JPH04278183A - Cooling tower - Google Patents

Cooling tower

Info

Publication number
JPH04278183A
JPH04278183A JP6406291A JP6406291A JPH04278183A JP H04278183 A JPH04278183 A JP H04278183A JP 6406291 A JP6406291 A JP 6406291A JP 6406291 A JP6406291 A JP 6406291A JP H04278183 A JPH04278183 A JP H04278183A
Authority
JP
Japan
Prior art keywords
water
hot water
bacteria
hot
cooling tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6406291A
Other languages
Japanese (ja)
Inventor
Hisayoshi Yamamori
山森 久嘉
Makoto Uchida
誠 内田
Tatsuhiro Kato
辰廣 加藤
Katsuyuki Yanone
勝行 矢ノ根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP6406291A priority Critical patent/JPH04278183A/en
Publication of JPH04278183A publication Critical patent/JPH04278183A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the breeding of bacteria in hot-water and improve heat exchanging efficiency by a method wherein the water evaporating unit of a cooling tower is formed of the film of hydrophobic fine porous hollow threads. CONSTITUTION:A water evaporating unit 8 is constituted of the film 1 of hydrophobic fine porous hollow threads and hot-water intaking port 2 as well as a hot-water outletting port 3, which are connected to the film 1, while hot-water is passed through said water evaporating unit 8 to evaporate one part of the hot-water and cool it. The film 1 of hydrophobic fine porous hollow threads is constituted of hydrophobia resin such as polyethylene, polypropylene, polysulfone, fluorine resin and the like which are provided with the outer diameter of 10-5000mum, the thickness of 5-1000mum, the porosity of 10-90% and the diameter of hole of 0.001-1mum. The diameter of hole is far smaller than bacteria and, therefore, bacteria in atmosphere can not pass the wall of the film and invade into the hot-water whereby the bacteria will never be breeded. On the other hand, the hot-water will never exude to the outside of the film 1 of hydrophobic fine porous hollow threads whereby the breeding of bacteria on the surface of the water evaporating unit 8 will never be caused. Furthermore, the constitution of the cooling tower is simple and heat exchanging efficiency is improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、クーリングタワーに係
わり、細菌が繁殖した温水の大気中への飛散による細菌
汚染のないクーリングタワーに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling tower, and more particularly, to a cooling tower that is free from bacterial contamination due to the scattering of hot water in which bacteria have grown into the atmosphere.

【0002】0002

【従来の技術】従来から提供されているクーリングタワ
ーは、冷凍機等により熱交換された温水を充填材に散水
し、これに風を送るように取り付けたファンから風を吹
き付け、この温水の一部を蒸発させ、このとき発生する
蒸発潜熱により温水を冷却し、再び冷凍機等の熱交換機
に送り込む構造になっている。
[Prior Art] Cooling towers that have been provided in the past spray hot water that has been heat-exchanged by a refrigerator or the like onto a filling material, and then blow wind from a fan attached to blow air onto the filling material. The hot water is cooled by the latent heat of vaporization generated at this time, and then sent to a heat exchanger such as a refrigerator again.

【0003】ところで近年、健康や快適な居住環境につ
いて関心が高まるにつれて、クーリングタワーの温水中
に大気中の細菌などが繁殖し、この細菌が温水と共に大
気中に飛散し、人体に悪影響を与えることが問題となっ
ており、例えばアメリカで起きた在郷軍人病にみられる
ような大問題も発生している。
[0003] However, in recent years, as concerns about health and comfortable living environments have increased, bacteria from the atmosphere can breed in the warm water of cooling towers, and these bacteria can be dispersed into the atmosphere along with the warm water, causing negative effects on the human body. This has become a serious problem, and major problems such as the one seen in the U.S. military disease outbreak have also occurred.

【0004】従来、この問題に対しては、■クーリング
タワー内の水に殺菌剤を投入する、■温水が大気と完全
に分離された構造とする、■クーリングタワー内の充填
材を殺菌性のあるものにする、などの対策がとられてい
た。
[0004] Conventionally, this problem has been solved by: (1) adding a sterilizing agent to the water in the cooling tower, (2) creating a structure that completely separates hot water from the atmosphere, and (2) using a sterilizing filling material in the cooling tower. Measures were taken, such as:

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな方法には次のような問題があった。
[Problems to be Solved by the Invention] However, this method has the following problems.

【0006】1.クーリングタワー内の水に殺菌剤を投
入する方法では、細菌類は死滅するものの、殺菌剤の飛
散により人体への悪影響が問題となる。
1. Although the method of adding disinfectant to the water in a cooling tower kills bacteria, the scattering of the disinfectant poses a problem of adverse effects on the human body.

【0007】2.温水と大気を完全に分離する方法では
、クーリングタワーの構造が複雑になる他、熱交換効率
も悪くなる。
2. A method that completely separates hot water from the atmosphere not only complicates the structure of the cooling tower but also reduces heat exchange efficiency.

【0008】3.クーリングタワー内の充填材に殺菌性
のあるものを使用する方法では、殺菌性の弱いものでは
クーリングタワー内で接触時間の少ない温水は充分に殺
菌されることはなく、また殺菌性の強いものでは殺菌性
分の溶出により前述した殺菌成分の飛散という問題が発
生する。
3. In the method of using a bactericidal filling material in the cooling tower, if the filling material is weakly bactericidal, the hot water that is in contact with it in the cooling tower for a short time will not be sufficiently sterilized, and if the filling material is strongly bactericidal, it will not be sterilized. The above-mentioned problem of scattering of the sterilizing components occurs due to the elution of the sterilizing components.

【0009】本発明は上記事情に鑑みてなされたもので
、殺菌剤を使用することなく簡単な構造で細菌が繁殖し
た温水の大気中への飛散をによる細菌汚染を防止するこ
とができるクーリングタワーの提供を目的としている。
The present invention has been made in view of the above circumstances, and provides a cooling tower that can prevent bacterial contamination due to the scattering of hot water into the atmosphere in which bacteria have grown, with a simple structure and without the use of disinfectants. intended to provide.

【0010】0010

【課題を解決するための手段】かかる課題は、冷凍機等
の熱交換によって発生した温水の一部を蒸発させ、蒸発
により発生する蒸発潜熱により温水を冷却し循環再利用
するクーリングタワーにおいて、疎水性微多孔質中空糸
膜よりなる水蒸発部を備え、温水を該水蒸発部に通し該
温水の一部を蒸発させて該温水を冷却する構成とするこ
とによって解消される。
[Means for Solving the Problem] This problem is solved by evaporating a part of the hot water generated by heat exchange with a refrigerator, etc., and cooling the hot water using the latent heat of evaporation generated by the evaporation for circulation and reuse. This problem can be solved by providing a water evaporation section made of a microporous hollow fiber membrane, and cooling the hot water by passing hot water through the water evaporation section and evaporating a portion of the hot water.

【0011】また前記疎水性微多孔質中空糸膜にはポリ
エチレン、ポリプロピレン、ポリスルホン、フッ素系樹
脂等の疎水性樹脂からなり、外径10〜5000μm、
膜厚5〜1000μm、空孔率10〜90%、孔径0.
001〜1μmのものが望ましい。
[0011] The hydrophobic microporous hollow fiber membrane is made of a hydrophobic resin such as polyethylene, polypropylene, polysulfone, or fluororesin, and has an outer diameter of 10 to 5000 μm.
Film thickness 5-1000 μm, porosity 10-90%, pore diameter 0.
A thickness of 0.001 to 1 μm is desirable.

【0012】0012

【作用】本発明のクーリングタワーでは、蒸発潜熱によ
り冷却される温水と、ファンからの空気とを疎水性微多
孔質中空糸膜を介して分離することにより大気中の細菌
が温水中に侵入することがなく、従ってクーリングタワ
ー内で細菌が繁殖せず、細菌が温水と共に空気中に飛散
することがない。
[Operation] In the cooling tower of the present invention, the hot water cooled by the latent heat of vaporization and the air from the fan are separated through the hydrophobic microporous hollow fiber membrane, thereby preventing bacteria in the atmosphere from entering the hot water. Therefore, bacteria will not grow inside the cooling tower, and bacteria will not be dispersed into the air with hot water.

【0013】本発明のクーリングタワーは冷凍機等の熱
交換機によって発生した温水を疎水性微多孔質中空糸膜
よりなる水蒸発部に通し温水の一部を蒸発させ、このと
き発生する蒸発潜熱で温水を冷却させ再び冷凍機などの
熱交換機に戻すように構成されている。
The cooling tower of the present invention passes hot water generated by a heat exchanger such as a refrigerator through a water evaporation section made of a hydrophobic microporous hollow fiber membrane, evaporates a part of the hot water, and uses the latent heat of evaporation generated at this time to evaporate the hot water. The system is configured to cool the water and return it to a heat exchanger such as a refrigerator.

【0014】本発明で用いる疎水性微多孔質中空糸膜の
膜壁の孔は細菌に比べはるかに小さな孔径を有しており
、大気中の細菌が膜壁を通って温水中に侵入することが
できず疎水性微多孔質中空糸膜の内部で細菌が増殖する
ことはない。また、温水中に始めから混在している細菌
は、温水循環の途中に弱い殺菌性を有する殺菌剤を注入
したり、支持体などに付着させて温水循環の途中に挿入
することにより殺菌できる。
[0014] The pores in the membrane wall of the hydrophobic microporous hollow fiber membrane used in the present invention have a much smaller pore diameter than bacteria, making it difficult for bacteria in the atmosphere to enter hot water through the membrane wall. Therefore, bacteria will not grow inside the hydrophobic microporous hollow fiber membrane. In addition, bacteria that are mixed in hot water from the beginning can be sterilized by injecting a disinfectant with weak bactericidal properties during hot water circulation, or by attaching it to a support or the like and inserting it during hot water circulation.

【0015】本発明で用いられる疎水性微多孔質中空糸
膜は疎水性であるため、一般に使用される水圧3kg/
cm2では、疎水性微多孔質中空糸膜内部の温水が外部
ににじみ出すことはなく、従って疎水性微多孔質中空糸
膜表面で大気中の細菌が繁殖することはない。
[0015] Since the hydrophobic microporous hollow fiber membrane used in the present invention is hydrophobic, the water pressure generally used is 3 kg/
cm2, the hot water inside the hydrophobic microporous hollow fiber membrane does not seep out to the outside, and therefore bacteria in the atmosphere do not grow on the surface of the hydrophobic microporous hollow fiber membrane.

【0016】また水蒸気状態になった温水は微多孔質中
空糸膜の孔径に比べはるかに小さいため膜壁を自由に移
動でき、直接温水の蒸発による蒸発潜熱で冷却すること
ができ熱交換効率も良好である。
[0016] In addition, since the hot water in the steam state is much smaller than the pore diameter of the microporous hollow fiber membrane, it can move freely on the membrane wall, and can be cooled directly by the latent heat of evaporation due to the evaporation of the hot water, increasing the heat exchange efficiency. In good condition.

【0017】[0017]

【実施例】以下、本発明のクーリングタワーについて図
1ないし図3に基づき実施例を説明する。図1は本発明
のクーリングタワーの一実施例を示す図であって、この
図中符号1は疎水性微多孔質中空糸膜、2は温水取入口
、3は温水出口、4はファン、5はポッテイング部、6
は空気取入口、7は空気吹き出し口、8は水蒸発部であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the cooling tower of the present invention will be described below with reference to FIGS. 1 to 3. FIG. 1 is a diagram showing an embodiment of the cooling tower of the present invention, in which reference numeral 1 is a hydrophobic microporous hollow fiber membrane, 2 is a hot water intake, 3 is a hot water outlet, 4 is a fan, and 5 is a Potting club, 6
7 is an air intake port, 7 is an air outlet, and 8 is a water evaporation part.

【0018】水蒸発部8は、図2に模式的に示すように
、疎水性微多孔質中空糸膜1に温水の入口と出口とを接
続し、疎水性微多孔質中空糸膜1内に冷却機等から送ら
れてくる温水を通し、疎水性微多孔質中空糸膜に風を当
てることによって表面から内部を通る温水の一部を蒸発
させ、その蒸発潜熱によって温水を冷却するようになっ
ている。水蒸発部8は、温水の冷却効率を高めるために
疎水性微多孔質中空糸膜1の表面積がなるべく大きくな
るような構造とされ、細いチューブ状の疎水性微多孔質
中空糸1を数千〜数万本並べた構造とするのが望ましい
As schematically shown in FIG. 2, the water evaporation section 8 connects the inlet and outlet of hot water to the hydrophobic microporous hollow fiber membrane 1, and evaporates water into the hydrophobic microporous hollow fiber membrane 1. By blowing hot water from a cooler, etc. through the hydrophobic microporous hollow fiber membrane, a portion of the hot water that passes through the membrane from the surface evaporates, and the latent heat of evaporation cools the hot water. ing. The water evaporation section 8 has a structure in which the surface area of the hydrophobic microporous hollow fiber membrane 1 is as large as possible in order to increase the cooling efficiency of hot water, and several thousand thin tube-shaped hydrophobic microporous hollow fiber membranes 1 are used in the water evaporation section 8. It is desirable to have a structure in which tens of thousands of pieces are lined up.

【0019】図3は、本発明に好適な疎水性微多孔質中
空糸膜1を例示するものである。この疎水性微多孔質中
空糸膜1は、ポリエチレン、ポリプロピレン、ポリスル
ホン、フッ素系樹脂等の疎水性樹脂からなり、外径10
〜5000μm、膜厚5〜1000μm、空孔率10〜
90%、孔径0.001〜1μmのものである。この疎
水性微多孔質中空糸膜1の膜壁の孔は細菌に比べはるか
に小さな孔径を有しており、大気中の細菌が膜壁を通っ
て温水中に侵入することができず疎水性微多孔質中空糸
膜の内部で細菌が増殖することはない。また、温水中に
始めから混在している細菌は、温水循環の途中に弱い殺
菌性を有する殺菌剤を注入したり、支持体などに付着さ
せて温水循環の途中に挿入することにより殺菌できる。 またこの疎水性微多孔質中空糸膜は疎水性であるため、
一般に使用される水圧3kg/cm2では、疎水性微多
孔質中空糸膜内部の温水が外部ににじみ出すことはなく
、従って疎水性微多孔質中空糸膜表面で大気中の細菌が
繁殖することはない。
FIG. 3 illustrates a hydrophobic microporous hollow fiber membrane 1 suitable for the present invention. The hydrophobic microporous hollow fiber membrane 1 is made of a hydrophobic resin such as polyethylene, polypropylene, polysulfone, or fluororesin, and has an outer diameter of 10
~5000μm, film thickness 5~1000μm, porosity 10~
90%, and the pore diameter is 0.001 to 1 μm. The pores in the membrane wall of this hydrophobic microporous hollow fiber membrane 1 have a much smaller pore diameter than bacteria, and bacteria in the atmosphere cannot penetrate into the hot water through the membrane wall. Bacteria do not grow inside the microporous hollow fiber membrane. In addition, bacteria that are mixed in hot water from the beginning can be sterilized by injecting a disinfectant with weak bactericidal properties during hot water circulation, or by attaching it to a support or the like and inserting it during hot water circulation. In addition, since this hydrophobic microporous hollow fiber membrane is hydrophobic,
At the generally used water pressure of 3 kg/cm2, the hot water inside the hydrophobic microporous hollow fiber membrane does not ooze out to the outside, and therefore bacteria in the atmosphere do not breed on the surface of the hydrophobic microporous hollow fiber membrane. do not have.

【0020】この実施例によるクーリングタワーは、冷
却機等の熱交換によって発生した温水を、温水取入口2
から水蒸発部8の多数本の疎水性微多孔質中空糸膜1内
を通しつつ、水蒸発部8の側方に設けられたファン4を
回転させて空気を当て、疎水性多孔質中空糸膜1内の温
水を水の蒸発潜熱で冷却し、冷却した水を出口3から取
り出し冷却機等の熱交換機に戻すようになっている。
[0020] The cooling tower according to this embodiment transfers hot water generated by heat exchange from a cooler etc. to the hot water intake port 2.
The air is passed through the multiple hydrophobic microporous hollow fiber membranes 1 of the water evaporation section 8 while rotating the fan 4 provided on the side of the water evaporation section 8 to apply air to the hydrophobic porous hollow fibers. The hot water in the membrane 1 is cooled by the latent heat of vaporization of the water, and the cooled water is taken out from the outlet 3 and returned to a heat exchanger such as a cooler.

【0021】次に、具体例により本発明の効果を明確に
する。
Next, the effects of the present invention will be clarified by specific examples.

【0022】(具体例)図1と同様に構成されたクーリ
ングタワー装置を作製し、その性能を調べた。疎水性微
多孔質中空糸膜として、EHF−270T(三菱レイヨ
ン製、ポリエチレン疎水性微多孔質中空糸膜)4300
本(長さ40cm)を束ねてウレタン樹脂にて両端をポ
ッテイングしたものを3個作製した。これらを5cm間
隔で重ね疎水性微多孔質中空糸膜よりなる水蒸発部を作
製した。これの一端に熱交換機からの温水取入口を取り
付け、他端に温水出口を取り付け、温水取入口側に熱交
換機より37℃の温水を40リットル/分の水量で送り
込んだ。次に空気取入口より送風ファンにて取り入れた
32℃、60%RHの風を疎水性微多孔質中空糸膜より
なる水蒸発部に5m/分で当てた。この結果水蒸発部の
温水出口より32℃の水を得た。
(Specific Example) A cooling tower device constructed in the same manner as shown in FIG. 1 was manufactured and its performance was investigated. As a hydrophobic microporous hollow fiber membrane, EHF-270T (manufactured by Mitsubishi Rayon, polyethylene hydrophobic microporous hollow fiber membrane) 4300
Three books (40 cm in length) were bundled together and potted at both ends with urethane resin. These were stacked at 5 cm intervals to produce a water evaporation section made of hydrophobic microporous hollow fiber membranes. A hot water inlet from a heat exchanger was attached to one end of this, a hot water outlet was attached to the other end, and hot water of 37° C. was fed into the hot water inlet side from the heat exchanger at a rate of 40 liters/min. Next, air at 32° C. and 60% RH was taken in from the air intake port using a blower fan and applied at 5 m/min to the water evaporation section made of a hydrophobic microporous hollow fiber membrane. As a result, water at 32°C was obtained from the hot water outlet of the water evaporation section.

【0023】また、循環している温水を24時間の間隔
でサンプリングし、一般生菌数を測定し、温水中の細菌
数の変動を調べた結果、温水中の細菌の繁殖はみられな
かった。
[0023] Furthermore, as a result of sampling the circulating hot water at 24-hour intervals, measuring the number of viable bacteria, and examining changes in the number of bacteria in the warm water, no bacterial growth was observed in the warm water. .

【0024】[0024]

【発明の効果】以上説明したように、本発明のクーリン
グタワーは、蒸発潜熱を発生させる水蒸発部を疎水性微
多孔質中空糸膜で形成したことにより、大気中の細菌は
疎水性微多孔質中空糸膜の膜壁を通過することができず
、温水中に空気中の細菌が繁殖することがない。また疎
水性多孔質中空糸膜外側に温水が滲み出ることがなく水
蒸発部表面での細菌の繁殖が起こらない。更に、温水を
疎水性微多孔質中空糸膜内部に通す装置と、ファンのみ
で構成され非常に簡単な構造とすることができる。これ
らのことにより、クーリングタワー内で大気中の細菌が
繁殖することなく、熱交換の効率が良好で、かつ水滴の
落下による騒音もなく、水による腐食もないコンパクト
なクーリングタワーを構成することができる。
Effects of the Invention As explained above, in the cooling tower of the present invention, the water evaporation part that generates latent heat of vaporization is formed of a hydrophobic microporous hollow fiber membrane, so that bacteria in the atmosphere can It cannot pass through the membrane wall of the hollow fiber membrane, so bacteria in the air will not breed in the warm water. In addition, warm water does not seep out to the outside of the hydrophobic porous hollow fiber membrane, and bacteria do not grow on the surface of the water evaporation part. Furthermore, it can have a very simple structure, consisting only of a device for passing hot water through the hydrophobic microporous hollow fiber membrane and a fan. As a result, it is possible to construct a compact cooling tower that does not allow bacterial growth in the atmosphere to grow within the cooling tower, has good heat exchange efficiency, is free from noise caused by falling water droplets, and is free from corrosion caused by water.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のクーリングタワーの一実施例を示す概
略構成図である。
FIG. 1 is a schematic configuration diagram showing an embodiment of a cooling tower of the present invention.

【図2】図1のクーリングタワーにおける水蒸発部を示
す概略側面図である。
FIG. 2 is a schematic side view showing a water evaporation section in the cooling tower of FIG. 1;

【図3】本発明に好適に使用される疎水性微多孔質中空
糸膜を例示する斜視図である。
FIG. 3 is a perspective view illustrating a hydrophobic microporous hollow fiber membrane suitably used in the present invention.

【符号の説明】[Explanation of symbols]

1    疎水性微多孔質中空糸膜 2    温水取入口 3    温水出口 4    ファン 5    ポッテイング部 6    空気取入口 7    空気吹き出し口 8    水蒸発部 1 Hydrophobic microporous hollow fiber membrane 2 Hot water intake 3 Hot water outlet 4 Fan 5    Potting Department 6 Air intake 7 Air outlet 8 Water evaporation section

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  冷凍機等の熱交換によって発生した温
水の一部を蒸発させ、蒸発により発生する蒸発潜熱によ
り温水を冷却し循環再利用するクーリングタワーにおい
て、疎水性微多孔質中空糸膜よりなる水蒸発部を備え、
温水を該水蒸発部に通し該温水の一部を蒸発させて該温
水を冷却するクーリングタワー。
Claim 1: A cooling tower that evaporates a portion of hot water generated by heat exchange in a refrigerator, etc., cools the hot water using the latent heat of vaporization generated by the evaporation, and recycles and reuses the water, comprising a hydrophobic microporous hollow fiber membrane. Equipped with a water evaporation section,
A cooling tower that cools the hot water by passing the hot water through the water evaporation section and evaporating a part of the hot water.
【請求項2】  前記疎水性微多孔質中空糸膜がポリエ
チレン、ポリプロピレン、ポリスルホン、フッ素系樹脂
等の疎水性樹脂からなり、外径10〜5000μm、膜
厚5〜1000μm、空孔率10〜90%、孔径0.0
01〜1μmである請求項1記載のクーリングタワー。
2. The hydrophobic microporous hollow fiber membrane is made of a hydrophobic resin such as polyethylene, polypropylene, polysulfone, or fluororesin, and has an outer diameter of 10 to 5000 μm, a membrane thickness of 5 to 1000 μm, and a porosity of 10 to 90. %, pore size 0.0
2. The cooling tower according to claim 1, wherein the cooling tower has a diameter of 0.01 to 1 μm.
JP6406291A 1991-03-05 1991-03-05 Cooling tower Withdrawn JPH04278183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6406291A JPH04278183A (en) 1991-03-05 1991-03-05 Cooling tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6406291A JPH04278183A (en) 1991-03-05 1991-03-05 Cooling tower

Publications (1)

Publication Number Publication Date
JPH04278183A true JPH04278183A (en) 1992-10-02

Family

ID=13247232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6406291A Withdrawn JPH04278183A (en) 1991-03-05 1991-03-05 Cooling tower

Country Status (1)

Country Link
JP (1) JPH04278183A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223576A (en) * 2009-02-26 2010-10-07 Toray Ind Inc Hollow fiber membrane type heat exchanger
JP2011226768A (en) * 2010-03-30 2011-11-10 Toray Ind Inc Gas-liquid heat exchanger made of hollow fiber
CN106767015A (en) * 2016-12-30 2017-05-31 四川迈铁龙科技有限公司 Evaporation cooling heat-exchanging system fast opening and closing gravity type water-distributing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223576A (en) * 2009-02-26 2010-10-07 Toray Ind Inc Hollow fiber membrane type heat exchanger
JP2011226768A (en) * 2010-03-30 2011-11-10 Toray Ind Inc Gas-liquid heat exchanger made of hollow fiber
CN106767015A (en) * 2016-12-30 2017-05-31 四川迈铁龙科技有限公司 Evaporation cooling heat-exchanging system fast opening and closing gravity type water-distributing device
CN106767015B (en) * 2016-12-30 2019-02-22 四川迈铁龙科技有限公司 Evaporate cooling heat-exchanging system fast opening and closing gravity type water-distributing device

Similar Documents

Publication Publication Date Title
US4146597A (en) Respiratory air humidifier for respirators
EP0009543B1 (en) Nested hollow fiber humidifier
US9746194B2 (en) Thin film capillary vaporization: device and methods
US5738808A (en) Humidifier for inhalant gas
JPS61128978A (en) Membrane type artificial lung
BRPI0614466A2 (en) apparatus for concentrating a nebulizer, methods for concentrating a solution and a nebulizer, and method for disinfecting or sterilizing an article or part of the article.
US20200245790A1 (en) Mist generator for sterilizing forced air systems
JPH04278183A (en) Cooling tower
US6723132B2 (en) Artificial lung device
ES2273059T3 (en) A GREENHOUSE AND A LOW GLASS CULTURE METHOD.
CN108283332A (en) A kind of composite construction cool-down garments
JPS5829463A (en) Method and apparatus for adding oxygen to blood by using air permeable diaphragm
JPS63220026A (en) Air conditioning system
JP2001340460A (en) Humidifier for medical gas
CN211261150U (en) Air purifying humidifier
CN211526632U (en) Humidifier
CN101190362A (en) Respiration filtering device
JPH04268125A (en) Cool air fan
JPH0426830Y2 (en)
JP3048501B2 (en) Carbonated spring manufacturing method
JPH0767923A (en) Incubator
CN200973903Y (en) Filtering device for breath
JP3786244B2 (en) Method and apparatus for generating water vapor containing hinokitiol
JPH0123050Y2 (en)
JP2002066285A (en) Apparatus for manufacturing carburetted spring

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514