JPH04280477A - Manufacture of thin film solar cell - Google Patents

Manufacture of thin film solar cell

Info

Publication number
JPH04280477A
JPH04280477A JP3042095A JP4209591A JPH04280477A JP H04280477 A JPH04280477 A JP H04280477A JP 3042095 A JP3042095 A JP 3042095A JP 4209591 A JP4209591 A JP 4209591A JP H04280477 A JPH04280477 A JP H04280477A
Authority
JP
Japan
Prior art keywords
layer
thin film
gallium
metal electrode
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3042095A
Other languages
Japanese (ja)
Other versions
JP2815719B2 (en
Inventor
Kyoichi Urabe
卜部 恭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP3042095A priority Critical patent/JP2815719B2/en
Publication of JPH04280477A publication Critical patent/JPH04280477A/en
Application granted granted Critical
Publication of JP2815719B2 publication Critical patent/JP2815719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Abstract

PURPOSE:To solve problems which hinder the effect of enhanced bonding properties resultant from the dispersion of Ga contained near the border between a thin film and a metal electrode in a solar cell which use a thin CuInSe2 film. CONSTITUTION:A sulfur coating film is applied on a gallium-contained layer, such as a Cu-Ga layer formed on a metal electrode layer, thereby forming a CuInSe2 layer thereon. This construction makes it possible to prevent Ca from being dispersed even if a further attempt is made to increase the temperature in a selenium process for the formation of CuInSe2 and prevents the generation of peeling off caused by a drop in the bond performance of the CuInSe2 film and the metal electrode. The sulfur coating film is formed by bringing a solution including sulfur, such as an ammonium polysulfied solution into contact with the surface of the gallium-contained layer.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は金属電極上に形成された
I−III −VI 族化合物半導体を用いた接合を有
する薄膜太陽電池の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thin film solar cell having a junction using a group I-III-VI compound semiconductor formed on a metal electrode.

【0002】0002

【従来の技術】I−III −VI 族化合物半導体、
例えば銅インジウムダイセレナイド (CuInSe2
 ),銅インジウムサルフアイド (CuInS2 )
,銀インジウムダイセレナイド(AgInSe2 ) 
は光学バンドギャップが1.0 〜1.8eV の範囲
にあり、バンドギャップ1.7eV のシリコンと異な
る光学バンドギャップを有するものが得られるため、そ
の利用が期待されている。近年、薄膜形成技術の進展に
より、薄膜太陽電池素子材料としてのこれらの物質は一
層注目されている。例えばCuInSe2 は、その光
学バンドギャップが約1eVであって直接遷移形の帯構
造を持ち、pおよびn型の導電性を示す。また、バンド
ギャップ2.4eV のCdSとは格子の不整合も1%
程度であり、従ってn型CdSを窓層材料として用いた
p型CuInSe2 のヘテロ接合を有する薄膜太陽電
池の開発が進められている。CuInSe2 の薄膜層
を含むヘテロ接合薄膜太陽電池の金属電極とCuInS
e2 薄膜層との接着性をガリウムを用いて改善して、
光起電力装置の製造工程における処理温度の上昇を可能
にすることは、特開平2−94669 号公報で公知で
ある。図2は上記公報に記載されている薄膜太陽電池の
一部の断面図で、厚さ1〜4mmのガラス基板1上には
厚さ0.2 〜2μmのモリブデン (Mo) からな
る金属電極層2が形成される。半導体層は、p型半導体
層として厚さ1〜3μmのCuInSe2 薄膜層4、
n型半導体層として厚さ250 〜500 Åの硫化カ
ドミウム (CdS) 薄膜層5および伝導性で広いバ
ンドギャップを有し、窓層としてのn型半導体層である
厚さ1.5 〜3.5 μmの酸化亜鉛 (ZnO) 
薄膜層6からなる。金属電極層2とCuInSe2 薄
膜層4との間には両層の接着性を向上させるため、ガリ
ウム (Ga) を含む薄膜層3が形成される。層6の
上にはスパッタリング, 蒸着またはめっき法によりア
ルミニウム (Al) からなる金属電極層7が形成さ
れる。
[Prior Art] Group I-III-VI compound semiconductors,
For example, copper indium di-selenide (CuInSe2
), copper indium sulfide (CuInS2)
, silver indium diselenide (AgInSe2)
has an optical band gap in the range of 1.0 to 1.8 eV, and is expected to be used because it provides a material with an optical band gap different from that of silicon, which has a band gap of 1.7 eV. In recent years, with the progress of thin film formation technology, these substances have attracted more attention as materials for thin film solar cell elements. For example, CuInSe2 has an optical bandgap of about 1 eV, has a direct transition type band structure, and exhibits p- and n-type conductivity. In addition, the lattice mismatch with CdS, which has a band gap of 2.4 eV, is 1%.
Therefore, development of a thin film solar cell having a p-type CuInSe2 heterojunction using n-type CdS as the window layer material is progressing. Metal electrodes of heterojunction thin film solar cells containing thin film layers of CuInSe2 and CuInS
e2 Improving the adhesion with the thin film layer using gallium,
It is known from JP-A-2-94669 that it is possible to increase the processing temperature in the manufacturing process of photovoltaic devices. FIG. 2 is a cross-sectional view of a part of the thin film solar cell described in the above publication, in which a metal electrode layer made of molybdenum (Mo) with a thickness of 0.2 to 2 μm is placed on a glass substrate 1 with a thickness of 1 to 4 mm. 2 is formed. The semiconductor layer is a CuInSe2 thin film layer 4 with a thickness of 1 to 3 μm as a p-type semiconductor layer,
A cadmium sulfide (CdS) thin film layer 5 with a thickness of 250 to 500 Å as an n-type semiconductor layer and a 1.5 to 3.5 Å thick n-type semiconductor layer with conductivity and a wide bandgap as a window layer. μm zinc oxide (ZnO)
It consists of a thin film layer 6. A thin film layer 3 containing gallium (Ga) is formed between the metal electrode layer 2 and the CuInSe2 thin film layer 4 in order to improve the adhesion between both layers. A metal electrode layer 7 made of aluminum (Al) is formed on the layer 6 by sputtering, vapor deposition, or plating.

【0003】ここで、ガリウム (Ga) を含む薄膜
層3は、金属電極層2の上に17原子%のガリウムを有
する銅ガリウム合金のマグネトロン・スパッタリングに
より、厚さ2000〜3000Åに形成される。またC
uInSe2 薄膜層4は薄膜層3の上に、同じくマグ
ネトロン・スパッタリングによって厚さ3000〜40
00Åのインジウム(In) 薄膜層を形成した後、セ
レン (Se) 雰囲気中で加熱するセレン化法によっ
て形成される。すなわち、窒素ガスで希釈された12%
H2 Seを含む気体で満たされた加熱炉内で、金属電
極層2、ガリウムを含む層3およびインジウム (In
) 薄膜層が形成されたガラス基板1を、まず300 
℃で15〜20分間加熱し、次に450 ℃において3
0分間加熱することによってCuInSe2 薄膜層4
を得る。このようにCuInSe2 は、セレン (S
e) 雰囲気中で加熱によって薄膜層3の中の銅とイン
ジウムおよびセレンの相互拡散により生成する。
Here, the thin film layer 3 containing gallium (Ga) is formed on the metal electrode layer 2 to a thickness of 2000 to 3000 Å by magnetron sputtering of a copper-gallium alloy containing 17 atomic percent gallium. Also C
The uInSe2 thin film layer 4 is deposited on the thin film layer 3 to a thickness of 3000 to 40 nm by magnetron sputtering.
It is formed by a selenization method in which an indium (In) thin film layer with a thickness of 0.00 Å is formed and then heated in a selenium (Se) atmosphere. i.e. 12% diluted with nitrogen gas
In a heating furnace filled with gas containing H2Se, a metal electrode layer 2, a layer 3 containing gallium, and an indium (In
) The glass substrate 1 on which the thin film layer was formed was first
℃ for 15-20 minutes, then at 450℃ for 3
CuInSe2 thin film layer 4 by heating for 0 min
get. In this way, CuInSe2 is selenium (S
e) Produced by mutual diffusion of copper, indium, and selenium in the thin film layer 3 by heating in an atmosphere.

【0004】以上の製造工程において、ガリウムを含む
層3を設けることによって、モリブデン層とCuInS
e2 薄膜層4との接着性が改善されると記されている
。すなわち、ガラス基板1の上のモリブデン金属層2と
その上のCuInSe2 薄膜層4との接着が必ずしも
十分ではないときには、CuInSe2 薄膜層にしわ
, そりまたは剥離を生ずることがあるが、モリブデン
金属電極層2の近傍にガリウムが存在することにより接
着性が改善され、薄膜太陽電池の製造工程における処理
温度の上昇が可能となり、変換効率が向上する効果があ
る。
In the above manufacturing process, by providing the layer 3 containing gallium, the molybdenum layer and CuInS
e2 It is described that the adhesion with the thin film layer 4 is improved. That is, when the adhesion between the molybdenum metal layer 2 on the glass substrate 1 and the CuInSe2 thin film layer 4 thereon is not necessarily sufficient, wrinkles, warping, or peeling may occur in the CuInSe2 thin film layer, but the molybdenum metal electrode layer The presence of gallium in the vicinity of 2 improves adhesion, makes it possible to increase the processing temperature in the manufacturing process of thin film solar cells, and has the effect of improving conversion efficiency.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術によれば
、モリブデン金属電極層上の近傍にガリウムを含む層を
設けることによって界面の接着性が向上する効果が得ら
れる。しかし従来技術ではスパッタリングによって形成
したガリウム, 銅を含む層およびインジウム薄膜層を
セレン雰囲気中で加熱することによりCuInSe2 
薄膜層を得る。このため加熱履歴によってガリウムがC
uInSe2 薄膜層内に拡散し、モリブデン金属電極
層上の界面および近傍におけるガリウム濃度が低下し、
剥離を生じない十分な接着を得ることができない欠点が
ある。
According to the above-mentioned prior art, by providing a layer containing gallium in the vicinity of the molybdenum metal electrode layer, it is possible to obtain the effect of improving the adhesion of the interface. However, in the conventional technology, CuInSe2 is formed by heating a layer containing gallium and copper and an indium thin film layer formed by sputtering in a selenium atmosphere.
Obtain a thin film layer. Therefore, depending on the heating history, gallium becomes C
uInSe2 diffuses into the thin film layer, reducing the gallium concentration at and near the interface on the molybdenum metal electrode layer,
It has the disadvantage that it is not possible to obtain sufficient adhesion without peeling.

【0006】本発明の目的は、金属電極との接着性改善
のためにI−III −VI 化合物半導体層の金属電
極との近傍に入れられるガリウムの加熱による拡散を防
止して剥離を生じない健全な接着が行われる薄膜太陽電
池の製造方法を提供することにある。
An object of the present invention is to prevent the diffusion of gallium, which is placed in the vicinity of the metal electrode of the I-III-VI compound semiconductor layer near the metal electrode, in order to improve the adhesion with the metal electrode, thereby preventing peeling. An object of the present invention is to provide a method for manufacturing a thin film solar cell in which adhesive bonding is performed.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、I−III −VI 族化合物半導体
層の金属電極層に近い側にガリウムを含む層が介在する
薄膜太陽電池の製造方法において、金属電極層上にガリ
ウムを含む層を形成したのち、その層の表面に硫黄被膜
を被着し、次いでその被膜の上に加熱処理を含む工程に
よりI−III −VI 族化合物半導体層を形成する
ものとする。 そしてI−III −VI 族化合物が銅インジウムダ
イセレナイド (CuInSe2 ) であって、金属
電極層上に銅ガリウム層を形成し、その銅ガリウム層の
表面に硫黄を含む溶液を接触させて硫黄被膜を形成し、
次いでその被膜の上に少なくともインジウム層を積層し
、セレンを含む雰囲気中で加熱してCuInSe2 層
を形成することが効果的である。さらに、表面に硫黄被
膜を被着した銅ガリウム層の上にインジウム層のほかに
銅層を積層することも有効である。また、硫黄を含む溶
液が多硫化アンモニウム溶液であることも有効である。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a thin film solar cell in which a layer containing gallium is interposed on the side of the I-III-VI compound semiconductor layer near the metal electrode layer. In the manufacturing method, a layer containing gallium is formed on a metal electrode layer, a sulfur film is deposited on the surface of the layer, and then a group I-III-VI compound semiconductor is formed by a step including heat treatment on the film. shall form a layer. The I-III-VI group compound is copper indium di-selenide (CuInSe2), and a copper gallium layer is formed on the metal electrode layer, and a sulfur film is formed by contacting the surface of the copper gallium layer with a solution containing sulfur. form,
Next, it is effective to stack at least an indium layer on the film and heat it in an atmosphere containing selenium to form a CuInSe2 layer. Furthermore, it is also effective to laminate a copper layer in addition to the indium layer on the copper gallium layer whose surface is coated with a sulfur film. It is also effective that the sulfur-containing solution is an ammonium polysulfide solution.

【0008】[0008]

【作用】ガリウムを含む層を形成したのち、その表面に
硫黄 (S)被膜を被着するため、ガリウムを含む層の
表面に硫黄の数原子層からなる薄い被膜が形成される。 硫黄被膜の存在により、後工程の加熱処理によるガリウ
ムの拡散が防止され、金属電極層上の界面および近傍に
ガリウムが残存するため、剥離を生じない十分な接着を
得ることができる。
[Operation] After forming a layer containing gallium, a sulfur (S) film is applied to its surface, so a thin film consisting of several atomic layers of sulfur is formed on the surface of the layer containing gallium. The presence of the sulfur film prevents gallium from diffusing during the heat treatment in the post-process, and gallium remains at and near the interface on the metal electrode layer, making it possible to obtain sufficient adhesion without peeling.

【0009】[0009]

【実施例】図1は本発明の一実施例により製造されたC
uInSe2 薄膜層を用いたヘテロ接合を含む太陽電
池の一部の断面を示し、図2と共通の部分には同一の符
号が付されている。図において、厚さ1mmのガラス基
板1上には厚さ2μmのモリブデン (Mo) からな
る金属電極層2が形成される。その上に形成された半導
体層は、p型半導体層の厚さ2μmのCuInSe2 
薄膜層4、n型半導体層の厚さ400 Åの硫化カドミ
ウム (CdS) 薄膜層5および電極層を兼ねる窓層
としてのn型半導体層である厚さ3μmの酸化亜鉛 (
ZnO) 薄膜層6からなる。ZnO層6の上にはアル
ミニウム (Al) からなる条状金属電極層7が形成
されている。金属電極層2とCuInSe2 薄膜層4
との間には、銅−ガリウムからなる厚さ3000Åの薄
膜層3および硫黄被膜8が形成されている。
[Example] Figure 1 shows a C manufactured according to an embodiment of the present invention.
2 shows a cross section of a part of a solar cell including a heterojunction using a uInSe2 thin film layer, and parts common to FIG. 2 are given the same reference numerals. In the figure, a metal electrode layer 2 made of molybdenum (Mo) with a thickness of 2 μm is formed on a glass substrate 1 with a thickness of 1 mm. The semiconductor layer formed thereon is a p-type semiconductor layer of CuInSe2 with a thickness of 2 μm.
Cadmium sulfide (CdS) with a thickness of 400 Å as the thin film layer 4 and the n-type semiconductor layer; Zinc oxide with a thickness of 3 μm as the n-type semiconductor layer as the thin film layer 5 and the window layer that also serves as the electrode layer.
(ZnO) thin film layer 6. A strip metal electrode layer 7 made of aluminum (Al) is formed on the ZnO layer 6. Metal electrode layer 2 and CuInSe2 thin film layer 4
A thin film layer 3 made of copper-gallium having a thickness of 3000 Å and a sulfur coating 8 are formed between the two.

【0010】このような構造の構成には、まず、スパッ
タリングによりモリブデン電極層2を形成したのち、1
7原子%のガリウムを有する銅ガリウム合金のスパッタ
リングによって銅−ガリウムからなる薄膜層3を形成す
る。続いて、多硫化アンモニウム溶液に浸漬し、50℃
にて3時間放置して薄膜層3の表面に硫黄被膜8を形成
する。ここで、多硫化アンモニウムは化学式((NH4
 ) 2 Sx , x>1) で表すことのできる硫
黄過剰の硫化アンモニウムである。この多硫化アンモニ
ウム溶液への浸漬により、銅ガリウム層3の表面には約
10nmの厚さの硫黄を主成分とする被膜8が形成され
る。オージエ電子分光分析によれば、硫黄被膜は多硫化
アンモニウム中の硫黄が銅ガリウム表面に吸着されて硫
黄の数原子層からなる薄膜として残存していることが認
められた。
To construct such a structure, first, a molybdenum electrode layer 2 is formed by sputtering, and then a molybdenum electrode layer 2 is formed by sputtering.
A thin copper-gallium layer 3 is formed by sputtering a copper-gallium alloy with 7 atomic percent gallium. Subsequently, it was immersed in an ammonium polysulfide solution and heated to 50°C.
A sulfur film 8 is formed on the surface of the thin film layer 3 by leaving it for 3 hours. Here, ammonium polysulfide has the chemical formula ((NH4
) 2 Sx , x>1) It is ammonium sulfide with excess sulfur. By immersion in this ammonium polysulfide solution, a coating 8 containing sulfur as a main component and having a thickness of about 10 nm is formed on the surface of the copper gallium layer 3. According to Auger electron spectroscopy, it was confirmed that the sulfur film in the ammonium polysulfide was adsorbed onto the copper gallium surface and remained as a thin film consisting of several atomic layers of sulfur.

【0011】再び、スパッタリングによって厚さ200
0Åの銅 (Cu) 薄膜層、厚さ4400Åのインジ
ウム (In) 薄膜層を連続的に形成し、セレン化法
によってCuInSe2 薄膜層4を形成する。セレン
化法として、12%H2 Seを含む窒素ガスで満たさ
れた加熱炉内で、薄膜層が形成されたガラス基板1を5
00 ℃で30分間加熱することによってCuInSe
2 薄膜層を得る。最後にスパッタリングおよびパター
ニングにより、アルミニウム電極層7を形成する。
[0011] Again, a thickness of 200 mm was obtained by sputtering.
A copper (Cu) thin film layer with a thickness of 0 Å and an indium (In) thin film layer with a thickness of 4400 Å are successively formed, and a CuInSe2 thin film layer 4 is formed by a selenization method. In the selenization method, a glass substrate 1 on which a thin film layer has been formed is heated in a heating furnace filled with nitrogen gas containing 12% H2Se.
CuInSe by heating at 00 °C for 30 min
2 Obtain a thin film layer. Finally, an aluminum electrode layer 7 is formed by sputtering and patterning.

【0012】以上の製造方法により得たモリブデン層2
上の銅ガリウム層3およびCuInSe2薄膜層4につ
いてのオージエ分析では、ガリウムは銅−ガリウム層3
のみに検出され、CuInSe2 薄膜層4内には検出
されなかった。 これは、銅ガリウム層3上の硫黄被膜8の存在により、
ガリウムのCuInSe2 薄膜層4への拡散が防止さ
れていることを示す。
Molybdenum layer 2 obtained by the above manufacturing method
Auger analysis for the top copper-gallium layer 3 and the CuInSe2 thin film layer 4 shows that gallium is
It was detected only in the CuInSe2 thin film layer 4. This is due to the presence of the sulfur film 8 on the copper gallium layer 3.
This shows that diffusion of gallium into the CuInSe2 thin film layer 4 is prevented.

【0013】また以上の製造方法を用いて得た薄膜太陽
電池において、CuInSe2 薄膜に、しわ, 剥離
等はみられなかった。セレン化工程での500 ℃加熱
によっても剥離が生じないことは、本実施例でのCuI
nSe2 薄膜とモリブデン層との接着が良いことを示
す。そして、CuInSe2 は、セレン化工程で銅,
 インジウムおよびセレンの相互拡散により生成するか
ら、より高い温度で加熱できることは、短時間で良質な
膜を得ることを可能とし、太陽電池特性の改善および製
造時間の短縮をはかり得ることを意味する。
[0013] Furthermore, in the thin film solar cell obtained using the above manufacturing method, no wrinkles, peeling, etc. were observed in the CuInSe2 thin film. The fact that peeling does not occur even when heated at 500 °C in the selenization process indicates that CuI in this example
This shows that the adhesion between the nSe2 thin film and the molybdenum layer is good. Then, CuInSe2 is made from copper during the selenization process.
Since it is produced by interdiffusion of indium and selenium, the ability to heat it at higher temperatures means that it is possible to obtain a high-quality film in a short time, improving solar cell characteristics and shortening manufacturing time.

【0014】本実施例により得た薄膜太陽電池は、従来
技術による太陽電池と比べ、約5%の変換効率の向上を
示した。これは主として解放電圧 (VOC) の増大
、すなわち従来技術での約0.43ボルトから約0.4
8ボルトへ増大したことによるもので、接着性が向上し
、セレン化工程での加熱処理温度を高くすることができ
たことによるものである。
The thin film solar cell obtained in this example showed an improvement in conversion efficiency of about 5% compared to the solar cell according to the prior art. This is primarily due to an increase in open circuit voltage (VOC), from about 0.43 volts in the prior art to about 0.4 volts.
This is due to the increase to 8 volts, improved adhesiveness, and the ability to increase the heat treatment temperature in the selenization process.

【0015】上記の実施例ではガリウムと銅の合金を用
い、さらに純銅の層も形成したが、銅ガリウム層の厚さ
を厚くしてそこからCuInSe2 の形成に十分な銅
を供給することができれば、純銅薄膜層を形成しないで
インジウム薄膜層のみを積層してもよい。また、ガリウ
ムを含む層に銅ばかりでなくインジウムを含ませてもよ
い。なお、本発明はCuInSe2 を用いた薄膜太陽
電池に限定されず、一面に金属電極が接するI−III
 −VI 化合物半導体薄膜層を有する薄膜太陽電池に
実施することができる。
In the above embodiment, an alloy of gallium and copper was used, and a layer of pure copper was also formed, but if the thickness of the copper gallium layer could be increased and enough copper could be supplied from there to form CuInSe2, it would be possible to Alternatively, only an indium thin film layer may be laminated without forming a pure copper thin film layer. Furthermore, the layer containing gallium may contain not only copper but also indium. Note that the present invention is not limited to thin-film solar cells using CuInSe2, but is applicable to I-III solar cells in which a metal electrode is in contact with one surface.
-VI It can be implemented in a thin film solar cell having a compound semiconductor thin film layer.

【0016】[0016]

【発明の効果】本発明によれば、金属電極上にガリウム
を含む層を設け、その層の上に硫黄被膜を形成したのち
、I−III −VI 族化合物半導体薄膜層を積層す
ることにより、後工程における加熱処理の際にガリウム
の半導体薄膜層への拡散が防止され、金属電極層との界
面近傍におけるガリウム含有による半導体薄膜層の接着
性改善の効果を維持することができた。従って、例えば
CuInSe2 薄膜を得るためのセレン化の加熱処理
温度を金属電極層との剥離を生ずることなく500 ℃
にあげることができ、短時間でセレン化ができるように
なるなど、良質のI−III −VI 族化合物半導体
薄膜層を得ることが可能となった。このため薄膜太陽電
池の変換効率が向上した。
According to the present invention, a layer containing gallium is provided on a metal electrode, a sulfur film is formed on the layer, and then a group I-III-VI compound semiconductor thin film layer is laminated. Diffusion of gallium into the semiconductor thin film layer was prevented during the heat treatment in the post-process, and the effect of improving the adhesion of the semiconductor thin film layer due to the inclusion of gallium near the interface with the metal electrode layer could be maintained. Therefore, for example, the heat treatment temperature for selenization to obtain a CuInSe2 thin film can be adjusted to 500 °C without peeling from the metal electrode layer.
It has become possible to obtain a high-quality I-III-VI compound semiconductor thin film layer, such as by being able to perform selenization in a short time. This has improved the conversion efficiency of thin-film solar cells.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例による薄膜太陽電池の一部断
面図
FIG. 1 is a partial cross-sectional view of a thin film solar cell according to an embodiment of the present invention.

【図2】従来の薄膜太陽電池の一部断面図[Figure 2] Partial cross-sectional view of a conventional thin-film solar cell

【符号の説明】[Explanation of symbols]

1    ガラス基板 2    金属電極層 3    銅ガリウム薄膜層 4    CuInSe2 薄膜層 5    CdS薄膜層 6    ZnO薄膜層 7    Al層 8    硫黄被膜 1 Glass substrate 2 Metal electrode layer 3 Copper gallium thin film layer 4 CuInSe2 thin film layer 5 CdS thin film layer 6 ZnO thin film layer 7 Al layer 8 Sulfur coating

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】I−III −VI 族化合物半導体層の
金属電極層に近い側にガリウムを含む層が介在する薄膜
太陽電池の製造方法において、金属電極層上にガリウム
を含む層を形成したのち、その層の表面に硫黄被膜を被
着し、次いでその被膜の上に加熱処理を含む工程により
I−III −VI 族化合物半導体層を形成すること
を特徴とする薄膜太陽電池の製造方法。
Claim 1: A method for manufacturing a thin-film solar cell in which a layer containing gallium is interposed on the side of a group I-III-VI compound semiconductor layer close to a metal electrode layer, in which the layer containing gallium is formed on the metal electrode layer; A method for producing a thin film solar cell, comprising: depositing a sulfur film on the surface of the layer, and then forming a group I-III-VI compound semiconductor layer on the film by a step including heat treatment.
【請求項2】I−III −VI 族化合物が銅インジ
ウムダイセレナイドであり、金属電極層上に銅ガリウム
層を形成し、その銅ガリウム層の表面に硫黄を含む溶液
を接触させて硫黄被膜を形成し、次いでその被膜の上に
少なくともインジウム層を積層したのち、セレンを含む
雰囲気中で加熱して銅インジウムダセイセレナイド層を
形成する請求項1記載の薄膜太陽電池の製造方法。
2. The I-III-VI group compound is copper indium diselenide, and a copper gallium layer is formed on the metal electrode layer, and a sulfur coating is formed by contacting the surface of the copper gallium layer with a solution containing sulfur. 2. The method of manufacturing a thin-film solar cell according to claim 1, wherein at least an indium layer is laminated on the film, and then heated in an atmosphere containing selenium to form a copper indium selenide layer.
【請求項3】表面に硫黄被膜を被着した銅ガリウム層の
上にインジウム層のほかに銅層を積層する請求項2記載
の薄膜太陽電池の製造方法。
3. The method for manufacturing a thin film solar cell according to claim 2, wherein a copper layer is laminated in addition to the indium layer on the copper gallium layer having a sulfur coating on its surface.
【請求項4】硫黄を含む溶液が多硫化アンモニウム溶液
である請求項2あるいは3記載の薄膜太陽電池の製造方
法。
4. The method for producing a thin film solar cell according to claim 2 or 3, wherein the sulfur-containing solution is an ammonium polysulfide solution.
JP3042095A 1991-03-08 1991-03-08 Manufacturing method of thin film solar cell Expired - Fee Related JP2815719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3042095A JP2815719B2 (en) 1991-03-08 1991-03-08 Manufacturing method of thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3042095A JP2815719B2 (en) 1991-03-08 1991-03-08 Manufacturing method of thin film solar cell

Publications (2)

Publication Number Publication Date
JPH04280477A true JPH04280477A (en) 1992-10-06
JP2815719B2 JP2815719B2 (en) 1998-10-27

Family

ID=12626444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3042095A Expired - Fee Related JP2815719B2 (en) 1991-03-08 1991-03-08 Manufacturing method of thin film solar cell

Country Status (1)

Country Link
JP (1) JP2815719B2 (en)

Also Published As

Publication number Publication date
JP2815719B2 (en) 1998-10-27

Similar Documents

Publication Publication Date Title
US5078804A (en) I-III-VI2 based solar cell utilizing the structure CuInGaSe2 CdZnS/ZnO
US8003430B1 (en) Sulfide species treatment of thin film photovoltaic cell and manufacturing method
US8008110B1 (en) Bulk sodium species treatment of thin film photovoltaic cell and manufacturing method
US8008112B1 (en) Bulk chloride species treatment of thin film photovoltaic cell and manufacturing method
US8211736B2 (en) Bulk copper species treatment of thin film photovoltaic cell and manufacturing method
US8026122B1 (en) Metal species surface treatment of thin film photovoltaic cell and manufacturing method
US8993370B2 (en) Reverse stack structures for thin-film photovoltaic cells
Nakabayashi et al. Over 10% efficient CuInS2 solar cell by sulfurization
Nakada et al. Improved efficiency of Cu (In, Ga) Se/sub 2/thin film solar cells with chemically deposited ZnS buffer layers by air-annealing-formation of homojunction by solid phase diffusion
KR101283183B1 (en) Solar cell apparatus and method of fabricating the same
JPH11177112A (en) Photovoltaic device and its manufacture
JPH10135501A (en) Semiconductor device, its manufacture and solar cell
CN110828587A (en) Method of manufacturing a photovoltaic device
JP2000012883A (en) Manufacture of solar cell
JP2815723B2 (en) Manufacturing method of thin film solar cell
EP2787537B1 (en) THIN FILM SOLAR CELL with indium sulfide buffer layer
US8435826B1 (en) Bulk sulfide species treatment of thin film photovoltaic cell and manufacturing method
US8394662B1 (en) Chloride species surface treatment of thin film photovoltaic cell and manufacturing method
JPH04280477A (en) Manufacture of thin film solar cell
JPH11204810A (en) Compd. semiconductor solar cell
KR20150115363A (en) Method of manufacturing solar cell having CI(G)S based light absorption layer
JPH11330507A (en) Solar cell
JP2815729B2 (en) Manufacturing method of thin film solar cell
KR102596328B1 (en) Preparation method for CZTS thin film solar cell absorbing layer, CZTS thin film solar cell absorbing layer prepared therefrom
US8476104B1 (en) Sodium species surface treatment of thin film photovoltaic cell and manufacturing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees