h)と
凝固界面の温度勾配G(°C/cm)との比であるG/
R(°C・h/cm2 )とLaves相の形成量との
関係を調べた結果を例示するグラフである。
[Figure 1] G/ which is the ratio between the solidification rate R (cm/h) of the Ni-based superalloy molten metal and the temperature gradient G (°C/cm) at the solidification interface.
It is a graph illustrating the results of investigating the relationship between R (°C·h/cm 2 ) and the amount of Laves phase formed.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  Ni基超合金部材を鋳造により製造す
るに際し、Ni基超合金溶湯の凝固速度Rcm/hと、
凝固界面の温度勾配G℃/cmとの関係が、G/R≧0
.5℃・h/cm2 を満足する状態で鋳造を行うこと
を特徴とするNi基超合金部材の製造方法。
[Claim 1] When manufacturing a Ni-based superalloy member by casting, the solidification rate Rcm/h of the Ni-based superalloy molten metal,
The relationship with the temperature gradient G°C/cm at the solidification interface is G/R≧0.
.. A method for producing a Ni-based superalloy member, characterized in that casting is performed under conditions that satisfy a temperature of 5° C./h/cm2.
【請求項2】  Ni基超合金溶湯の凝固速度Rcm/
hと、凝固界面の温度勾配G℃/cmとの関係が、G/
R≧1.0℃・h/cm2 を満足する状態で鋳造を行
う請求項1に記載のNi基超合金部材の製造方法。
[Claim 2] Solidification rate Rcm/of Ni-based superalloy molten metal
The relationship between h and the temperature gradient G°C/cm at the solidification interface is G/cm.
The method for manufacturing a Ni-based superalloy member according to claim 1, wherein casting is performed in a state satisfying R≧1.0°C·h/cm2.
【請求項3】  Ni基超合金が単結晶用合金である請
求項1または2に記載のNi基超合金部材の製造方法。
3. The method for producing a Ni-based superalloy member according to claim 1, wherein the Ni-based superalloy is a single crystal alloy.
【請求項4】  Ni基超合金が、 Cr:11〜23重量%、 Ti:0.5〜4.0重量%、を必須元素として含み、
Co:20重量%以下、 W:6重量%以下およびMo:10重量%以下のうちの
1種または2種、 Nb:1.0〜6.5重量%、 Ta:2.0重量%以下、 Al:0.2〜4.0重量%、 Fe:37重量%以下、を選択元素として含み、残部N
iおよび不純物よりなる請求項1,2または3に記載の
Ni基超合金部材の製造方法。
4. The Ni-based superalloy contains Cr: 11 to 23% by weight and Ti: 0.5 to 4.0% by weight as essential elements,
Co: 20% by weight or less, W: 6% by weight or less, and Mo: 1 or 2 types from 10% by weight or less, Nb: 1.0 to 6.5% by weight, Ta: 2.0% by weight or less, Contains Al: 0.2 to 4.0% by weight, Fe: 37% by weight or less as selected elements, and the balance is N.
The method for producing a Ni-based superalloy member according to claim 1, 2 or 3, comprising i and an impurity.
【請求項5】不純物中において、 C:0.15重量%以下、 B:0.01重量%以下、 Zr:0.30重量%以下、 に規制した請求項4に記載のNi基超合金部材の製造方
法。
5. The Ni-based superalloy member according to claim 4, wherein the impurities are regulated as follows: C: 0.15% by weight or less, B: 0.01% by weight or less, Zr: 0.30% by weight or less. manufacturing method.
JP03043696A 1991-03-08 1991-03-08 Method for manufacturing Ni-based superalloy member Expired - Fee Related JP3084764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03043696A JP3084764B2 (en) 1991-03-08 1991-03-08 Method for manufacturing Ni-based superalloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03043696A JP3084764B2 (en) 1991-03-08 1991-03-08 Method for manufacturing Ni-based superalloy member

Publications (2)

Publication Number Publication Date
JPH04280938A true JPH04280938A (en) 1992-10-06
JP3084764B2 JP3084764B2 (en) 2000-09-04

Family

ID=12670996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03043696A Expired - Fee Related JP3084764B2 (en) 1991-03-08 1991-03-08 Method for manufacturing Ni-based superalloy member

Country Status (1)

Country Link
JP (1) JP3084764B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09125177A (en) * 1995-11-06 1997-05-13 Cannon Muskegon Corp Single crystal nickel-base superalloy having resistance to high-temperature corrosion
CN1059473C (en) * 1997-05-28 2000-12-13 冶金工业部钢铁研究总院 High temperature alloy for heating furnace
WO2004015153A1 (en) * 2002-08-08 2004-02-19 National Institute Of Advanced Industrial Science And Technology Heat-resistant magnesium alloy and method for producing same
JP2007510055A (en) * 2003-10-06 2007-04-19 エイティーアイ・プロパティーズ・インコーポレーテッド Nickel base alloy and heat treatment method of nickel base alloy
JP2009208152A (en) * 1997-09-23 2009-09-17 Howmet Res Corp Method for producing ceramic investment shell mold
JP2012149343A (en) * 2011-01-03 2012-08-09 General Electric Co <Ge> Alloy
CN102994809A (en) * 2012-12-04 2013-03-27 西安热工研究院有限公司 High-strength and corrosion-resistant nickel-iron-chromium-based high-temperature alloy and preparation method for same
JP2013129880A (en) * 2011-12-22 2013-07-04 Hitachi Ltd Ni-BASED FORGED ALLOY AND GAS TURBINE USING THE SAME
CN106244856A (en) * 2016-09-18 2016-12-21 华能国际电力股份有限公司 A kind of Fe Ni matrix high temperature alloy
JP2017503911A (en) * 2013-10-22 2017-02-02 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Fatigue resistant turbine through bolt
CN106399801A (en) * 2016-09-18 2017-02-15 华能国际电力股份有限公司 High-strength wear-resisting high-temperature alloy
CN106636842A (en) * 2016-09-18 2017-05-10 华能国际电力股份有限公司 Precipitation strengthening high-carbon austenitic heat-resistance steel and preparation method thereof
US10563293B2 (en) 2015-12-07 2020-02-18 Ati Properties Llc Methods for processing nickel-base alloys
CN113308635A (en) * 2021-05-19 2021-08-27 北京科技大学 Low-thermal-neutron absorption cross section entropy alloy with nanometer precipitated phase and preparation method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09125177A (en) * 1995-11-06 1997-05-13 Cannon Muskegon Corp Single crystal nickel-base superalloy having resistance to high-temperature corrosion
CN1059473C (en) * 1997-05-28 2000-12-13 冶金工业部钢铁研究总院 High temperature alloy for heating furnace
JP2009208152A (en) * 1997-09-23 2009-09-17 Howmet Res Corp Method for producing ceramic investment shell mold
WO2004015153A1 (en) * 2002-08-08 2004-02-19 National Institute Of Advanced Industrial Science And Technology Heat-resistant magnesium alloy and method for producing same
JP2007510055A (en) * 2003-10-06 2007-04-19 エイティーアイ・プロパティーズ・インコーポレーテッド Nickel base alloy and heat treatment method of nickel base alloy
JP2012149343A (en) * 2011-01-03 2012-08-09 General Electric Co <Ge> Alloy
EP2612937A1 (en) 2011-12-22 2013-07-10 Hitachi Ltd. Nickel based forged alloy, gas turbine member using said alloy and gas turbine using said member
JP2013129880A (en) * 2011-12-22 2013-07-04 Hitachi Ltd Ni-BASED FORGED ALLOY AND GAS TURBINE USING THE SAME
US8864919B2 (en) 2011-12-22 2014-10-21 Hitachi, Ltd. Nickel based forged alloy, gas turbine member using said alloy and gas turbine using said member
CN102994809A (en) * 2012-12-04 2013-03-27 西安热工研究院有限公司 High-strength and corrosion-resistant nickel-iron-chromium-based high-temperature alloy and preparation method for same
JP2017503911A (en) * 2013-10-22 2017-02-02 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Fatigue resistant turbine through bolt
US10563293B2 (en) 2015-12-07 2020-02-18 Ati Properties Llc Methods for processing nickel-base alloys
US11725267B2 (en) 2015-12-07 2023-08-15 Ati Properties Llc Methods for processing nickel-base alloys
CN106244856A (en) * 2016-09-18 2016-12-21 华能国际电力股份有限公司 A kind of Fe Ni matrix high temperature alloy
CN106399801A (en) * 2016-09-18 2017-02-15 华能国际电力股份有限公司 High-strength wear-resisting high-temperature alloy
CN106636842A (en) * 2016-09-18 2017-05-10 华能国际电力股份有限公司 Precipitation strengthening high-carbon austenitic heat-resistance steel and preparation method thereof
CN113308635A (en) * 2021-05-19 2021-08-27 北京科技大学 Low-thermal-neutron absorption cross section entropy alloy with nanometer precipitated phase and preparation method

Also Published As

Publication number Publication date
JP3084764B2 (en) 2000-09-04

Similar Documents

Publication Publication Date Title
US4222794A (en) Single crystal nickel superalloy
US4209348A (en) Heat treated superalloy single crystal article and process
US4169742A (en) Cast nickel-base alloy article
US4582548A (en) Single crystal (single grain) alloy
EP3183372B1 (en) Enhanced superalloys by zirconium addition
US5154884A (en) Single crystal nickel-base superalloy article and method for making
JP5773596B2 (en) Nickel-base superalloys and articles
CA1206398A (en) Superalloy single crystal articles
US4371404A (en) Single crystal nickel superalloy
US5173255A (en) Cast columnar grain hollow nickel base alloy articles and alloy and heat treatment for making
CA2479774C (en) Ni-base directionally solidified and single-crystal superalloy
US5068084A (en) Columnar grain superalloy articles
JP3084764B2 (en) Method for manufacturing Ni-based superalloy member
KR100954683B1 (en) High strength, corrosion and oxidation resistant, nickel base superalloy and directionally solidified articles comprising the same
EP0076360A2 (en) Single crystal nickel-base superalloy, article and method for making
JPH0672296B2 (en) Manufacturing method of single crystal alloy with high creep resistance
JPH0323613B2 (en)
US4849030A (en) Dispersion strengthened single crystal alloys and method
TWI248975B (en) Nickel-base superalloy for high temperature, high strain application
US4597809A (en) High strength hot corrosion resistant single crystals containing tantalum carbide
US4707192A (en) Nickel-base single crystal superalloy and process for production thereof
US5489346A (en) Hot corrosion resistant single crystal nickel-based superalloys
EP0362661B1 (en) Cast columnar grain hollow nickel base alloy article and alloy and heat treatment for making
CA1117320A (en) Heat treated superalloy single crystal article and process
GB2191505A (en) Dispersion strengthened single crystal alloys

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees