JPH0427793A - Compressor - Google Patents

Compressor

Info

Publication number
JPH0427793A
JPH0427793A JP13344190A JP13344190A JPH0427793A JP H0427793 A JPH0427793 A JP H0427793A JP 13344190 A JP13344190 A JP 13344190A JP 13344190 A JP13344190 A JP 13344190A JP H0427793 A JPH0427793 A JP H0427793A
Authority
JP
Japan
Prior art keywords
shaft
bearing
compressor
refrigerant
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13344190A
Other languages
Japanese (ja)
Inventor
Toshikazu Sakai
寿和 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP13344190A priority Critical patent/JPH0427793A/en
Publication of JPH0427793A publication Critical patent/JPH0427793A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To improve abrasive state in the sliding part of a shaft and a bearing even if in such a severe condition as using the refrigerant 1,1,1,2 tetrafluoroethane, by applying polyimide containing MoS2 or polyamideimide resin on a shaft surface as coating. CONSTITUTION:A shaft 14 and a main bearing 8, a sub bearing 9 are formed of cast iron in a compressor 1. Polyimide containing 1-50weight% of MoS2 or polyamideimide resin is applied with thickness of 1-30mum on the entire surface of the shaft 14 as coating. Thus, a decrease in the abrasion amount can be attempted because MoS2, solid body lubricant, elevates the initial adaptability of the sliding parts between the shaft 14 and the bearings 8, 9.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は冷凍冷蔵装置や空調機等に用いられる圧縮機に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a compressor used in freezing and refrigerating equipment, air conditioners, and the like.

従来の技術 近年、冷凍冷蔵装置や空調機は、オゾン層の破壊等の環
境問題のために従来使用していた分子内に塩素を含む冷
媒ジフルオロジクロロメタン(以下R12という)やジ
フルオロクロロメタン(以下R22という)等から分子
内に塩素を含まない冷媒1.1.1.2テトラフルオロ
エタン(以下R134aという)への変更が検討されて
いる。
Conventional Technology In recent years, refrigerants such as difluorodichloromethane (hereinafter referred to as R12) and difluorochloromethane (hereinafter referred to as R22), which contain chlorine in the molecule, have been conventionally used in refrigerators and refrigerators and air conditioners due to environmental problems such as the destruction of the ozone layer. ) etc., to a refrigerant 1.1.1.2 tetrafluoroethane (hereinafter referred to as R134a) that does not contain chlorine in the molecule is being considered.

ところが、分子内に塩素を含まない前記冷媒R134a
は、潤滑性能が悪く圧縮機の摺動材料の特性を向上する
必要がある。
However, the refrigerant R134a, which does not contain chlorine in its molecules,
The lubrication performance is poor and it is necessary to improve the characteristics of the sliding material of the compressor.

以下図面を参照しながら従来の圧縮機の一例について説
明する。
An example of a conventional compressor will be described below with reference to the drawings.

第3図に従来の圧縮機の断面図を、第4図に従来の圧縮
機の機械部の横断面図を示す。第3図において1は圧縮
機である。2は密閉シェル、3は密閉シェル2に焼ばめ
されたステータ、4はステータ3と一対でモータを構成
するロータ、5はロータ4に焼ばめされたシャフトであ
る。また、6はシャフト5の偏心部に組込まれたローラ
、7はローラ6を収納するシリンダ、8はシャフト6の
主軸受、9はシャフト5の副軸受、10は副軸受9に圧
入されまた密閉シェル2に溶接された吸入管である。
FIG. 3 shows a cross-sectional view of a conventional compressor, and FIG. 4 shows a cross-sectional view of a mechanical part of the conventional compressor. In FIG. 3, 1 is a compressor. 2 is a sealed shell, 3 is a stator that is shrink-fitted to the sealed shell 2, 4 is a rotor that forms a motor with the stator 3, and 5 is a shaft that is shrink-fitted to the rotor 4. Further, 6 is a roller incorporated in the eccentric part of the shaft 5, 7 is a cylinder that houses the roller 6, 8 is a main bearing of the shaft 6, 9 is a sub-bearing of the shaft 5, and 10 is press-fitted into the sub-bearing 9 and sealed. This is the suction pipe welded to the shell 2.

第4図は第3図のA−A断面図であυ、ベー713がシ
リンダ7の溝内に収納されかつその先端部がローラ6の
外周部と摺接している。次にその動作につい又説明する
FIG. 4 is a cross-sectional view taken along the line AA in FIG. Next, the operation will be explained again.

ステータ3とロータ4で構成するモータによシシャフト
6が回転し、これに伴ってローラ6が偏心回転すること
によシ、吸入管10を通ってシリンダ7内に導入された
冷媒ガヌR12が圧縮される。また、シャフト5が回転
することによりシャフト5の外周に形成されたらせん溝
6とのポンプ効果で密閉シェル2の底部にある潤滑油(
ナフテン系鉱油)11が吸油管12を通ってシャフト6
゜副軸受9.主軸受8に供給され、さらに各部のクリア
ランスを通って機械部全体へ供給される。ここで、シャ
フト5及び主軸受8.副軸受9は鋳鉄(JIS:Fe1
2)で形成されておち、初期なじみ性を高めるためシャ
フト6はさらにリューフライト処理されていた。
The shaft 6 is rotated by the motor composed of the stator 3 and the rotor 4, and the roller 6 is rotated eccentrically, so that the refrigerant Ganu R12 introduced into the cylinder 7 through the suction pipe 10 is Compressed. In addition, as the shaft 5 rotates, the lubricating oil (
(naphthenic mineral oil) 11 passes through the oil absorption pipe 12 to the shaft 6
゜Secondary bearing 9. It is supplied to the main bearing 8, and then to the entire machine part through the clearances of each part. Here, the shaft 5 and the main bearing 8. The secondary bearing 9 is made of cast iron (JIS: Fe1
2), and the shaft 6 was further treated with leulite to improve its initial conformability.

発明が解決しようとする課題 しかしながら上記の様な構成は、潤滑性能の高い従来の
冷媒R12やR22が圧縮機の潤滑油中に溶解している
ことを前提に考えられており、分子内に塩素を含まず潤
滑性が劣る冷媒R134aを使用した場合には、シャフ
トや軸受部に摩耗が生じ十分な耐久性が維持できない。
Problems to be Solved by the Invention However, the above configuration was conceived on the premise that the conventional refrigerants R12 and R22, which have high lubrication performance, are dissolved in the lubricating oil of the compressor. If refrigerant R134a is used, which does not contain refrigerant and has poor lubricity, the shaft and bearing parts will wear out and sufficient durability cannot be maintained.

そこで、潤滑性能の劣る冷媒R134aを使用した時に
特性を満足する圧縮機の仕様が望まれていた。
Therefore, a compressor specification that satisfies the characteristics when using refrigerant R134a, which has poor lubrication performance, has been desired.

本発明は上記課題に鑑み、冷媒R134aを使用する圧
縮機に対して摺動材料の最適化を図シ圧縮機の耐久性を
向上させるものである。
In view of the above problems, the present invention improves the durability of a compressor using refrigerant R134a by optimizing the sliding material.

課題を解決するための手段 上記課題を解決するために本発明の圧縮機は、シャフト
表面に二硫化モリブデンを1〜60重量%含むポリアミ
ドイミドあるいはポリイミド樹脂を1〜30Amの厚さ
にコーティングしたものである。
Means for Solving the Problems In order to solve the above problems, the compressor of the present invention has a shaft surface coated with polyamideimide or polyimide resin containing 1 to 60% by weight of molybdenum disulfide to a thickness of 1 to 30 Am. It is.

作   用 本発明は上記した構成によって、固体潤滑剤である二硫
化モリブデンによシャフト表面の摺動部の初期なじみ性
を向上させその結果として摩耗量の低減を図シ、圧縮機
の耐久性を向上させるものである。
Function: With the above-described structure, the present invention uses molybdenum disulfide, which is a solid lubricant, to improve the initial conformability of the sliding parts on the shaft surface, thereby reducing the amount of wear and improving the durability of the compressor. It is something that improves.

実施例 以下本発明の一実施例について図面を参照しながら説明
する。
EXAMPLE An example of the present invention will be described below with reference to the drawings.

第1図に本発明の圧縮機の断面図を示す。第2図に本発
明の圧縮機の機械部の横断面図を示す。
FIG. 1 shows a sectional view of the compressor of the present invention. FIG. 2 shows a cross-sectional view of the mechanical part of the compressor of the present invention.

第1図において、1は圧縮機である。2は密閉シェル、
3は密閉シェル2に焼ばめされたステータ、4はステー
タ3と一対でモータを構成するロータ、14はロータ4
に焼ばめされたシャフトである。
In FIG. 1, 1 is a compressor. 2 is a sealed shell;
3 is a stator that is shrink-fitted to the sealed shell 2; 4 is a rotor that forms a motor with the stator 3; and 14 is a rotor 4.
The shaft is shrink-fitted to the

また、6はシャフト14の偏心部に組込まれたローラ、
7はローラ6を収納するシリンダ、8はシャフト14の
主軸受、9はシャフト14の副軸受、1oは副軸受9に
圧入されまた密閉シェル2に溶接さ゛れた吸入管である
Further, 6 is a roller incorporated in the eccentric part of the shaft 14;
7 is a cylinder housing the roller 6, 8 is a main bearing of the shaft 14, 9 is a sub-bearing of the shaft 14, and 1o is a suction pipe press-fitted into the sub-bearing 9 and welded to the sealed shell 2.

第2図は第1図のA−A断面図であシ、ベーン13がシ
リンダ7の溝内に収納されかつその先端部がローラeの
外周部と摺接している。次にその動作について説明する
。ステータ3とロータ4で構成するモータによシシャフ
ト14が回転し、これに伴ってローラ6が偏心回転する
ことによシ、吸入管10を通ってシリンダT内に導入さ
れた冷媒ガスR134aが圧縮される。また、シャフト
14が回転することに↓シャフト表面の外周に形成され
たらせん溝14aのポンプ効果で密閉シェル2の底部に
ある潤滑油(ポリプロピレングリコール)16が吸油管
12を通ってシャフト14゜副軸受9.主軸受8に供給
され、さらに各部のクリアランス−を通って機械部全体
へ供給される。ここで、シャフト14及び主軸受8.副
軸受9を鋳鉄(JIS:Fe12)で形成しておシ、さ
らにシャフト14の表面全体に二硫化モリブデン(以下
M o S 2という)を16重量%含むポリイミド樹
脂を厚さ8〜12μmコーティングしている。
FIG. 2 is a sectional view taken along the line AA in FIG. 1, and shows that the vane 13 is housed in the groove of the cylinder 7, and its tip is in sliding contact with the outer circumference of the roller e. Next, its operation will be explained. The motor composed of the stator 3 and rotor 4 rotates the shaft 14, and the roller 6 rotates eccentrically, thereby compressing the refrigerant gas R134a introduced into the cylinder T through the suction pipe 10. be done. Also, as the shaft 14 rotates, the lubricating oil (polypropylene glycol) 16 at the bottom of the sealed shell 2 passes through the oil absorption pipe 12 due to the pumping effect of the spiral groove 14a formed on the outer periphery of the shaft surface, and the shaft 14° Bearing9. It is supplied to the main bearing 8, and further supplied to the entire machine part through the clearances of each part. Here, the shaft 14 and the main bearing 8. The secondary bearing 9 is made of cast iron (JIS: Fe12), and the entire surface of the shaft 14 is coated with a polyimide resin containing 16% by weight of molybdenum disulfide (hereinafter referred to as MoS 2) to a thickness of 8 to 12 μm. ing.

シャフト14に施したコーティング層は、耐摩純性に優
れかつなじみ性が良く相手材を摩耗させないことから、
特にシャフト14と主軸受8及び副軸受9との摺動部に
おいて初期摩耗を低減し、結果として摩耗低減による耐
久性向上を図るものである。また、前記コーティングを
シャフト14に施したのは、塗布や吹付は等が容易であ
シ自動化することで膜厚の精度が高められ後加工による
シャフト径の補正が不要となるからである。軸受内面に
コーティングする場合は、端面付近と中心付近とに膜厚
差が生じやすく後加工で寸法調整する必要があシ、前記
ポリイミド樹脂の成形体を軸受部へ圧入する様な構成で
も圧入による変型のために軸受内径を再加工しなければ
ならない。
The coating layer applied to the shaft 14 has excellent abrasion resistance, good conformability, and does not abrade the mating material.
In particular, initial wear is reduced in the sliding parts between the shaft 14, the main bearing 8, and the sub-bearing 9, and as a result, durability is improved by reducing wear. Further, the reason why the coating is applied to the shaft 14 is that coating, spraying, etc. are easy, and by automating the coating, the accuracy of the film thickness is increased and correction of the shaft diameter by post-processing is unnecessary. When coating the inner surface of a bearing, a difference in film thickness tends to occur near the end face and near the center, and dimensions need to be adjusted in post-processing. Due to the deformation, the inner diameter of the bearing must be reworked.

上記構成での耐久性向上の効果を確認するため圧縮機の
6ケ月連続運転試験を行いシャフト及び主軸受、副軸受
(以下主軸受と副軸受を合わせて軸受という)の摩耗量
を評価した。結果を付表に示す。ここで、黒鉛あるいは
ポリテトラフルオロエチレン(以下PTFEという)を
配合した樹脂コーティング、及び無電解ニッケルメッキ
をシャフトに施こした仕様を比較例1〜3として示すと
トモに、シャフトにリューブライト処理を施こす従来の
圧縮機の材料仕様を比較例4.5として示した。
In order to confirm the effect of improving durability with the above configuration, a 6-month continuous operation test of the compressor was conducted to evaluate the amount of wear on the shaft, main bearing, and sub-bearing (hereinafter, the main bearing and sub-bearing are collectively referred to as bearings). The results are shown in the attached table. Here, Comparative Examples 1 to 3 show specifications in which the shaft is coated with a resin coating containing graphite or polytetrafluoroethylene (hereinafter referred to as PTFE) and electroless nickel plating. The material specifications of the conventional compressor are shown as Comparative Example 4.5.

(↓・スーFイ1、白) 比較例5は従来の冷媒R12と潤滑油(鉱油)を用いた
場合である。結果の示す通シ、シャフトと軸受の摩耗は
1μm以下であυはとんど摩耗なく耐久性は確保できる
(↓・Sue F I 1, white) Comparative Example 5 is a case where conventional refrigerant R12 and lubricating oil (mineral oil) were used. The results show that the wear of the through hole, shaft, and bearing is less than 1 μm, and υ is hardly worn and durability can be ensured.

一方、分子内に塩素を含まない冷媒R134aを用いた
場合は、冷媒との溶解性を確保する必要から潤滑油をポ
リプロピレングリコールとしているが、この場合比較例
4で示した様に目視でも摩耗痕が判別できる様になシ摩
耗量が2〜eμmを越える。一般に潤滑油そのものの特
性は鉱油に比べて合成油であるポリプロピレングリコー
ルの方が優れていると言われていることから、分子内に
塩素を含まない冷媒R134aの潤滑性が従来冷媒R1
2に比べて悪いために、摺動面の一部で凝着が発生し摺
動状態が不安定になっていることを示している。従って
、耐久性が著しく低下する。
On the other hand, when refrigerant R134a, which does not contain chlorine in its molecules, is used, polypropylene glycol is used as the lubricating oil to ensure solubility with the refrigerant. The amount of wear exceeds 2 to eμm so that it can be determined. In general, it is said that polypropylene glycol, which is a synthetic oil, has better properties than mineral oil, so the lubricity of refrigerant R134a, which does not contain chlorine in its molecules, is higher than that of conventional refrigerant R1.
This shows that adhesion has occurred on a part of the sliding surface, making the sliding condition unstable. Therefore, durability is significantly reduced.

また、比較例1〜3は本実施例と同様に作製が容易で後
加工が要らないことを前提に選択した表面処理をシャフ
トに施したものであるが、それぞれに問題がある。比較
例1は、シャフト表面全体に黒鉛を15重量%含むポリ
イミド樹脂を厚さ8〜10μmコーティングしたもので
あるが、付表に示した様にコーティング皮膜自身の耐摩
耗性が悪く5〜10μmの摩耗が生じ耐久性が維持でき
ない。比較例2は、シャフト表面全体にPTFEを10
重量%含むポリイミド樹脂を厚さ6〜10μmコーティ
ングしたものであるが、付表に示した様に相手材である
軸受内局面の摩耗は抑えられておシ摺動面も平滑で良好
となるが、シャフトの摩耗型が2〜7μmでありコーテ
ィング皮膜の耐摩耗性がやや劣る。これは、PTFEは
摺動特性に優れているが、冷媒R134aや潤滑油ポリ
プロピレングリコールによυPTFEが膨潤して軟化す
るために耐摩耗性が劣下したものと考える。
Further, in Comparative Examples 1 to 3, the shafts were subjected to a surface treatment selected on the assumption that the shafts were easy to manufacture and did not require post-processing, similar to the present example, but each had its own problems. In Comparative Example 1, the entire shaft surface was coated with a polyimide resin containing 15% by weight of graphite to a thickness of 8 to 10 μm, but as shown in the attached table, the coating film itself had poor wear resistance, resulting in wear of 5 to 10 μm. occurs and durability cannot be maintained. In Comparative Example 2, 10% of PTFE was applied to the entire shaft surface.
It is coated with polyimide resin containing % by weight to a thickness of 6 to 10 μm, and as shown in the attached table, wear on the inner surface of the bearing, which is the mating material, is suppressed, and the sliding surface is also smooth and smooth. The wear type of the shaft is 2 to 7 μm, and the wear resistance of the coating film is slightly inferior. This is because, although PTFE has excellent sliding properties, the wear resistance deteriorates because υPTFE swells and softens due to the refrigerant R134a and the lubricating oil polypropylene glycol.

従って、耐久性は不十分である。比較例3は、シャフト
表面全体に無電解ニッケルニリンメツキを厚さ10〜1
1μm施し、3oo′c×2時間のエージングにニジ表
面硬度をHv 400〜450に調整したものであるが
、付表に示した様にシャフト自身の耐摩耗は向上しほと
んど摩耗が見られなくなるが、相手材である軸受内局面
の摩耗は増加し、耐久性は悪化する。この場合は、相手
材の軸受内局面にも同様のメツキを施こす等によシ特性
改善が図れる可能性はあるが、工数やコストの点で不利
になると考える。
Therefore, durability is insufficient. In Comparative Example 3, electroless nickel plating was applied to the entire shaft surface to a thickness of 10 to 1
The surface hardness was adjusted to Hv 400-450 after aging for 30'c x 2 hours.As shown in the attached table, the wear resistance of the shaft itself has improved and almost no wear is seen. Abrasion of the inner surface of the bearing, which is the mating material, increases and durability deteriorates. In this case, it may be possible to improve the characteristics by applying similar plating to the inner surface of the bearing of the mating material, but this would be disadvantageous in terms of man-hours and cost.

これに対して、シリンダの表面全体にM o S 2を
15重量%含むポリイミド樹脂を厚さ8〜12μmコー
ティングした本実施例では、冷媒R134a及びポリプ
ロピレングリコール潤滑油を用いてもほとんど摩耗なく
十分な耐久性が維持できる。これは、Mo S 2  
が持つ潤滑効果によシシャフトと軸受の初期なじみがす
みやかに進行して摩耗や微視的な凝着が抑えられるとと
もに、M o S 2自身とMo S 2を保持するポ
リイミド樹脂が耐薬品性や耐溶剤性に優れているため強
い膨潤作用を示す冷媒134aやポリプロピレングリコ
ール潤滑油の雰囲気下においても特性が劣下することな
く皮膜自身の耐摩耗性が維持できたものと考える。
On the other hand, in this example, the entire surface of the cylinder was coated with a polyimide resin containing 15% by weight of M o S 2 to a thickness of 8 to 12 μm, and even when refrigerant R134a and polypropylene glycol lubricating oil were used, there was almost no wear and sufficient wear was achieved. Durability can be maintained. This is Mo S 2
Due to the lubricating effect of MoS 2, the initial familiarization between the shaft and bearing progresses rapidly, suppressing wear and microscopic adhesion, and MoS 2 itself and the polyimide resin that holds MoS 2 have excellent chemical resistance and It is believed that because of its excellent solvent resistance, the film itself was able to maintain its wear resistance without deteriorating its properties even in an atmosphere of refrigerant 134a and polypropylene glycol lubricating oil, which have a strong swelling effect.

以上の様に本実施例においては、被圧縮ガスを冷[R1
34aとし、潤滑油をポリプロピレングリコールとする
条件で使用した場合でも、軸受を鋳鉄で形成しまたシャ
フトを鋳鉄で形成した上にM o S 2  を16重
量%含むポリイミド樹脂をコーティングすることにより
、はとんど摩耗なく十分な耐久性が維持できることがわ
かった。
As described above, in this embodiment, the compressed gas is cooled [R1
34a and using polypropylene glycol as the lubricating oil, the bearing is made of cast iron, the shaft is made of cast iron, and then coated with polyimide resin containing 16% by weight of MoS2. It was found that sufficient durability could be maintained with almost no wear.

なお、本実施例では、シャフト及び軸受を鋳鉄で形成し
たが、シャフト素材を鋼、軸受素材を鉄系焼結材として
も耐摩耗性に大差なく同様の効果が得られるものと考え
る。また、シャフトをコーティングする樹脂は耐薬品性
や耐溶剤性に優れる慨よりポリイミドあるいはポリアミ
ドイミド樹脂が良く、コーティングする膜厚は効果と経
済性の点よ91〜308mが適当である。また前記樹脂
に配合するM o S 2の割合は1〜5o重量%が良
い。1重量%以下では潤滑効果が十分発揮されず、50
重量%以上では樹脂層の強度低下を招き剥離等の問題が
生じるおそれがある。
In this example, the shaft and the bearing are made of cast iron, but it is believed that the same effect can be obtained without much difference in wear resistance even if the shaft material is made of steel and the bearing material is made of iron-based sintered material. Further, the resin used to coat the shaft is preferably polyimide or polyamide-imide resin as it has excellent chemical resistance and solvent resistance, and the thickness of the coating is preferably 91 to 308 m in terms of effectiveness and economy. Further, the proportion of MoS2 blended in the resin is preferably 1 to 5% by weight. If it is less than 1% by weight, the lubricating effect will not be sufficiently exhibited, and the
If it exceeds % by weight, the strength of the resin layer may decrease and problems such as peeling may occur.

発明の効果 以上のように本実施例によれば、シャフト表面にM o
 S 2を含むポリイミドあるいはポリアミドイミド樹
脂をコーティングすることにより、潤滑性が悪くかつ膨
潤作用の強い冷媒1134aを用いる厳しい条件におい
てもシャフトと軸受の摺動部の摩耗状態が改善でき、圧
縮機の耐久性が維持できる。
Effects of the Invention As described above, according to this embodiment, M o
By coating with polyimide or polyamideimide resin containing S2, the wear condition of the sliding parts of the shaft and bearing can be improved even under severe conditions using refrigerant 1134a, which has poor lubricity and strong swelling action, and improves the durability of the compressor. You can maintain your sexuality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における圧縮機の断面図、第
2図は第1図の部分断面図、第3図は従来の圧縮機の断
面図、第4図は第3図の部分断面図である。 8・・・・・・主軸受、9・・・・・・副軸受、14・
・・・・・シャフト。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名主軸
受 第 図 第 図 第 図
Figure 1 is a sectional view of a compressor according to an embodiment of the present invention, Figure 2 is a partial sectional view of Figure 1, Figure 3 is a sectional view of a conventional compressor, and Figure 4 is a portion of Figure 3. FIG. 8...Main bearing, 9...Sub bearing, 14.
·····shaft. Name of agent: Patent attorney Shigetaka Awano and 1 other person Main bearing diagram

Claims (1)

【特許請求の範囲】[Claims] 被圧縮ガスを冷媒1,1,1,2テトラフルオロエタン
とし、圧縮機の構成要素としてシャフトと、前記シャフ
トの偏心部に取付けられたローラと、前記ローラを収納
するシリンダと、前記シリンダの溝内に収納されかつそ
の先端部が前記ローラの外周と摺接するベーンと、前記
シャフトを支持する軸受とを備えてなり、前記軸受を鋳
鉄あるいは鉄系焼結材で形成し、前記シャフトを鋳鉄あ
るいは鋼で形成しそのシャフト表面に二硫化モリブデン
を1〜50重量%含むポリアミドイミドあるいはポリイ
ミド樹脂を1〜30μmの厚さにコーティングしてなる
圧縮機。
The gas to be compressed is refrigerant 1,1,1,2 tetrafluoroethane, and the components of the compressor include a shaft, a roller attached to an eccentric portion of the shaft, a cylinder housing the roller, and a groove in the cylinder. a vane that is housed in a vane and whose tip portion slides on the outer periphery of the roller; and a bearing that supports the shaft; the bearing is made of cast iron or an iron-based sintered material, and the shaft is made of cast iron or A compressor made of steel whose shaft surface is coated with polyamideimide or polyimide resin containing 1 to 50% by weight of molybdenum disulfide to a thickness of 1 to 30 μm.
JP13344190A 1990-05-23 1990-05-23 Compressor Pending JPH0427793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13344190A JPH0427793A (en) 1990-05-23 1990-05-23 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13344190A JPH0427793A (en) 1990-05-23 1990-05-23 Compressor

Publications (1)

Publication Number Publication Date
JPH0427793A true JPH0427793A (en) 1992-01-30

Family

ID=15104847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13344190A Pending JPH0427793A (en) 1990-05-23 1990-05-23 Compressor

Country Status (1)

Country Link
JP (1) JPH0427793A (en)

Similar Documents

Publication Publication Date Title
US6457960B1 (en) Hermetic compressor and open compressor
KR100224325B1 (en) Scroll compressor and the manufacturing method
JP2000054973A (en) Rotary compressor
JP2001115959A (en) Compressor
WO2020095903A1 (en) Refrigerant compressor and refrigeration apparatus using same
JP2001289169A (en) Compressor
JP4069839B2 (en) Sliding device, manufacturing method thereof, and refrigerant compressor
JP2002147354A (en) Compressor
JP5640885B2 (en) Scroll compressor
JPH0427793A (en) Compressor
JP2005307903A (en) Scroll compressor
JP3476970B2 (en) Scroll compressor
JP2809763B2 (en) Sliding member and compressor using the same
JPH10141227A (en) Compressor
JP2002147377A (en) Scroll compressor and method of manufacturing journal bearing part
JP2001099502A (en) Refrigerating device
JPH1113667A (en) Rotary compressor and refrigerant recovery machine
JP4194144B2 (en) Scroll compressor
JP2003293948A (en) Refrigerant compressor
JPH05106581A (en) Refrigerant compressor
JPH07259768A (en) Rotary type compressor
JPH09222082A (en) Compressor
JP6967353B2 (en) Air conditioner and air conditioning system
JP5067181B2 (en) Sliding member and fluid machine
JP2005133586A (en) Hermetic refrigerant compressor