JPH04279284A - Plasma jet torch and plasma jet rocking method - Google Patents

Plasma jet torch and plasma jet rocking method

Info

Publication number
JPH04279284A
JPH04279284A JP3040273A JP4027391A JPH04279284A JP H04279284 A JPH04279284 A JP H04279284A JP 3040273 A JP3040273 A JP 3040273A JP 4027391 A JP4027391 A JP 4027391A JP H04279284 A JPH04279284 A JP H04279284A
Authority
JP
Japan
Prior art keywords
plasma
electrode
arc current
nozzle
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3040273A
Other languages
Japanese (ja)
Other versions
JP2898111B2 (en
Inventor
Junichi Hayashi
林  順 一
Jun Akimoto
秋 本  純
Tadashi Hoshino
星 野  忠
Iwao Sakai
酒 井  巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Corp
Priority to JP3040273A priority Critical patent/JP2898111B2/en
Publication of JPH04279284A publication Critical patent/JPH04279284A/en
Application granted granted Critical
Publication of JP2898111B2 publication Critical patent/JP2898111B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make the swing angle of plasma arc current large, to make the electric coil small, to make the power consumption little and to make the swing caused on the motion of plasma arc current little. CONSTITUTION:While closing the plasma stream path advancing from the plasma nozzle 6n to the plasma ejecting opening 11n by interposing the insulating tubular body 13 between the inner nozzle member 6 and the outer electrode member 11n, the electric coil 10a-10d are set at the outer side of the insulating body 13. The magnetic flux which crosses the insulating tubular body 13 is generated. Feasibly, two paires of electric polarities are opposed to the insulating tubular body 13 and charged to the four pieces of the electric coil with the sine wave AC by slipping the phase of every 90 degree, the plasma arc current is made to the circle motion with the same velocity.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、電気ア−ク放電により
プラズマ化した高温ガスを噴射するプラズマジェットト
−チおよびその揺動方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma jet torch for injecting high-temperature gas turned into plasma by electric arc discharge, and a method for swinging the torch.

【0002】0002

【従来技術】この種のト−チは、物体の高温処理又は加
工に使用され、例えば金属の加熱,溶融等に用いられる
2. Description of the Related Art Torches of this type are used for high-temperature treatment or processing of objects, for example for heating and melting metals.

【0003】例えば特開昭54−24249号公報には
、鋳造金属材又は圧延金属材の表面の欠陥を、金属材表
面を移行式のプラズマジェットト−チで溶融させること
により除去する、欠陥除去方法が提示されている。幅広
い欠陥除去を行なうために、プラズマジェットト−チと
金属材との間に、電磁石コアが配置され、これがト−チ
から金属材に移行するア−クすなわちプラズマア−ク電
流に対して直交する磁界を及ぼし、プラズマア−ク電流
を偏向させる。電磁石の通電方向を交互に反転すること
により、プラズマア−ク電流が往復動して金属材表面を
走査する。これにより幅広い面積の欠陥除去が行なわれ
る。特開昭54−24249号公報には、移行式のプラ
ズマア−ク電流と金属材との間に、電気コイルを介挿し
これによりプラズマア−ク電流を往復動させる態様も開
示されている。
For example, Japanese Unexamined Patent Publication No. 54-24249 discloses a defect removal method in which defects on the surface of a cast metal material or a rolled metal material are removed by melting the surface of the metal material with a transition type plasma jet torch. A method is presented. In order to remove a wide range of defects, an electromagnetic core is placed between the plasma jet torch and the metal material, and this is orthogonal to the arc, or plasma arc current, that transfers from the torch to the metal material. exerts a magnetic field that deflects the plasma arc current. By alternately reversing the current direction of the electromagnet, the plasma arc current moves back and forth and scans the surface of the metal material. This allows defects to be removed over a wide area. JP-A-54-24249 also discloses a mode in which an electric coil is inserted between a transfer type plasma arc current and a metal material, thereby causing the plasma arc current to reciprocate.

【0004】ところで、非移行式のプラズマア−クは、
高温極部加熱が特徴であったが、鋼板のミクロンオ−ダ
での表面処理では均一で広範囲な熱源が必要となる。し
かし、非移行式のプラズマジェットト−チにおけるプラ
ズマジェット揺動装置は今迄なかった。
By the way, the non-transfer type plasma arc is
Although high-temperature extreme heating was a feature, surface treatment of steel plates on the micron order requires a uniform and wide-ranging heat source. However, until now there has been no plasma jet oscillation device for non-transfer type plasma jet torches.

【0005】[0005]

【発明が解決しようとする課題】非移行式のプラズマジ
ェットト−チの先端の外側に磁束発生器を取付けイオン
化した高温プラズマジェットフレ−ムに交番磁束をかけ
揺動させたが、問題があり実用化できなかった。すなわ
ち、イオン化したプラズマジェットフレ−ムの中の電荷
の流れに磁束を作用させる為、ア−ク電流に磁束を直接
作用させる場合に比べ、効率が非常に悪く、高出力の磁
束発生器が必要となる。ト−チ軸線上に放出されたプラ
ズマフレ−ムは指向性(慣性力)が強く、揺動させるに
は高出力の磁束発生器が必要となる。磁束発生器がト−
チの先端の更に前方にあるため高温雰囲気にあり、耐熱
性の問題がある。
[Problems to be Solved by the Invention] A magnetic flux generator was attached to the outside of the tip of a non-transfer type plasma jet torch, and an alternating magnetic flux was applied to the ionized high-temperature plasma jet frame to cause it to oscillate, but there was a problem. It could not be put into practical use. In other words, since magnetic flux is applied to the flow of charges in the ionized plasma jet flame, the efficiency is very low compared to applying magnetic flux directly to the arc current, and a high-output magnetic flux generator is required. becomes. The plasma flame emitted onto the torch axis has strong directivity (inertial force), and requires a high-output magnetic flux generator to swing it. The magnetic flux generator is
Since it is located further forward of the tip of the chi, it is in a high temperature atmosphere, which poses a problem of heat resistance.

【0006】本発明は、この種の従来の問題点を改善す
ることを目的とする。
[0006] The present invention aims to improve this type of conventional problem.

【0007】[0007]

【課題を解決するための手段】本願の第1番の発明の、
非移行式のプラズマジェットト−チは、電極(1),電
極(1)の先端に対向する位置にプラズマノズル(6n
)を有する内ノズル部材(6),内ノズル部材(6)と
電極(1)の間の空間にガスを供給するためのガス流路
、および、プラズマノズル(6n)に対向する位置にプ
ラズマ出射開口(11n)を有する外電極部材(11)
、を有するプラズマジェットト−チにおいて、内ノズル
部材(6)と外電極部材(11)の間に介挿され、プラ
ズマノズル(6n)からプラズマ出射開口(11n)に
進むプラズマ流路を囲む断熱筒体(13);および、断
熱筒体(13)を横切る磁束を発生するための電気コイ
ル(10);を備えることを特徴とする。
[Means for solving the problem] According to the first invention of the present application,
A non-transfer type plasma jet torch has an electrode (1) and a plasma nozzle (6n) located opposite the tip of the electrode (1).
) having an inner nozzle member (6), a gas flow path for supplying gas to the space between the inner nozzle member (6) and the electrode (1), and a plasma emitting device at a position facing the plasma nozzle (6n). Outer electrode member (11) having an opening (11n)
In a plasma jet torch having a plasma jet torch, a heat insulator is inserted between the inner nozzle member (6) and the outer electrode member (11) and surrounds the plasma flow path that advances from the plasma nozzle (6n) to the plasma exit opening (11n). It is characterized by comprising a cylinder (13); and an electric coil (10) for generating a magnetic flux across the insulating cylinder (13).

【0008】本願の第2番の発明の、非移行式のプラズ
マジェット揺動方法は、電極(1),電極(1)の先端
に対向する位置にプラズマノズル(6n)を有する内ノ
ズル部材(6),内ノズル部材(6)と電極の間の空間
にガスを供給するためのガス流路,プラズマノズルに対
向する位置にプラズマ出射開口(11n)を有する外電
極部材(11),内ノズル部材(6)と外電極部材(1
1)の間に介挿され、プラズマノズル(6n)からプラ
ズマ出射開口(11n)に進むプラズマ流路を囲む断熱
筒体(13),先端面が断熱筒体(13)の外側面に対
向し断熱筒体(13)を間に置いて互に対向する2対以
上の磁極端(9a,9b,9c,9d)を有する磁性体
コア(9)、および、磁性体コア(9)に巻回され、相
対向する磁極端(9a,9b),(9c,9d)間に断
熱筒体(13)を横切る磁束を発生するための複数個の
電気コイル(10a,10b,10c,10d)、を備
えるプラズマジェットト−チの、前記電気コイル(10
a,10b,10c,10d)のそれぞれに、磁極端(
9a,9b,9c,9d)の先端で囲まれる空間に回転
磁界を生ずる正弦波交番電圧を印加することを特徴とす
る。
The non-transfer type plasma jet oscillation method according to the second invention of the present application includes an electrode (1) and an inner nozzle member (6n) having a plasma nozzle (6n) at a position opposite to the tip of the electrode (1). 6), a gas flow path for supplying gas to the space between the inner nozzle member (6) and the electrode, an outer electrode member (11) having a plasma exit opening (11n) at a position facing the plasma nozzle, and an inner nozzle. Member (6) and outer electrode member (1
A heat insulating cylinder (13) is inserted between the heat insulating cylinder (13) and surrounds the plasma flow path that advances from the plasma nozzle (6n) to the plasma exit opening (11n), and the tip surface faces the outer surface of the heat insulating cylinder (13). A magnetic core (9) having two or more pairs of pole tips (9a, 9b, 9c, 9d) facing each other with a heat insulating cylinder (13) in between, and wound around the magnetic core (9). and a plurality of electric coils (10a, 10b, 10c, 10d) for generating magnetic flux across the heat insulating cylinder (13) between the opposing magnetic pole tips (9a, 9b), (9c, 9d). The electric coil (10
a, 10b, 10c, 10d), each with a magnetic pole tip (
It is characterized by applying a sinusoidal alternating voltage that generates a rotating magnetic field to the space surrounded by the tips of the magnets 9a, 9b, 9c, and 9d).

【0009】なお、カッコ内の記号は、図面に示し後述
する実施例の対応要素を示す。
Note that symbols in parentheses indicate corresponding elements in the embodiments shown in the drawings and described later.

【0010】0010

【作用】第1番の発明の非移行式のプラズマジェットト
−チでは、電気コイル(10a,10b,10c,10
d)が、電極(1)〜内ノズル(6n)〜外ノズル(8
n)〜断熱筒体(13)〜外電極(11n)と流れるプ
ラズマア−ク電流を横切る磁束を発生する。
[Operation] In the non-transfer type plasma jet torch of the first invention, the electric coils (10a, 10b, 10c, 10
d) from the electrode (1) to the inner nozzle (6n) to the outer nozzle (8n)
n) Generates a magnetic flux that crosses the plasma arc current flowing between the heat insulating cylinder (13) and the outer electrode (11n).

【0011】ア−ク電流に交番する磁束を流すとフレミ
ングの左手の法則で磁束の流れに対し直角方向に力が作
用しプラズマア−ク電流を曲げることが出来る。又、磁
束の流れの方向を逆にすると作用する力は逆方向に変わ
る。
When an alternating magnetic flux is caused to flow through the arc current, a force acts perpendicularly to the flow of the magnetic flux according to Fleming's left-hand rule, and the plasma arc current can be bent. Furthermore, when the direction of the magnetic flux flow is reversed, the acting force changes in the opposite direction.

【0012】電気コイル(10a,10b,10c,1
0d)に交流を使用すると交流周期に対応した周波数で
ア−クを揺動することができる。
Electric coils (10a, 10b, 10c, 1
If alternating current is used for 0d), the arc can be oscillated at a frequency corresponding to the alternating current period.

【0013】プラズマア−ク電流は、加熱ガスを加熱し
プラズマジェットフレ−ム化する熱源であるので、ア−
ク電流の揺動は同時にプラズマジェットフレ−ムの揺動
となる。
The plasma arc current is a heat source that heats the heated gas and turns it into a plasma jet flame.
At the same time, the fluctuation of the current causes fluctuation of the plasma jet flame.

【0014】又、磁束をかける位置が、ト−チ内のア−
ク電流を狭窄している部位で作用させているため、比較
的に小さい磁極端(9a,9b)で偏向に十分な磁界が
効果的にプラズマア−ク電流に作用する。したがって電
気コイル(10a,10b,10c,10d)は比較的
に小サイズで比較的に大きい偏向角を得ることができる
[0014] Also, the position where the magnetic flux is applied is the arc in the torch.
Since the arc current is applied to the constricted portion, a magnetic field sufficient for deflection can effectively act on the plasma arc current with relatively small pole tips (9a, 9b). Therefore, the electric coils (10a, 10b, 10c, 10d) can obtain a relatively large deflection angle with a relatively small size.

【0015】プラズマア−ク電流は該元部で磁界の作用
を受けて偏向し、熱処理対象材例えば金属材に向かうの
で、金属材表面でのプラズマア−ク電流の偏向量は大き
い。このように、比較的に小さい電気コイルで比較的に
大きな偏向量を得ることができ、偏向磁界を与えるため
の電力は小電力で済むようになる。
Since the plasma arc current is deflected by the action of a magnetic field at the source and directed toward the material to be heat treated, such as a metal material, the amount of deflection of the plasma arc current at the surface of the metal material is large. In this way, a relatively large amount of deflection can be obtained with a relatively small electric coil, and only a small amount of electric power is required to apply the deflection magnetic field.

【0016】更に、プラズマア−ク電流と電気コイル(
10a,10b,10c,10d)の間には断熱筒体(
13)があり、元部ではプラズマア−ク電流のゆらぎが
ほとんど無いことと相伴って、電気コイル(10a,1
0b,10c,10d)にプラズマフレ−ムが当ること
がなく、電気コイルがプラズマフレ−ムで焼損すること
がなくなる。断熱筒体(13)もプラズマア−ク電流の
元部に位置するので、比較的に小径でもプラズマア−ク
電流に触れることはない。
Furthermore, plasma arc current and electric coil (
10a, 10b, 10c, 10d) is provided with a heat insulating cylinder
13), and along with the fact that there is almost no fluctuation in the plasma arc current at the base, the electric coils (10a, 1
0b, 10c, 10d) will not be hit by the plasma flame, and the electric coil will not be burned out by the plasma flame. Since the heat insulating cylinder (13) is also located at the source of the plasma arc current, it does not come into contact with the plasma arc current even if it has a relatively small diameter.

【0017】第2番の発明のプラズマジェットト−チの
揺動方法では、上述の第1番の発明の作用効果が同様に
もたらされると共に、磁極端(9a,9b,9c,9d
)が2対以上かつ電気コイル(10a,10b,10c
,10d)が複数個であって、しかも電気コイル(10
a,10b,10c,10d)のそれぞれには、磁極端
(9a,9b,9c,9d)の先端で囲まれる空間に回
転磁界を生ずる正弦波交番電圧が印加されるので、プラ
ズマア−ク電流は、電極(1)の先端とプラズマノズル
(6n)の中心とを結ぶ直線(電極1の中心軸)を中心
とする円周に沿う円運動を行ない、プラズマア−ク電流
が、電極(1)の先端から金属材の間で円錐を描く。電
気コイル(10a,10b,10c,10d)に印加さ
れる交流が正弦波であるので、該円運動は実質上等速円
運動であるので、プラズマア−ク電流の移動が非常に滑
らかで形状が安定し、偏向運動によるフレ−ムのゆらぎ
を実質上生じない。
[0017] In the plasma jet torch swinging method of the second invention, the effects of the above-mentioned first invention are similarly brought about, and the magnetic pole tips (9a, 9b, 9c, 9d
) are 2 or more pairs and electric coils (10a, 10b, 10c
, 10d) and a plurality of electric coils (10d).
a, 10b, 10c, 10d) is applied with a sinusoidal alternating voltage that generates a rotating magnetic field in the space surrounded by the tips of the magnetic pole tips (9a, 9b, 9c, 9d), so that the plasma arc current performs a circular motion along the circumference centered on the straight line connecting the tip of the electrode (1) and the center of the plasma nozzle (6n) (the central axis of the electrode 1), and the plasma arc current ) draw a cone between the metal materials. Since the alternating current applied to the electric coils (10a, 10b, 10c, 10d) is a sine wave, the circular motion is substantially uniform circular motion, so the plasma arc current moves very smoothly and has a good shape. is stable, and there is virtually no frame fluctuation due to deflection movement.

【0018】本願の各発明の他の目的および特徴は、図
面を参照した以下の実施例の説明より明らかになろう。
Other objects and features of each invention of the present application will become clear from the following description of embodiments with reference to the drawings.

【0019】[0019]

【第1実施例】図1に本願の第1番の発明の一実施例の
縦断面を示し、図2に、図1に示すプラズマジェットト
−チの下面を示す。なお、図1は図2のI−I線断面図
である。ト−チ基幹5の上端部には電極台4が装着され
ており、この電極台4に電極キャップ3が結合されてい
る。電極キャップ3は、電極1が通ったチャック2を締
め付けており、これにより電極1を、円筒状基幹5の中
心軸位置に、位置決めしている。
[First Embodiment] FIG. 1 shows a longitudinal section of an embodiment of the first invention of the present application, and FIG. 2 shows the bottom surface of the plasma jet torch shown in FIG. Note that FIG. 1 is a sectional view taken along the line II in FIG. 2. An electrode stand 4 is attached to the upper end of the torch main body 5, and an electrode cap 3 is coupled to this electrode stand 4. The electrode cap 3 tightens the chuck 2 through which the electrode 1 has passed, thereby positioning the electrode 1 at the central axis position of the cylindrical base 5.

【0020】基幹5の下端部には内ノズル部材6が装着
されており、内ノズル部材6と電極1の間にセンタリン
グスト−ン7が介挿され、このセンタリングスト−ン7
が、基幹5の下端部において、内ノズル部材6の中心軸
に電極1の中心軸を合わすように、電極1を位置決めし
ている。内ノズル部材6の下底の中心位置には内ノズル
(プラズマノズル)6nが開けられている。電極1と内
ノズル部材6の間の空間には、電極ガスが供給される。
An inner nozzle member 6 is attached to the lower end of the base 5, and a centering stone 7 is inserted between the inner nozzle member 6 and the electrode 1.
However, the electrode 1 is positioned at the lower end of the main body 5 so that the center axis of the electrode 1 is aligned with the center axis of the inner nozzle member 6. An inner nozzle (plasma nozzle) 6n is opened at the center of the lower bottom of the inner nozzle member 6. Electrode gas is supplied to the space between the electrode 1 and the inner nozzle member 6.

【0021】基幹5の下端には外ノズル部材8が装着さ
れており、その中心軸に、電極1の中心軸および内ノズ
ル6nの中心軸に合せて、内ノズル6nよりもやや大径
の外ノズル8nが開けられている。内ノズル部材6の下
底外表面と外ノズル8の上面の間には、半径方向にガス
通口を開けたリング状の絶縁カラ−14が介挿されてい
る。内ノズル部材6と外ノズル部材8の間の空間には加
熱ガスが供給される。外ノズル部材8にはト−チ冷却水
が供給され、この冷却水は外ノズル部材8から出て基幹
5の水路を通って内ノズル部材6の水路に入り、そして
内ノズル部材6を出て更に基幹5を通ってト−チ外部に
排出される。
An outer nozzle member 8 is attached to the lower end of the main body 5, and an outer nozzle member 8 having a slightly larger diameter than the inner nozzle 6n is aligned with the center axis of the electrode 1 and the center axis of the inner nozzle 6n. Nozzle 8n is opened. A ring-shaped insulating collar 14 with a gas port opened in the radial direction is inserted between the outer surface of the lower bottom of the inner nozzle member 6 and the upper surface of the outer nozzle 8. Heated gas is supplied to the space between the inner nozzle member 6 and the outer nozzle member 8. Torch cooling water is supplied to the outer nozzle member 8, and this cooling water exits the outer nozzle member 8, passes through the channel of the trunk 5, enters the channel of the inner nozzle member 6, and exits the inner nozzle member 6. Further, it passes through the trunk 5 and is discharged to the outside of the torch.

【0022】外ノズル部材8の下底外表面部にはリング
状の断熱カラ−13の上端が固着され、断熱カラ−13
の下端に外電極11が固着されている。なお、外電極1
1は、図示しない絶縁材を介して外ノズル部材8にも固
着されている。断熱カラ−13の円形空間の中心軸は外
ノズル8nの中心軸に合せてある。外電極11の外電極
ノズル11nは、断熱カラ−13と連続する円形開口と
、図2に示す長円形開口とをつなぐ偏平化した円錐形状
である。すなわち、プラズマア−ク電流の左右方向の偏
向においてもプラズマア−ク電流が実質上外電極11に
直接に当らないように、外電極ノズル11の形状が設定
されている。外電極ノズル11の内部の水路には、外電
極冷却水が供給され、この冷却水は図示しない回収管を
通して外電極ノズル11の外部に排出される。
The upper end of a ring-shaped heat insulating collar 13 is fixed to the outer surface of the lower bottom of the outer nozzle member 8.
An outer electrode 11 is fixed to the lower end of. In addition, outer electrode 1
1 is also fixed to the outer nozzle member 8 via an insulating material (not shown). The central axis of the circular space of the heat insulating collar 13 is aligned with the central axis of the outer nozzle 8n. The outer electrode nozzle 11n of the outer electrode 11 has a flattened conical shape that connects a circular opening continuous with the heat insulating collar 13 and an oval opening shown in FIG. That is, the shape of the outer electrode nozzle 11 is set so that the plasma arc current does not substantially directly hit the outer electrode 11 even when the plasma arc current is deflected in the left-right direction. Outer electrode cooling water is supplied to the water channel inside the outer electrode nozzle 11, and this cooling water is discharged to the outside of the outer electrode nozzle 11 through a recovery pipe (not shown).

【0023】断熱カラ−13の外側部には、大略でC型
の、ケイ素鋼板の積層体でなる磁性体コア9が配置され
ており、該コア9の相対向する1対の磁極端9a,9b
が断熱カラ−13を挟んでいる。すなわち、磁極端9a
,9bの相対向する端面の間に断熱カラ−13がある。 磁性体コア9には電気コイル10が巻回されている。な
お、磁性体コア9は、図示しない絶縁材を介して外ノズ
ル部材8および外電極11に固着されている。
A roughly C-shaped magnetic core 9 made of a laminate of silicon steel plates is disposed on the outer side of the heat insulating collar 13, and a pair of opposing magnetic pole tips 9a, 9b
sandwich the heat insulating collar 13. That is, the magnetic pole tip 9a
, 9b, there is a heat insulating collar 13 between the opposing end faces of the members. An electric coil 10 is wound around the magnetic core 9 . Note that the magnetic core 9 is fixed to the outer nozzle member 8 and the outer electrode 11 via an insulating material (not shown).

【0024】電極1(負極)と内ノズル部材6(正極)
の間にア−ク電圧を印加して電極1と内ノズル6nの間
にア−クを生起し次に外ノズル部材8に正極電圧を印加
して電極1/内ノズル6n間のア−クを電極1/外ノズ
ル8n間に移行させ、更に次に外電極11に正極電圧を
印加して電極1/外ノズル8n間のア−クを電極1/外
電極ノズル11n間に移行させることにより、外電極ノ
ズル11nからプラズマア−ク電流が噴射されるように
なる。このプラズマア−ク電流は、電極1,内ノズル6
n,外ノズル8n,断熱カラ−13および外電極ノズル
11nの中心軸の延長線に沿って噴き出す。
Electrode 1 (negative electrode) and inner nozzle member 6 (positive electrode)
An arc voltage is applied between the electrodes 1 and the inner nozzle 6n to generate an arc, and then a positive electrode voltage is applied to the outer nozzle member 8 to generate an arc between the electrode 1 and the inner nozzle 6n. By transferring the arc between electrode 1/outer nozzle 8n between electrode 1/outer nozzle 8n, and then applying a positive electrode voltage to outer electrode 11 to transfer the arc between electrode 1/outer nozzle 8n to between electrode 1/outer electrode nozzle 11n. , a plasma arc current is ejected from the outer electrode nozzle 11n. This plasma arc current flows through the electrode 1 and inner nozzle 6.
It is ejected along the extension line of the central axes of the outer nozzle 8n, the heat insulating collar 13, and the outer electrode nozzle 11n.

【0025】電気コイル10に正方向の通電をすると、
磁極端9aと9bの間に、図2に一点鎖線で示すように
磁束が流れ、プラズマア−ク電流の流れる方向(図2で
紙面と垂直方向)、および、磁極端9aと9bを結ぶ線
(図2上で縦方向)に垂直な方向(図2上で左右方向:
例えば左方向)にプラズマア−ク電流が偏向される(フ
レミングの左手の法則:図3)。これにともないプラズ
マジェットフレ−ムも同様に偏向される。電気コイル1
0に逆方向の通電をすると、プラズマア−ク電流が、そ
れの流れる方向(図2で紙面と垂直方向)、および、磁
極端9aと9bを結ぶ線(図2上で縦方向)に垂直な方
向(図2上で右方向)にプラズマア−ク電流が偏向され
る(フレミングの左手の法則)。これにともないプラズ
マジェットフレ−ムも同様に偏向される。
When the electric coil 10 is energized in the positive direction,
A magnetic flux flows between the magnetic pole tips 9a and 9b as shown by the dashed line in Figure 2, and the direction in which the plasma arc current flows (perpendicular to the plane of the paper in Figure 2) and the line connecting the magnetic pole tips 9a and 9b (vertical direction in Figure 2) and perpendicular direction (horizontal direction in Figure 2:
For example, the plasma arc current is deflected to the left (Fleming's left-hand rule: FIG. 3). Along with this, the plasma jet frame is also deflected in the same way. electric coil 1
When current is applied in the opposite direction to 0, the plasma arc current flows perpendicularly to the direction in which it flows (perpendicular to the plane of the paper in Figure 2) and to the line connecting the pole tips 9a and 9b (vertical in Figure 2). The plasma arc current is deflected in the direction (rightward in FIG. 2) (Fleming's left-hand rule). Along with this, the plasma jet frame is also deflected in the same way.

【0026】図3に、電気コイル10に通電していると
きのプラズマア−ク電流の偏向態様を示す。プラズマア
−ク電流の偏向角度θは、プラズマア−ク電流のア−ク
電流値と、磁極端9a,9b間の磁界強度によって定ま
り、該磁界強度は、電気コイル10に流す電流値によっ
て定まる。
FIG. 3 shows how the plasma arc current is deflected when the electric coil 10 is energized. The deflection angle θ of the plasma arc current is determined by the arc current value of the plasma arc current and the magnetic field strength between the magnetic pole tips 9a and 9b, and the magnetic field strength is determined by the current value flowing through the electric coil 10. .

【0027】磁極端9aと9bの間の、電極1の軸心位
置の磁束密度とプラズマア−ク電流の振れ角度(ア−ク
振れ角度)との関係を図4に示す。磁束密度を40ガウ
スから120ガウス程度まで高くするにつれて、実質上
リニアにア−ク振れ角度が増大する。このように比較的
に低い磁束密度で大きい偏向を示すのは、プラズマア−
ク電流の場合、ア−ク電流値が高い(例えば150A)
からである。
FIG. 4 shows the relationship between the magnetic flux density at the axial center position of the electrode 1 between the magnetic pole tips 9a and 9b and the deflection angle of the plasma arc current (arc deflection angle). As the magnetic flux density increases from about 40 Gauss to about 120 Gauss, the arc deflection angle increases substantially linearly. This large deflection at a relatively low magnetic flux density is due to the plasma arc.
In the case of arc current, the arc current value is high (e.g. 150A)
It is from.

【0028】電気コイル10に流す電流値と、磁極端9
a,9b間に発生される磁束の密度との関係を図6に示
す。図6のデ−タは、図5に示すように、磁極端9a,
9b間の距離を40mmとし、電気コイル10の巻回数
は2000回としたときのものであり、図6のデ−タA
は、磁極端9bの端面位置Aでの磁束密度を示し、デ−
タBは磁極端9a,9bを結ぶ中心軸上の中間点Bの磁
束密度を示し、デ−タCは、該中心軸より5mm外方に
外れた位置の磁束密度を示す。
The current value flowing through the electric coil 10 and the magnetic pole tip 9
FIG. 6 shows the relationship between the density of the magnetic flux generated between a and 9b. As shown in FIG. 5, the data in FIG.
The data A in FIG.
indicates the magnetic flux density at the end face position A of the magnetic pole tip 9b, and the data
Data B indicates the magnetic flux density at an intermediate point B on the central axis connecting the magnetic pole tips 9a and 9b, and data C indicates the magnetic flux density at a position 5 mm away from the central axis.

【0029】図4に示すデ−タと図6に示すデ−タAよ
り、電極1の軸心位置(図5のB位置)にあるプラズマ
ア−ク電流を25°振らせるには、140ガウス程度の
磁束密度が必要であり(図4)、この磁束密度を得るた
めには、0.6A程度の電流を電気コイル10に流せば
よいことが分かる。この電流値は、得られるア−ク振れ
角に対比してかなり小さい。
From the data shown in FIG. 4 and the data A shown in FIG. It can be seen that a magnetic flux density of about Gauss is required (FIG. 4), and in order to obtain this magnetic flux density, it is sufficient to flow a current of about 0.6 A through the electric coil 10. This current value is quite small compared to the obtained arc deflection angle.

【0030】図1に示す実施例では、磁極端9a,9b
が1対であるので、プラズマア−ク電流は一軸方向のみ
の往復運動を行なわせることになる。図7の(A)に示
すように、電気コイル10に正,逆通電を交互に行なう
ことにより、プラズマア−ク電流が左(図3),右と交
互に移動し、+θ°〜−θ°の範囲で往復動する。図7
の(A)に示すようにパルス状に、正方向通電,通電休
止,逆方向通電とこの順番の通電を繰返すと、プラズマ
ア−ク電流は、+θ°偏向位置,中心位置,−θ°偏向
位置の3位置をとり、これらの位置ではある時間移動を
停止するが、それらの位置間を移動する速度は極めて速
い。すなわちプラズマア−ク電流の移動が不等速運動と
なるので、プラズマア−ク電流に往復の折り返しによる
ゆらぎを生じ、また、金属材表面においてプラズマア−
ク電流の均一走査(均熱走査)が得られない。そこで、
同一金属材の連続表面のある範囲を均一に走査するとき
には、図7の(B)に示すように、電気コイル10に、
正弦波交流電圧を印加する。これによりプラズマア−ク
電流は、折り返し点(+θ°偏向位置,−θ°偏向位置
)の間では実質上等速運動となり、プラズマア−ク電流
のゆらぎが少くなり、金属材表面の走査が均一となる。
In the embodiment shown in FIG.
Since there is one pair, the plasma arc current causes reciprocating motion in only one axis direction. As shown in FIG. 7A, by alternately energizing the electric coil 10 in the forward and reverse directions, the plasma arc current alternately moves to the left (FIG. 3) and to the right, from +θ° to -θ. It reciprocates within a range of °. Figure 7
As shown in (A), by repeating energization in the positive direction, energization pause, and reverse energization in this order in a pulsed manner, the plasma arc current changes from the +θ° deflection position, the center position, and the −θ° deflection position. It takes three positions and stops moving at these positions for a certain period of time, but the speed at which it moves between these positions is extremely fast. In other words, the movement of the plasma arc current becomes an inhomogeneous motion, which causes fluctuations in the plasma arc current due to back-and-forth aliasing, and the plasma arc current on the metal surface.
Uniform scanning of current (uniform heating scanning) cannot be obtained. Therefore,
When uniformly scanning a certain range of a continuous surface of the same metal material, as shown in FIG. 7(B), the electric coil 10 is
Apply a sinusoidal AC voltage. As a result, the plasma arc current becomes substantially uniform in motion between the turning points (+θ° deflection position, -θ° deflection position), which reduces fluctuations in the plasma arc current and makes it easier to scan the surface of the metal material. It becomes uniform.

【0031】いずれにしても、図3に示すように、プラ
ズマア−ク電流には、外ノズル8nの直近の元部に偏向
磁界が加わるので、この偏向磁界の比較的に低い強度で
プラズマア−ク電流の先端部近くのフレ−ム部が大きく
左,右に移動し偏向量が大きい。つまり比較的に小さい
磁性体コア9および電気コイル10で、比較的に大きな
偏向量が得られる。電気コイル10に流す電流値は比較
的に低くてよいので、電力消費が小さい。断熱カラ−1
3は該元部にあるので、その直径が比較的に小さくても
それにプラズマア−ク電流が直接に当ることはなく、断
熱カラ−13が、プラズマア−ク電流の磁極端9a,9
bへの当りや高熱を遮断する。すなわち断熱カラ−13
が、磁極端9a,9bのコンパクトな配設を可能にして
いる。
In any case, as shown in FIG. 3, since a deflecting magnetic field is applied to the plasma arc current at the base of the outer nozzle 8n, the relatively low intensity of this deflecting magnetic field causes plasma arc current to flow. - The frame part near the tip of the arc current moves significantly to the left and right, resulting in a large amount of deflection. In other words, a relatively large amount of deflection can be obtained with a relatively small magnetic core 9 and electric coil 10. Since the current value passed through the electric coil 10 may be relatively low, power consumption is low. Insulation color 1
3 is located at the base, the plasma arc current will not directly hit it even if its diameter is relatively small, and the heat insulating collar 13 will prevent the plasma arc current from reaching the pole tips 9a, 9.
Blocks contact with b and high heat. In other words, insulation collar 13
However, the magnetic pole tips 9a and 9b can be arranged compactly.

【0032】[0032]

【第2実施例】図8にもう1つの実施例の下面を示し、
図9にそのIX−IX線拡大断面を示す。この実施例で
は、磁性体コア9が、リング状の共通磁路よりリング中
心に向けて互に90度の角度をなす4本の分枝を突出さ
せて、これらの分枝の先端を磁極端9a〜9dとして断
熱カラ−13の外側面に実質上当接させている。4本の
分枝の元部にはそれぞれ電気コイル10a〜10dが巻
回されている。外電極ノズル11nは、この実施例では
プラズマア−ク電流に円錐状の運動を与えるので、裁頭
円錐状に形成されている。その他の構造は、上述の第1
実施例の構造と同様である。
[Second Embodiment] FIG. 8 shows the bottom of another embodiment,
FIG. 9 shows an enlarged cross section taken along the line IX-IX. In this embodiment, the magnetic core 9 has four branches protruding from a ring-shaped common magnetic path toward the ring center at an angle of 90 degrees to each other, and the tips of these branches are connected to the magnetic pole tips. 9a to 9d are substantially in contact with the outer surface of the heat insulating collar 13. Electric coils 10a to 10d are wound around the bases of the four branches, respectively. In this embodiment, the outer electrode nozzle 11n imparts a conical motion to the plasma arc current, so it is formed in the shape of a truncated cone. Other structures are the first
The structure is similar to that of the embodiment.

【0033】この第2実施例では、図11に示すように
電気コイル10a,10cと電気コイル10b,10d
に交互に電流を流すことにより、例えば図10の(A)
、次に(B)、次に(C)、次に(D)、そしてまた(
A)に戻る態様で、磁極端9a〜9dの先端面で囲まれ
た空間で磁界が回転する。すなわち、電気コイル10a
に正方向通電して磁極端9aをN極に磁化し、かつ電気
コイル10cに逆方向通電して磁極端9cをS極に磁化
することにより、図10の(A)に示すように、磁極端
9aから9cに磁束Mfが流れて、プラズマア−ク電流
は図10の(A)に示すように磁極端9bから9dに向
かう方向Fに力を受けて同方向Fに偏向する。次に、電
気コイル10dに正方向通電して磁極端9dをN極に磁
化し、かつ電気コイル10bに逆方向通電して磁極端9
bをS極に磁化することにより、図10の(B)に示す
ように、磁極端9dから9bに磁束Mfが流れて、プラ
ズマア−ク電流は図10の(B)に示すように磁極端9
aから9cに向かう方向Fに力を受けて同方向Fに偏向
する。次に、電気コイル10cに正方向通電して磁極端
9cをN極に磁化し、かつ電気コイル10aに逆方向通
電して磁極端9aをS極に磁化することにより、図10
の(C)に示すように、磁極端9cから9aに磁束Mf
が流れて、プラズマア−ク電流は図10の(C)に示す
ように磁極端9dから9bに向かう方向Fに力を受けて
同方向Fに偏向する。次に、電気コイル10bに正方向
通電して磁極端9bをN極に磁化し、かつ電気コイル1
0dに逆方向通電して磁極端9bをS極に磁化すること
により、図10の(D)に示すように、磁極端9bから
9dに磁束Mfが流れて、プラズマア−ク電流は図10
の(D)に示すように磁極端9cから9aに向かう方向
Fに力を受けて同方向Fに偏向する。
In this second embodiment, as shown in FIG. 11, electric coils 10a, 10c and electric coils 10b, 10d
For example, (A) in FIG.
, then (B), then (C), then (D), and again (
In the manner returning to A), the magnetic field rotates in the space surrounded by the tip surfaces of the magnetic tips 9a to 9d. That is, the electric coil 10a
By energizing the electric coil 10c in the positive direction to magnetize the pole tip 9a to the N pole, and by energizing the electric coil 10c in the reverse direction to magnetize the pole tip 9c to the S pole, the magnetic A magnetic flux Mf flows from the pole tips 9a to 9c, and the plasma arc current receives a force in the direction F from the pole tips 9b to 9d, as shown in FIG. 10(A), and is deflected in the same direction F. Next, the electric coil 10d is energized in the forward direction to magnetize the magnetic pole tip 9d to the N pole, and the electric coil 10b is energized in the reverse direction to magnetize the magnetic pole tip 9d.
By magnetizing b to the S pole, a magnetic flux Mf flows from the magnetic pole tip 9d to 9b as shown in FIG. 10(B), and the plasma arc current becomes magnetic as shown in FIG. Extreme 9
It receives a force in the direction F from a to 9c and is deflected in the same direction F. Next, the electric coil 10c is energized in the forward direction to magnetize the magnetic pole tip 9c to the north pole, and the electric coil 10a is energized in the reverse direction to magnetize the magnetic pole tip 9a to the south pole.
As shown in (C), magnetic flux Mf flows from the magnetic pole tip 9c to 9a.
flows, and the plasma arc current receives a force in the direction F from the pole tip 9d toward the pole tip 9b, as shown in FIG. 10(C), and is deflected in the same direction F. Next, the electric coil 10b is energized in the positive direction to magnetize the magnetic pole tip 9b to the N pole, and the electric coil 1
By applying electricity in the reverse direction to 0d to magnetize the pole tip 9b to the S pole, a magnetic flux Mf flows from the pole tip 9b to 9d as shown in FIG. 10(D), and the plasma arc current is
As shown in (D), a force is applied in the direction F from the magnetic pole tip 9c toward 9a, and the magnetic pole tip is deflected in the same direction F.

【0034】図11の(A)に示すようなパルス通電で
は、プラズマア−ク電流は、図10に示す(A),(B
),(C)および(D)の偏向による4位置をとり、各
位置には比較的に長く留まるが、各位置間の移動は急激
であり、4角形を描く不等速運動となる。各電気コイル
の通電休止時間を零又は極短時間としかつ、1組の電気
コイル(例えば10aと10c)の正,逆通電期間中(
例えば該通電期間の中間点)に他の1組の電気コイル(
10b,10c)の正,逆通電を開始する態様で通電周
期および通電位相差を小さくすると、プラズマア−ク電
流は、図12に示す(A),(AB),(B),(BC
),(C),(CD),(D)および(DA)の偏向に
よる8位置をとり、各位置間の移動は急激で各位置には
比較的長く留まる、8角形を描く不等速運動となる。こ
の、8角形を描く不等速運動は、円運動に近く上述の4
角形を描く不等速運動よりも円滑な動きであり、プラズ
マア−ク電流の偏向移動による先端部フレ−ムのゆらぎ
は少ない。
In pulse energization as shown in FIG. 11(A), the plasma arc current is as shown in FIG. 10(A) and (B).
), (C), and (D), and stay at each position for a relatively long time, but the movement between each position is rapid, resulting in an inuniform movement that draws a rectangular shape. The energization stop time of each electric coil is zero or extremely short, and during the forward and reverse energization period of one set of electric coils (for example, 10a and 10c) (
For example, at the midpoint of the energization period), another set of electric coils (
10b, 10c), when the energization cycle and energization phase difference are made small in the mode of starting forward and reverse energization, the plasma arc current becomes as shown in FIG. 12 (A), (AB), (B), (BC
), (C), (CD), (D) and (DA), the movement between each position is rapid and each position stays relatively long, inconstant motion depicting an octagon. becomes. This inconstant motion that draws an octagon is close to circular motion, and the above-mentioned 4
The movement is smoother than the non-uniform movement that draws a rectangular shape, and there is less fluctuation of the tip frame due to deflection movement of the plasma arc current.

【0035】本発明の好ましい実施例では、プラズマア
−ク電流の偏向運動を更に円滑な円運動とするために、
各電気コイル10a〜10dには、図11の(B)に示
すように、正弦波状の交流電流を通電する。すなわち、
電気コイル10aに所要レベルの交流電圧を印加し、電
気コイル10に印加する交流電圧に対して、電気コイル
10bには270度位相が遅れた交流電圧を、電気コイ
ル10cには180度位相が遅れた交流電圧を、また電
気コイル10dには90度位相が遅れた交流電圧を印加
する。これにより磁極端9a〜9dの先端面で囲まれる
空間には、実質上完全な等速円運動磁界が発生し、プラ
ズマア−ク電流が等速円運動する。したがってプラズマ
ア−ク電流の運動は円滑であり、運動によるプラズマア
−ク電流フレ−ムのゆらぎは生じない。またプラズマア
−ク電流の走査幅内における金属材表面の加熱がより一
層均一となる。
In a preferred embodiment of the present invention, in order to make the deflection motion of the plasma arc current a smoother circular motion,
A sinusoidal alternating current is applied to each of the electric coils 10a to 10d, as shown in FIG. 11(B). That is,
An AC voltage of a required level is applied to the electric coil 10a, and an AC voltage whose phase is delayed by 270 degrees is applied to the electric coil 10b, and an AC voltage whose phase is delayed by 180 degrees is applied to the electric coil 10c with respect to the AC voltage applied to the electric coil 10. An AC voltage with a phase delay of 90 degrees is applied to the electric coil 10d. As a result, a substantially perfect uniform circular motion magnetic field is generated in the space surrounded by the tip surfaces of the magnetic pole tips 9a to 9d, and the plasma arc current moves uniformly in a circular motion. Therefore, the motion of the plasma arc current is smooth, and the plasma arc current frame does not fluctuate due to the motion. Furthermore, heating of the surface of the metal material within the scanning width of the plasma arc current becomes more uniform.

【0036】[0036]

【効果】本願の第1番の発明のプラズマジェットト−チ
は、非移行式ト−チにおいて、磁束発生用の電気コイル
をト−チ内部に設置し、プラズマジェット発生用ア−ク
電流に直接磁束を作用させる為非常に効率が良く、少量
の磁束で確実な揺動が得られる。電気コイルの耐熱性が
十分向上した。
[Effects] The plasma jet torch of the first invention of the present application is a non-transfer type torch in which an electric coil for generating magnetic flux is installed inside the torch, and an arc current for generating a plasma jet is provided. It is very efficient because magnetic flux is applied directly, and reliable rocking can be obtained with a small amount of magnetic flux. The heat resistance of electric coils has been sufficiently improved.

【0037】本願の第2番の発明の非移動式のプラズマ
ジェットの揺動方法では、上述の第1番の発明の作用効
果が同様にもたらされると共に、磁極端(9a,9b,
9c,9d)が2対以上かつ電気コイル(10a,10
b,10c,10d)が複数個であって、しかも電気コ
イル(10a,10b,10c,10d)のそれぞれに
は、磁極端(9a,9b,9c,9d)の先端で囲まれ
る空間に回転磁界を生ずる正弦波交番電圧が印加される
ので、プラズマア−ク電流は、電極(1)の先端とプラ
ズマノズル(6n)の中心とを結ぶ直線(電極1の中心
軸)を中心とする円周に沿う円運動を行ない、プラズマ
ア−ク電流が、電極(1)の先端から金属材の間で円錐
を描く。電気コイル(10a,10b,10c,10d
)に印加される交流が正弦波であるので、該円運動は実
質上等速円運動であるので、プラズマア−ク電流の移動
が非常に滑らかで形状が安定し、偏向運動によるフレ−
ムのゆらぎを実質上生じない。
[0037] In the method for swinging a non-moving plasma jet according to the second invention of the present application, the effects of the above-mentioned first invention are similarly brought about, and the magnetic pole tips (9a, 9b,
9c, 9d) and two or more pairs of electric coils (10a, 10
b, 10c, 10d), and each of the electric coils (10a, 10b, 10c, 10d) has a rotating magnetic field in the space surrounded by the tip of the magnetic pole tip (9a, 9b, 9c, 9d). Since a sinusoidal alternating voltage is applied that produces The plasma arc current draws a cone between the tip of the electrode (1) and the metal material. Electric coil (10a, 10b, 10c, 10d
) is a sine wave, and the circular motion is substantially uniform circular motion, so the movement of the plasma arc current is very smooth and its shape is stable, and no flaking due to deflection motion occurs.
Virtually no wave fluctuation occurs.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本願の第1番の発明の第1実施例の縦断面
図であり、図2のI−I線断面図である。
1 is a longitudinal sectional view of a first embodiment of the first invention of the present application, and is a sectional view taken along line II in FIG. 2;

【図2】  図1に示すプラズマジェットト−チの下面
を示す平面図である。
2 is a plan view showing the lower surface of the plasma jet torch shown in FIG. 1. FIG.

【図3】  図1に示すプラズマジェットト−チの一部
を示す縦断面図であり、偏向されたプラズマア−ク電流
を示す。
3 is a longitudinal cross-sectional view of a portion of the plasma jet torch shown in FIG. 1, showing deflected plasma arc current; FIG.

【図4】  図3に示すプラズマジェットト−チの、磁
極端間の磁束密度とプラズマア−ク電流のア−ク振れ角
の関係を示すグラフである。
4 is a graph showing the relationship between the magnetic flux density between the magnetic pole tips and the arc deflection angle of the plasma arc current of the plasma jet torch shown in FIG. 3. FIG.

【図5】  図2に示すプラズマジェットト−チの、磁
束密度測定点を示す縮小平面図である。
5 is a reduced plan view showing magnetic flux density measurement points of the plasma jet torch shown in FIG. 2; FIG.

【図6】  図5に示す磁束密度測定点の、電気コイル
通電電流値と磁束密度との関係を示すグラフである。
6 is a graph showing the relationship between the electric coil current value and the magnetic flux density at the magnetic flux density measurement points shown in FIG. 5. FIG.

【図7】  図1に示すプラズマジェットト−チの電気
コイル10に流す電流の波形を示すタイムチャ−トであ
る。
7 is a time chart showing the waveform of the current flowing through the electric coil 10 of the plasma jet torch shown in FIG. 1. FIG.

【図8】  本願の第1番の発明の第2実施例の下面を
示す平面図である。
FIG. 8 is a plan view showing the bottom surface of the second embodiment of the invention No. 1 of the present application.

【図9】  図8のIX−IX線拡大断面図である。9 is an enlarged sectional view taken along the line IX-IX in FIG. 8. FIG.

【図10】  図8に示す第2実施例の電気コイル10
a〜10dに図11の(A)に示す電流を流したときの
、磁極端間に発生する磁束の方向Mfを示す平面図であ
る。
[FIG. 10] Electric coil 10 of the second embodiment shown in FIG. 8
FIG. 12 is a plan view showing the direction Mf of magnetic flux generated between the magnetic pole tips when the current shown in FIG. 11 (A) is passed between a to 10d.

【図11】  図8に示す第2実施例の電気コイル10
a〜10dに流す電流の波形を示すタイムチャ−トであ
り、図中の(B)が本願の第2番の発明の一実施例で電
気コイルに流す電流の波形を示す。
[FIG. 11] Electric coil 10 of the second embodiment shown in FIG. 8
It is a time chart showing the waveform of the current flowing through the electric coils a to 10d, and (B) in the figure shows the waveform of the current flowing through the electric coil in an embodiment of the second invention of the present application.

【図12】  図8に示す第2実施例の電気コイル10
a〜10dに図11の(B)に示す電流を流したときの
、磁極端間に発生する磁束の方向Mfを示す平面図であ
り、図12の(A)は図11の(B)に示すタイミング
aのものを、図12の(AB)は図11の(B)に示す
タイミングabのものを、図12の(B)は図11の(
B)に示すタイミングbのものを、図12の(BC)は
図11の(B)に示すタイミングbcのものを、図12
の(C)は図11の(B)に示すタイミングcのものを
、図12の(CD)は図11の(B)に示すタイミング
cdのものを、図12の(D)は図11の(B)に示す
タイミングdのものを、図12の(DA)は図11の(
B)に示すタイミングdaのものを示す。
[FIG. 12] Electric coil 10 of the second embodiment shown in FIG. 8
FIG. 12A is a plan view showing the direction Mf of magnetic flux generated between the magnetic pole tips when the current shown in FIG. 11B is applied to a to 10d, and FIG. 12(AB) shows the timing ab shown in FIG. 11(B), and FIG. 12(B) shows the timing ab shown in FIG.
12 (BC) shows the timing bc shown in FIG. 11 (B).
12(C) is the timing c shown in FIG. 11(B), FIG. 12(CD) is the timing cd shown in FIG. 11(B), and FIG. 12(D) is the timing cd shown in FIG. (DA) in FIG. 12 is for timing d shown in (B), and (DA) in FIG.
The timing da shown in B) is shown.

【符号の説明】[Explanation of symbols]

1:電極                  2:チ
ャック              3:キャップ 4:電極台                5:基幹
                  6:内ノズル部
材 6n:内ノズル            7:センタリ
ングスト−ン  8:外ノズル部材 8n:外ノズル            9:磁性体コ
ア            9a〜9d:磁極端 10,10a〜10d:電気コイル         
           11:外電極 11n:外電極ノズル      12:コイルリ−ド
        12a,12b:端子
1: Electrode 2: Chuck 3: Cap 4: Electrode stand 5: Backbone 6: Inner nozzle member 6n: Inner nozzle 7: Centering stone 8: Outer nozzle member 8n: Outer nozzle 9: Magnetic core 9a to 9d: Magnetic Extreme 10, 10a-10d: Electric coil
11: Outer electrode 11n: Outer electrode nozzle 12: Coil lead 12a, 12b: Terminal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  電極,該電極の先端に対向する位置に
プラズマノズルを有する内ノズル部材,該内ノズル部材
と前記電極の間の空間にガスを供給するためのガス流路
、および、前記プラズマノズルに対向する位置にプラズ
マ出射開口を有する外電極部材、を有する非移行式プラ
ズマジェットト−チにおいて、前記内ノズル部材と外電
極部材の間に介挿され、前記プラズマノズルからプラズ
マ出射開口に進むプラズマ流路を囲む断熱筒体;および
、断熱筒体を横切る磁束を発生するための電気コイル;
を備えることを特徴とする非移行式のプラズマジェット
ト−チ。
1. An electrode, an inner nozzle member having a plasma nozzle at a position opposite to the tip of the electrode, a gas flow path for supplying gas to a space between the inner nozzle member and the electrode, and a plasma A non-transfer type plasma jet torch having an outer electrode member having a plasma exit opening at a position facing the nozzle, which is inserted between the inner nozzle member and the outer electrode member, and is connected to the plasma exit opening from the plasma nozzle. an insulated cylinder surrounding the advancing plasma flow path; and an electric coil for generating magnetic flux across the insulated cylinder;
A non-transfer type plasma jet torch characterized by comprising:
【請求項2】  電極,該電極の先端に対向する位置に
プラズマノズルを有する内ノズル部材,該内ノズル部材
と前記電極の間の空間にガスを供給するためのガス流路
,前記プラズマノズルに対向する位置にプラズマ出射開
口を有する外電極部材,前記内ノズル部材と外電極部材
の間に介挿され、前記プラズマノズルからプラズマ出射
開口に進むプラズマ流路を囲む断熱筒体,先端面が該断
熱筒体の外側面に対向し断熱筒体を間に置いて互に対向
する2対以上の磁極端を有する磁性体コア、および、該
磁性体コアに巻回され、相対向する前記磁極端間に前記
断熱筒体を横切る磁束を発生するための複数個の電気コ
イル、を備えるプラズマジェットト−チの、前記電気コ
イルのそれぞれに、前記磁極端の先端で囲まれる空間に
回転磁界を生ずる正弦波交番電圧を印加することを特徴
とする、非移行式のプラズマジェットの揺動方法。
2. An electrode, an inner nozzle member having a plasma nozzle at a position facing the tip of the electrode, a gas flow path for supplying gas to a space between the inner nozzle member and the electrode, and a gas flow path for supplying gas to the plasma nozzle. an outer electrode member having plasma exit openings at opposing positions; a heat insulating cylindrical body inserted between the inner nozzle member and the outer electrode member and surrounding a plasma flow path that advances from the plasma nozzle to the plasma exit opening; a magnetic core having two or more pairs of magnetic pole tips facing the outer surface of the heat insulating cylinder and facing each other with the heat insulating cylinder placed therebetween, and the magnetic cores being wound around the magnetic core and opposing each other. A plasma jet torch is provided with a plurality of electric coils for generating a magnetic flux that crosses the heat insulating cylinder between them, and each of the electric coils generates a rotating magnetic field in a space surrounded by a tip of the pole tip. A non-transfer type plasma jet oscillation method characterized by applying a sinusoidal alternating voltage.
JP3040273A 1991-03-06 1991-03-06 Plasma jet torch and plasma jet oscillating method Expired - Lifetime JP2898111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3040273A JP2898111B2 (en) 1991-03-06 1991-03-06 Plasma jet torch and plasma jet oscillating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3040273A JP2898111B2 (en) 1991-03-06 1991-03-06 Plasma jet torch and plasma jet oscillating method

Publications (2)

Publication Number Publication Date
JPH04279284A true JPH04279284A (en) 1992-10-05
JP2898111B2 JP2898111B2 (en) 1999-05-31

Family

ID=12576029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3040273A Expired - Lifetime JP2898111B2 (en) 1991-03-06 1991-03-06 Plasma jet torch and plasma jet oscillating method

Country Status (1)

Country Link
JP (1) JP2898111B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071611A (en) * 2006-09-14 2008-03-27 Sekisui Chem Co Ltd Electrode structure of plasma surface treatment device
JP2009076458A (en) * 2007-09-20 2009-04-09 Posco Plasma torch device, and return-ore treatment method using plasma
WO2018029845A1 (en) * 2016-08-11 2018-02-15 富士機械製造株式会社 Plasma generation device and plasma irradiation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071611A (en) * 2006-09-14 2008-03-27 Sekisui Chem Co Ltd Electrode structure of plasma surface treatment device
JP2009076458A (en) * 2007-09-20 2009-04-09 Posco Plasma torch device, and return-ore treatment method using plasma
WO2018029845A1 (en) * 2016-08-11 2018-02-15 富士機械製造株式会社 Plasma generation device and plasma irradiation method

Also Published As

Publication number Publication date
JP2898111B2 (en) 1999-05-31

Similar Documents

Publication Publication Date Title
US7235758B2 (en) MIG-plasma welding
EP0002623B1 (en) Electric arc apparatus and method for treating a flow of material by an electric arc
JPS6336861A (en) Method and device for improved plasma frame-spray gun capable of adjusting ratio of plasma gas flow in radial direction and tangential direction
GB2295569A (en) Enhanced laser beam welding
TW201318759A (en) Stud welding method and apparatus
JPH08319552A (en) Plasma torch and plasma thermal spraying device
US4278868A (en) Methods and apparatus for heating metal parts with magnetically driven travelling electric arc
JPH04279284A (en) Plasma jet torch and plasma jet rocking method
JPS6340299A (en) Electrode construction of non-transferring plasma torch
JP4250422B2 (en) Plasma welding method
EP0448098B1 (en) Method of generating a heat-plasma and coating apparatus employing said method
US4013866A (en) Plasma torches
FR2473929A1 (en) METHOD AND DEVICE FOR MACHINING BY ELECTRIC DISCHARGE
US6686555B2 (en) Method for plasma jet welding
US4219722A (en) Methods and apparatus for heating metal parts with magnetically driven travelling electric arc
JP2927596B2 (en) Non-transfer type plasma jet oscillation method and plasma jet apparatus
JP2914583B2 (en) Plasma arc generator
JPH08118027A (en) Width widening method of plasma jet
KR100421424B1 (en) Narrow Gap Welding Torch Built With Electromagnet
JPH0713290B2 (en) Thermal spray torch
JP2595365B2 (en) Thermal plasma jet generator
SU458109A1 (en) The method of generating low-temperature plasma
RU2217281C2 (en) Apparatus for electron beam welding
JPH04139384A (en) Moving type plasma torch
CN1129351C (en) Method and apparatus for heating metal parts by magneto-controlling arc plasma