JPH04277522A - Production of polyoxytetramethylene glycol - Google Patents

Production of polyoxytetramethylene glycol

Info

Publication number
JPH04277522A
JPH04277522A JP12068291A JP12068291A JPH04277522A JP H04277522 A JPH04277522 A JP H04277522A JP 12068291 A JP12068291 A JP 12068291A JP 12068291 A JP12068291 A JP 12068291A JP H04277522 A JPH04277522 A JP H04277522A
Authority
JP
Japan
Prior art keywords
catalyst
water
thf
reaction
ptmg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12068291A
Other languages
Japanese (ja)
Inventor
Shigeru Yokota
滋 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP12068291A priority Critical patent/JPH04277522A/en
Publication of JPH04277522A publication Critical patent/JPH04277522A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyethers (AREA)

Abstract

PURPOSE:To provide a process for producing PTMG from THF by using an inexpensive solid super acid catalyst which is free from antimony pentafluoride and easy to recover and recycle. CONSTITUTION:A process for producing polyoxytetramethylene glycol comprising polymerizing tetrahydrofuran in the presence of a solid super acid catalyst comprising a compound metal oxide selected from the group consisting of the metal oxides of the general formula: MxOy (wherein x and y are each an integer of 1-3) and ammonium hydrogen-fluoride (NH4F.HF). Polyoxytetramethylene glycol can be produced efficiently in good yields by using a solid super acid catalyst which can easily be recovered and recycled and is more inexpensive as a polymerization catalyst.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はテトラヒドロフラン(以
下、THFと略す)を安価な固体超強酸触媒を重合触媒
として用い重合させ、ポリオキシテトラメチレングリコ
ール(以下、PTMGと略す)を製造する方法に関する
[Industrial Application Field] The present invention relates to a method for producing polyoxytetramethylene glycol (hereinafter referred to as PTMG) by polymerizing tetrahydrofuran (hereinafter referred to as THF) using an inexpensive solid super acid catalyst as a polymerization catalyst. .

【0002】0002

【従来の技術】PTMGは、スパンデックス、エラスト
マー、人工皮革等に用いられるポリウレタン、ポリエー
テルエステル、ポリエーテル(エステル)アミドの主原
料や界面活性剤、圧力流体等に用いられる工業的に有用
なポリマーであり、近年ではエラストマー分野を中心に
エンジニアリング用素材、医用高分子材料として特に注
目を浴びている。
[Prior Art] PTMG is an industrially useful polymer used as the main raw material for polyurethane, polyether ester, and polyether (ester) amide used in spandex, elastomers, artificial leather, etc., as well as in surfactants, pressure fluids, etc. In recent years, it has attracted particular attention as an engineering material and medical polymer material, mainly in the elastomer field.

【0003】PTMGはTHFの重合によって工業的に
製造されでいるが、この重合反応はカチオン重合であり
、しかも容易には進行しないためにその重合触媒として
は、超強酸として分類される酸強度の大きいプロトン酸
やルイス酸が使われ、かつしばしばこれらに共触媒を加
えたものが使用されてきている。前者の代表例は、フル
オロスルホン酸、発煙硫酸であり、後者の例としては、
過塩素酸−無水酢酸、BF3−HF−無水酢酸、ナフイ
オン(弗素化スルホン酸樹脂)−無水酢酸が挙げられ、
これらは工業的に実施されている。
[0003] PTMG is industrially produced by polymerizing THF, but this polymerization reaction is a cationic polymerization and does not proceed easily. Large protic acids and Lewis acids have been used, often with the addition of cocatalysts. Typical examples of the former are fluorosulfonic acid and fuming sulfuric acid, and examples of the latter are:
Examples include perchloric acid-acetic anhydride, BF3-HF-acetic anhydride, and napfion (fluorinated sulfonic acid resin)-acetic anhydride.
These are implemented industrially.

【0004】これら従来法に共通の、かつ致命的欠点は
、THFより一挙にPTMGを製造することができない
ことである。即ち、PTMGの両末端は水酸基でなけれ
ばならないが、従来法においては重合直後の末端基は−
SO3H基、或いは−OCOCH3基として停止されて
おり、これに水或いはアルカリ水を加えて加水分解し、
両末端を水酸基とする二段法である。
[0004] A common and fatal drawback of these conventional methods is that PTMG cannot be produced all at once from THF. That is, both ends of PTMG must be hydroxyl groups, but in the conventional method, the end groups immediately after polymerization are -
It is terminated as SO3H group or -OCOCH3 group, which is hydrolyzed by adding water or alkaline water,
This is a two-step method in which both ends are hydroxyl groups.

【0005】発煙硫酸を触媒として用いる重合方法も知
られているが、分子量1000前後に限定される用途に
は用いられるが、この後処理で水を加えねばならず、触
媒のリサイクル利用は極めて困難である(特公昭52−
32680等)。また、共触媒等を使用せずにTHFを
重合させ、かつ、一挙に末端OH基を有するPTMGと
する方法として、ヘテロポリ酸触媒や固体超強酸を用い
る方法も知られているが、前者は高価なヘテロポリ酸触
媒を高濃度で使用しているため、触媒回収に神経を払わ
なくてはならない。
[0005] A polymerization method using fuming sulfuric acid as a catalyst is also known, but it is used for applications where the molecular weight is limited to around 1000, but water must be added in the post-treatment, making it extremely difficult to recycle the catalyst. (Tokuko Sho 52-
32680 etc.). Additionally, methods using heteropolyacid catalysts or solid super strong acids are known as methods for polymerizing THF without using a cocatalyst and producing PTMG having terminal OH groups all at once, but the former is expensive. Since a high concentration of a heteropolyacid catalyst is used, care must be taken to recover the catalyst.

【0006】さらにはヘテロポリ酸触媒がTHFに僅か
に溶解するため、PTMG製品化時に、微量のヘテロポ
リ酸触媒をPTMGと分離するために、一段法であるに
もかかわらず、プロセスが複雑になっていた(特公昭6
3−30931)。また、後者も高価な五弗化アンチモ
ンを触媒として用いており、触媒回収に神経を払わなく
てはならなかった(特開昭63−35623)。
Furthermore, since the heteropolyacid catalyst is slightly dissolved in THF, the process becomes complicated even though it is a one-step method in order to separate a trace amount of the heteropolyacid catalyst from PTMG when producing PTMG. (Tokuko Showa 6)
3-30931). Furthermore, the latter also uses expensive antimony pentafluoride as a catalyst, and great care must be taken to recover the catalyst (Japanese Patent Laid-Open No. 63-35623).

【0007】[0007]

【発明が解決しようとする課題】これら従来技術は、大
部分がTHFより一挙にPTMGを製造する事ができず
、製造工程が複雑になっており、またTHFより一挙に
PTMGを製造する方法においても、高価な触媒を用い
ており、しかも触媒が若干THFに溶解するために、触
媒回収が複雑になっている。従来用いられている固体超
強酸触媒には、成分の一つとして五弗化アンチモンが担
持されているが、これは極めて高価な薬品である。さら
に、毒性や腐食性のために担体に担持させる際には熟練
を必要とする。
[Problems to be Solved by the Invention] Most of these conventional techniques cannot produce PTMG from THF all at once, and the manufacturing process is complicated, and the method for producing PTMG from THF at once is difficult. The method also uses an expensive catalyst, and furthermore, the catalyst is slightly soluble in THF, making catalyst recovery complicated. The conventionally used solid super strong acid catalyst supports antimony pentafluoride as one of its components, but this is an extremely expensive chemical. Furthermore, due to toxicity and corrosivity, skill is required when supporting it on a carrier.

【0008】[0008]

【発明の目的】本発明の目的は、回収・リサイクルが簡
単で、かつ五弗化アンチモンを含まない安価な固体超強
酸触媒を使って、THFよりPTMGを製造する方法を
開発することにある。
OBJECTS OF THE INVENTION An object of the present invention is to develop a method for producing PTMG from THF using an inexpensive solid superacid catalyst that is easy to recover and recycle and does not contain antimony pentafluoride.

【0009】[0009]

【課題を解決するための手段】すなわち、一般式:Mx
Oy(x、yは1ないし3の整数)で示される金属酸化
物の群から選ばれる複合金属酸化物とふっ化水素アンモ
ニウム(NH4F・HF)とから成る固体超強酸触媒の
存在下、THFを重合させることを特徴とするPTMG
の製造方法である。
[Means for solving the problem] That is, general formula: Mx
In the presence of a solid super acid catalyst consisting of a composite metal oxide selected from the group of metal oxides represented by Oy (x, y are integers of 1 to 3) and ammonium hydrogen fluoride (NH4F.HF), THF is PTMG characterized by being polymerized
This is a manufacturing method.

【0010】本発明で触媒として使用する複合金属酸化
物は、MxOy(x、yは1ないし3の整数)で示され
る金属酸化物の具体例である酸化アルミニウム(Al2
O3)、二酸化ケイ素(SiO2)、二酸化チタン(T
iO2)、二酸化ジルコニウム(ZrO2)、三酸化タ
ングステン(WO3)、酸化亜鉛(ZnO)等から選ば
れる成分を組み合わせた系で、例えばAl2O3−Si
O2、SiO2−TiO2、SiO2−ZrO2、Ti
O2−ZrO2等がある。
The composite metal oxide used as a catalyst in the present invention is aluminum oxide (Al2
O3), silicon dioxide (SiO2), titanium dioxide (T
iO2), zirconium dioxide (ZrO2), tungsten trioxide (WO3), zinc oxide (ZnO), etc., for example, Al2O3-Si
O2, SiO2-TiO2, SiO2-ZrO2, Ti
There are O2-ZrO2 and the like.

【0011】これらの複合金属酸化物は、それぞれの金
属のアルコキシド、塩化物、またはオキシ塩化物をアン
モニア水で複合金属酸化物として沈殿させ、この沈殿を
十分、洗浄、約100℃で乾燥、粉砕(200〜500
メッシュ)後、400℃ないし600℃、好ましくは4
50℃ないし500℃で焼成して得られる。金属のモル
組成は1:9ないし9:1の範囲であるが、モル組成の
調整は用いる金属アルコキシド、塩化物またはオキシ塩
化物中の金属組成より決められる。
These composite metal oxides are produced by precipitating the alkoxide, chloride, or oxychloride of each metal with aqueous ammonia as a composite metal oxide, thoroughly washing the precipitate, drying it at about 100°C, and pulverizing it. (200~500
400°C to 600°C, preferably 4
It is obtained by firing at 50°C to 500°C. The molar composition of the metal is in the range of 1:9 to 9:1, and adjustment of the molar composition is determined by the metal composition in the metal alkoxide, chloride or oxychloride used.

【0012】金属アルコキシドとしては、テトラエチル
オルトシリケート(Si(OC2H5)4)、アルミニ
ウムイソプロポキシド(Al〔OCH(CH3)2〕3
)等、塩化物としては四塩化チタン(TiCl4)、塩
化亜鉛(ZnCl2)等、またオキシ塩化物としてはオ
キシ塩化ジルコニウム(ZrOCl2・8H2O)等を
挙げることができる。
Examples of metal alkoxides include tetraethylorthosilicate (Si(OC2H5)4) and aluminum isopropoxide (Al[OCH(CH3)2]3).
), examples of chlorides include titanium tetrachloride (TiCl4) and zinc chloride (ZnCl2), and examples of oxychlorides include zirconium oxychloride (ZrOCl2.8H2O).

【0013】MxOy(x、yは1ないし3の整数)で
示される金属酸化物に対するふっ化水素アンモニウムの
担持率は特に規定されないが、担持率が低すぎると重合
活性が低下するので、触媒使用量が増えたり、重合時間
が長くなったりするので好ましくない。従って、好まし
くは2wt%以上の担持率で用いられる。ふっ化水素ア
ンモニウム水溶液の濃度は1〜1.5wt%が好ましく
、MxOy(x、yは1ないし3の整数)で示される金
属酸化物を7日間以上浸漬した後、湯浴上で蒸発乾固し
さらに120℃で24時間乾燥する。
The supporting ratio of ammonium hydrogen fluoride to the metal oxide represented by MxOy (x, y are integers of 1 to 3) is not particularly defined, but if the supporting ratio is too low, the polymerization activity will decrease, so the use of a catalyst may be difficult. This is not preferable because the amount increases and the polymerization time becomes longer. Therefore, it is preferably used at a loading rate of 2 wt% or more. The concentration of the ammonium hydrogen fluoride aqueous solution is preferably 1 to 1.5 wt%, and after immersing the metal oxide represented by MxOy (x and y are integers of 1 to 3) for 7 days or more, it is evaporated to dryness on a hot water bath. It is then dried at 120°C for 24 hours.

【0014】このようにして、例えばAl2O3−Si
O2−NH4F・HF、SiO2−TiO2−NH4F
・HF等の固体超強酸を得ることができる。本発明にお
いてTHFを重合する際、固体超強酸は二通りの反応方
式で使用する事ができる。
In this way, for example, Al2O3-Si
O2-NH4F・HF, SiO2-TiO2-NH4F
・Solid super strong acids such as HF can be obtained. In the present invention, when THF is polymerized, the solid superacid can be used in two reaction methods.

【0015】一つは、固体超強酸の存在下、1,4−ブ
タンジオールまたは/及び水とTHFあるいは、1,4
−ブタンジオールまたは/及び水とTHFとPTMGの
オリゴマーを重合せ、一段の反応でPTMGを製造する
方法であり、もう一つは、固体超強酸の存在下、無水酢
酸、無水プロピオン酸、無水酪酸のようなカルボン酸無
水物、塩化アセチル、塩化プロピオニル、塩化ブチリル
のようなカルボン酸塩化物、ジケテン、あるいは発煙硫
酸を助触媒として併用して、THFを重合させ、末端基
が−SO3H基、或いは−OCOCH3基として停止さ
れた重合中間体を製造した後、これに水或いはアルカリ
水を加えて加水分解し、両末端を水酸基とする二段の反
応でPTMGを製造する方法である。
One is to combine 1,4-butanediol or/and water with THF or 1,4-butanediol in the presence of a solid superstrong acid.
- A method for producing PTMG in a one-step reaction by polymerizing oligomers of butanediol or/and water, THF, and PTMG. THF is polymerized using a carboxylic acid anhydride such as acetyl chloride, propionyl chloride, carboxylic acid chloride such as butyryl chloride, diketene, or fuming sulfuric acid as a cocatalyst, and the terminal group is -SO3H group or This is a method of producing PTMG through a two-step reaction in which a polymerization intermediate terminated as -OCOCH3 group is produced, and then water or alkaline water is added to the intermediate to hydrolyze it to form hydroxyl groups at both ends.

【0016】触媒量は一段法あるいは二段法であるかの
反応方式、目的とする重合条件、PTMGの分子量、併
用する助触媒によって異なる。重合温度は−20℃〜1
50℃の範囲であるが、一段法で重合を行うには、室温
ないしは150℃の範囲が充分な触媒活性を発現するた
めに好ましい。また、助触媒を併用する時は−20℃〜
室温程度でよい。重合反応は触媒添加後、1〜15時間
、通常3〜10時間実施される。
The amount of catalyst varies depending on the reaction method (one-stage or two-stage method), the intended polymerization conditions, the molecular weight of PTMG, and the co-catalyst used. Polymerization temperature is -20℃~1
The temperature is in the range of 50°C, but for carrying out polymerization in a one-step process, a temperature in the range of room temperature to 150°C is preferable in order to develop sufficient catalytic activity. In addition, when using a co-catalyst, -20℃~
It should be around room temperature. The polymerization reaction is carried out for 1 to 15 hours, usually 3 to 10 hours, after addition of the catalyst.

【0017】反応形式は、槽型、塔型等、一般に用いら
れるものが使用される。バッチ方式、連続方式のいずれ
の方法で行っても良い。具体的には、一段法においては
、1,4−ブタンジオールまたは/及び水とTHFある
いは、1,4−ブタンジオールまたは/及び水とTHF
とPTMGのオリゴマー及び固体超強酸触媒を反応器に
張り込んで、重合させる方法(バッチ方式)、1,4−
ブタンジオールまたは/及び水とTHFあるいは、1,
4−ブタンジオールまたは/及び水とTHFとPTMG
のオリゴマー及び固体超強酸触媒を適当な滞留時間とな
るように、連続的に反応器へ仕込んで、連続的に固体超
強酸触媒含みの反応粗液を抜き取って行く方法または、
固体超強酸触媒を反応器内に封じ込めておき、1,4−
ブタンジオールまたは/及び水とTHFあるいは、1,
4−ブタンジオールまたは/及び水とTHFとPTMG
のオリゴマーを適当な滞留時間となるように、連続的に
反応器へ仕込んで、連続的に反応粗液を抜き取って行く
方法(連続方式)のいずれかの方法で行われる。
[0017] As for the reaction format, commonly used ones such as tank type and column type are used. It may be carried out either batchwise or continuously. Specifically, in the one-step method, 1,4-butanediol or/and water and THF, or 1,4-butanediol or/and water and THF
and PTMG oligomer and a solid super acid catalyst are placed in a reactor and polymerized (batch method), 1,4-
butanediol or/and water and THF or 1,
4-butanediol or/and water and THF and PTMG
A method in which the oligomer and the solid super strong acid catalyst are continuously charged into a reactor so as to have an appropriate residence time, and the reaction crude liquid containing the solid super strong acid catalyst is continuously withdrawn, or
A solid super acid catalyst is sealed in a reactor, and 1,4-
butanediol or/and water and THF or 1,
4-butanediol or/and water and THF and PTMG
The reaction is carried out by one of two methods (continuous method) in which the oligomers are continuously charged into a reactor and the reaction crude liquid is continuously withdrawn so as to have an appropriate residence time.

【0018】また、二段法においては、THFと固体超
強酸触媒を反応器に張り込んで、攪拌下共触媒を連続的
に反応器に仕込んで、重合させる方法(バッチ方式)、
THF、固体超強酸触媒及び共触媒を適当な滞留時間と
なるように、連続的に反応器へ仕込んで、連続的に固体
超強酸触媒含みの反応粗液を抜き取って行く方法または
、固体超強酸触媒を反応器内に封じ込めておき、THF
と共触媒を適当な滞留時間となるように、連続的に反応
器へ仕込んで、連続的に反応粗液を抜き取って行く方法
(連続方式)のいずれかの方法で行われる。
In addition, in the two-stage method, THF and a solid super strong acid catalyst are charged into a reactor, and a cocatalyst is continuously charged into the reactor while stirring to carry out polymerization (batch method);
A method in which THF, a solid super strong acid catalyst, and a cocatalyst are continuously charged into a reactor so as to have an appropriate residence time, and a reaction crude solution containing the solid super strong acid catalyst is continuously withdrawn, or a solid super strong acid The catalyst is sealed in the reactor and THF
This is carried out by one of two methods (continuous method), in which the reactor and cocatalyst are continuously charged into a reactor so as to have an appropriate residence time, and the reaction crude liquid is continuously withdrawn.

【0019】反応方式の選択は、PTMG製造量、重合
熱の除熱量、触媒の性状等を考慮して決定すべきである
。重合反応は通常、設備費等の問題から常圧で行われ、
加圧で反応を行っても、ほとんどメリットはないが、高
沸点の反応に不活性な溶媒を用いずに、THFの沸点以
上で反応を行う場合などは加圧で反応を行っても良い。
The reaction method should be selected in consideration of the amount of PTMG produced, the amount of polymerization heat removed, the properties of the catalyst, etc. Polymerization reactions are usually carried out at normal pressure due to equipment costs, etc.
There is almost no advantage in carrying out the reaction under pressure, but if the reaction is carried out at a temperature above the boiling point of THF without using an inert solvent for a high boiling point reaction, the reaction may be carried out under pressure.

【0020】上記方法によって得られる触媒懸濁重合液
から固体超強酸は濾過または遠心分離で除去され、回収
された触媒はそのまま再使用される。触媒分離後の反応
粗液から未反応の1,4−ブタンジオール、水、THF
、共触媒を留去すればTHF重合体が得られるが、共触
媒を併用した重合体から最終的にPTMGを製造するに
は、末端エステル基を水或いはアルカリ水を加え、加水
分解して、末端を水酸基に変え、適当な有機溶媒、例え
ばベンゼン、トルエン、キシレン、n−ブタノール、ジ
−イソプロピルエーテル等の存在下に精製、溶媒回収、
脱水を実施する。
The solid superacid is removed from the catalyst suspension polymerization solution obtained by the above method by filtration or centrifugation, and the recovered catalyst is reused as it is. Unreacted 1,4-butanediol, water, and THF from the reaction crude liquid after catalyst separation
A THF polymer can be obtained by distilling off the co-catalyst, but in order to finally produce PTMG from the co-catalyst polymer, the terminal ester group is hydrolyzed by adding water or alkaline water. The terminal is changed to a hydroxyl group, purified in the presence of an appropriate organic solvent such as benzene, toluene, xylene, n-butanol, di-isopropyl ether, etc., and the solvent is recovered.
Perform dehydration.

【0021】濾過によって分離回収された固体超強酸は
勿論、重合活性を保持し、循環使用される。以下、実施
例及び比較例を挙げて本発明を説明するが、本発明はこ
れらの実施例及び比較例によって何ら制限されるもので
はない。以下の実施例及び比較例において、数平均分子
量MNはJIS  K1557−1970に準拠したP
TMGのOH価により求めた。また、調製された固体超
強酸の酸強度(pKa)は、ハメット指示薬による指示
薬法で求めた値である。
The solid superacid separated and recovered by filtration naturally retains its polymerization activity and is recycled for use. The present invention will be described below with reference to Examples and Comparative Examples, but the present invention is in no way limited by these Examples and Comparative Examples. In the following examples and comparative examples, the number average molecular weight MN is P based on JIS K1557-1970.
It was determined by the OH value of TMG. Further, the acid strength (pKa) of the prepared solid superstrong acid is a value determined by an indicator method using a Hammett indicator.

【0022】[0022]

【実施例1】アルミニウムイソプロポキシド(Al〔O
CH(CH3)2〕3)とテトラエチルオルソシリケー
ト(Si(OC2H5)4)とをモル比1:3の割合で
大過剰の水に溶解し、攪拌下に濃アンモニア水で中和、
加水分解して各々の水酸化物の混合沈殿物を得た。この
沈殿懸濁液を濾過し、濾液pHが中性になるまで充分水
洗を行った。得られた水を含むペースト状の金属水酸化
物を100℃で一昼夜乾燥し、乳白色の塊状固形物を得
た。これを粉砕後、ふるいにかけ、300〜400メッ
シュの粉末を450℃で4時間焼成し、白色のSiO2
−Al2O3粉末を得た。
[Example 1] Aluminum isopropoxide (Al[O
CH(CH3)2]3) and tetraethyl orthosilicate (Si(OC2H5)4) were dissolved in a large excess of water at a molar ratio of 1:3, and neutralized with concentrated ammonia water while stirring.
Hydrolysis yielded a mixed precipitate of each hydroxide. This precipitate suspension was filtered and thoroughly washed with water until the pH of the filtrate became neutral. The obtained paste-like metal hydroxide containing water was dried at 100° C. for a day and night to obtain a milky white lumpy solid. After crushing this, it was sieved and the powder of 300-400 mesh was calcined at 450℃ for 4 hours to produce white SiO2
-Al2O3 powder was obtained.

【0023】次いで、内容量500mlのプラスチック
製容器内で、ふっ化水素アンモニウム1.15gを純水
100mlに溶解し、上記の方法で得られたシリカ・ア
ルミナ15gを7日間浸漬した。さらに、湯浴上で蒸発
乾固した後、オーブン中120℃で24時間乾燥して、
ふっ化水素アンモニウム担持SiO2−Al2O3触媒
(担持率7.6wt%)を得た。
Next, in a plastic container having a content of 500 ml, 1.15 g of ammonium hydrogen fluoride was dissolved in 100 ml of pure water, and 15 g of the silica-alumina obtained by the above method was immersed for 7 days. Furthermore, after evaporating to dryness on a hot water bath, it was dried in an oven at 120°C for 24 hours.
A SiO2-Al2O3 catalyst supporting ammonium hydrogen fluoride (supporting rate 7.6 wt%) was obtained.

【0024】超強酸であることの判定にはハメット指示
薬を用いた。すなわち、調製した触媒0.5gを乾燥空
気気流中550℃で3時間焼成後、5分割して各々を十
分脱水された塩化スルフリル液3mlを入れた試験管に
投入した。次いで、以下の5種類のハメット指示薬の1
%ベンゼン溶液を各々の試験管に数滴入れて、数回軽く
振ってから静置して触媒表面の変色の有無を肉眼で観察
した。
A Hammett indicator was used to determine whether the acid was a super strong acid. That is, 0.5 g of the prepared catalyst was calcined at 550° C. for 3 hours in a stream of dry air, then divided into 5 portions and each portion was placed in a test tube containing 3 ml of a sufficiently dehydrated sulfuryl chloride solution. Next, one of the following five types of Hammett indicators
A few drops of % benzene solution were put into each test tube, shaken lightly several times, and left to stand to visually observe the presence or absence of discoloration on the catalyst surface.

【0025】ハメット指示薬m−ニトロトルエン(pK
a=11.99)、ニトロベンゼン(pKa=−12.
14)、p−フルオロニトロベンゼン(pKa=−12
.44)、p−クロロニトロベンゼン(pKa=−12
.70)、m−クロロニトロベンゼン(pKa=−13
.16)を使用したところ、すべての指示薬を変色した
。このことから、調製した触媒の酸強度はH0<−13
.16であり、100%硫酸の酸強度(H0=−11.
93)の17倍以上であることが示された。
Hammett indicator m-nitrotoluene (pK
a=11.99), nitrobenzene (pKa=-12.
14), p-fluoronitrobenzene (pKa=-12
.. 44), p-chloronitrobenzene (pKa=-12
.. 70), m-chloronitrobenzene (pKa=-13
.. 16), all indicators changed color. From this, the acid strength of the prepared catalyst is H0<-13
.. 16, and the acid strength of 100% sulfuric acid (H0 = -11.
93).

【0026】[0026]

【実施例2】攪拌装置と還流冷却器を備えた容量300
mlのジャケット付きガラス製フラスコにTHF100
gと水0.2gを張り込み、30℃攪拌下に、実施例1
の方法で調製した固体超強酸30gを添加し、10時間
重合反応を行った。重合反応後、反応粗液を濾過して触
媒分離し、濾液からTHFを留去、減圧乾燥し、30.
5gのPTMGを得た。OH価より求めた数平均分子量
は6900であった。
[Example 2] Capacity 300 equipped with stirring device and reflux condenser
100ml of THF in a jacketed glass flask.
Example 1
30 g of solid super strong acid prepared by the method described above was added, and a polymerization reaction was carried out for 10 hours. After the polymerization reaction, the reaction crude liquid is filtered to separate the catalyst, THF is distilled off from the filtrate, and the mixture is dried under reduced pressure. 30.
5g of PTMG was obtained. The number average molecular weight determined from the OH value was 6900.

【0027】[0027]

【実施例3】攪拌装置と還流冷却器を備えた容量300
mlのジャケット付きガラス製フラスコにTHF100
gと1,4−ブタンジオール1.0gを張り込み、30
℃攪拌下に、実施例1の方法で調製した固体超強酸30
gを添加し、10時間重合反応を行った。重合反応後、
反応粗液を濾過して触媒分離し、濾液からTHFを留去
、減圧乾燥し、39.7gのPTMGを得た。OH価よ
り求めた数平均分子量は2870であった。
[Example 3] Capacity 300 equipped with stirring device and reflux condenser
100ml of THF in a jacketed glass flask.
g and 1.0 g of 1,4-butanediol, and
℃ under stirring, solid superacid 30 prepared by the method of Example 1.
g was added thereto, and the polymerization reaction was carried out for 10 hours. After the polymerization reaction,
The reaction crude liquid was filtered to separate the catalyst, and THF was distilled off from the filtrate and dried under reduced pressure to obtain 39.7 g of PTMG. The number average molecular weight determined from the OH value was 2,870.

【0028】[0028]

【実施例4】攪拌装置と還流冷却器を備えた容量300
mlのジャケット付きガラス製フラスコにTHFを10
0gと実施例1の方法で調製した固体超強酸10gを張
り込み、10℃攪拌下、無水酢酸14.2gを10分か
けて添加し、5時間重合反応を行った。反応終了後、固
体超強酸触媒を濾過分離する。
[Example 4] Capacity 300 equipped with stirring device and reflux condenser
Add 10 ml of THF to a jacketed glass flask.
0g and 10g of the solid super strong acid prepared by the method of Example 1 were charged, and while stirring at 10°C, 14.2g of acetic anhydride was added over 10 minutes, and a polymerization reaction was carried out for 5 hours. After the reaction is completed, the solid superacid catalyst is separated by filtration.

【0029】触媒分離後の反応粗液から未反応THFを
分離し、さらにn−ブタノール60g及び20%水酸化
ナトリウム水溶液60gを添加し、還流冷却下に2時間
加水分解反応を行った。冷却後、静置分液し、下層の水
層を抜き取り、上層有機層に水50gを加え、攪拌水洗
を行った。この水洗操作を同様に3回繰り返した後、有
機層からn−ブタノール/H2Oを留去、減圧乾燥する
ことにより数平均分子量1800のPTMGが缶出製品
として79.3g得られた。
Unreacted THF was separated from the reaction crude solution after catalyst separation, and 60 g of n-butanol and 60 g of a 20% aqueous sodium hydroxide solution were added to carry out a hydrolysis reaction for 2 hours under reflux cooling. After cooling, the mixture was allowed to stand still for liquid separation, the lower aqueous layer was extracted, 50 g of water was added to the upper organic layer, and the mixture was stirred and washed with water. After repeating this water washing operation three times, n-butanol/H2O was distilled off from the organic layer and dried under reduced pressure to obtain 79.3 g of PTMG with a number average molecular weight of 1800 as a canned product.

【0030】[0030]

【実施例5】テトラエチルオルソシリケート(Si(O
C2H5)4)とオキシ塩化ジルコニウムZrOCl2
・8H2Oとをモル比1:9の割合で大過剰の水に溶解
し、攪拌下に濃アンモニア水で中和、加水分解して各々
の水酸化物の混合沈殿物を得た。この沈殿懸濁液を濾過
し、濾液pHが中性になるまで充分水洗を行った。得ら
れた水を含むペースト状の金属水酸化物を100℃で一
昼夜乾燥し、乳白色の塊状固形物を得た。これを粉砕後
、ふるいにかけ、300〜400メッシュの粉末を45
0℃で1時間焼成し、白色のSiO2−ZrO2粉末を
得た。
[Example 5] Tetraethyl orthosilicate (Si(O
C2H5)4) and zirconium oxychloride ZrOCl2
-8H2O was dissolved in a large excess of water at a molar ratio of 1:9, neutralized with concentrated ammonia water under stirring, and hydrolyzed to obtain a mixed precipitate of each hydroxide. This precipitate suspension was filtered and thoroughly washed with water until the pH of the filtrate became neutral. The obtained paste-like metal hydroxide containing water was dried at 100° C. for a day and night to obtain a milky white lumpy solid. After pulverizing this, sieve it to obtain 300-400 mesh powder.
It was fired at 0°C for 1 hour to obtain white SiO2-ZrO2 powder.

【0031】次いで、内容量500mlのプラスチック
製容器内で、ふっ化水素アンモニウム1.15gを純水
100mlに溶解し、上記の方法で得られたシリカ・ア
ルミナ15gを7日間浸漬した。さらに、湯浴上で蒸発
乾固した後、オーブン中120℃で24時間乾燥して、
ふっ化水素アンモニウム担持SiO2−ZrO2触媒を
得た。調製した触媒の酸強度をハメット指示薬により測
定した結果、H0<−13.16であり、100%硫酸
の酸強度(H0=−11.93)の17倍以上であるこ
とが示された。
Next, in a plastic container with a capacity of 500 ml, 1.15 g of ammonium hydrogen fluoride was dissolved in 100 ml of pure water, and 15 g of the silica/alumina obtained by the above method was immersed for 7 days. Furthermore, after evaporating to dryness on a hot water bath, it was dried in an oven at 120°C for 24 hours.
A SiO2-ZrO2 catalyst supporting ammonium hydrogen fluoride was obtained. The acid strength of the prepared catalyst was measured using a Hammett indicator, and it was shown that H0<-13.16, which was 17 times or more the acid strength of 100% sulfuric acid (H0 = -11.93).

【0032】[0032]

【実施例6】攪拌装置と還流冷却器を備えた容量300
mlのジャケット付きガラス製フラスコにTHFを10
0gと実施例5の方法で調製した固体超強酸10gを張
り込み、10℃攪拌下、無水酢酸14.2gを10分か
けて添加し、5時間重合反応を行った。反応終了後、固
体超強酸触媒を濾過分離する。触媒分離後の反応粗液か
ら未反応THFを分離し、さらにn−ブタノール60g
及び20%水酸化ナトリウム水溶液60gを添加し、還
流冷却下に2時間加水分解反応を行った。
[Example 6] Capacity 300 equipped with stirring device and reflux condenser
Add 10 ml of THF to a jacketed glass flask.
0 g and 10 g of a solid super strong acid prepared by the method of Example 5 were charged, and while stirring at 10° C., 14.2 g of acetic anhydride was added over 10 minutes, and a polymerization reaction was carried out for 5 hours. After the reaction is completed, the solid superacid catalyst is separated by filtration. After separating the catalyst, unreacted THF was separated from the reaction crude liquid, and 60 g of n-butanol was added.
and 60 g of a 20% aqueous sodium hydroxide solution were added, and a hydrolysis reaction was carried out for 2 hours under reflux cooling.

【0033】冷却後、静置分液し、下層の水層を抜き取
り、上層有機層に水50gを加え、攪拌水洗を行った。 この水洗操作を同様に3回繰り返した後、有機層からn
−ブタノール/H2Oを留去、減圧乾燥することにより
数平均分子量1250のPTMGが缶出製品として74
.5g得られた。
After cooling, the mixture was allowed to stand still for liquid separation, the lower aqueous layer was extracted, and 50 g of water was added to the upper organic layer, followed by stirring and washing with water. After repeating this water washing operation three times in the same way, n.
- By distilling off butanol/H2O and drying under reduced pressure, PTMG with a number average molecular weight of 1250 is produced as a canned product of 74
.. 5g was obtained.

【0034】[0034]

【実施例7】テトラエチルオルソシリケート(Si(O
C2H5)4)と塩化チタン(TiCl2)とをモル比
1:9の割合で大過剰の水に溶解し、攪拌下に濃アンモ
ニア水で中和、加水分解して各々の水酸化物の混合沈殿
物を得た。この沈殿懸濁液を濾過し、濾液pHが中性に
なるまで充分水洗を行った。得られた水を含むペースト
状の金属水酸化物を100℃で一昼夜乾燥し、乳白色の
塊状固形物を得た。
[Example 7] Tetraethyl orthosilicate (Si(O
C2H5)4) and titanium chloride (TiCl2) are dissolved in a large excess of water at a molar ratio of 1:9, neutralized with concentrated ammonia water under stirring, and hydrolyzed to precipitate a mixture of each hydroxide. I got something. This precipitate suspension was filtered and thoroughly washed with water until the pH of the filtrate became neutral. The obtained paste-like metal hydroxide containing water was dried at 100° C. for a day and night to obtain a milky white lumpy solid.

【0035】これを粉砕後、ふるいにかけ、300〜4
00メッシュの粉末を450℃で1時間焼成し、白色の
SiO2−TiO2粉末を得た。次いで、内容量500
mlのプラスチック製容器内で、ふっ化水素アンモニウ
ム1.15gを純水100mlに溶解し、上記の方法で
得られたシリカ・アルミナ15gを7日間浸漬した。さ
らに、湯浴上で蒸発乾固した後、オーブン中120℃で
24時間乾燥して、ふっ化水素アンモニウム担持SiO
−TiO2触媒を得た。
[0035] After crushing this, sieve it and
The 00 mesh powder was fired at 450°C for 1 hour to obtain white SiO2-TiO2 powder. Then, the internal capacity is 500
ml plastic container, 1.15 g of ammonium hydrogen fluoride was dissolved in 100 ml of pure water, and 15 g of silica/alumina obtained by the above method was immersed for 7 days. Furthermore, after evaporating to dryness on a hot water bath, it was dried in an oven at 120°C for 24 hours to form a SiO
-TiO2 catalyst was obtained.

【0036】調製した触媒の酸強度をハメット指示薬に
より測定した結果、H0<−12.70であり、100
%硫酸の酸強度(H0=−11.93)の6倍以上であ
ることが示された。
As a result of measuring the acid strength of the prepared catalyst using a Hammett indicator, H0<-12.70, 100
% sulfuric acid (H0=-11.93).

【0037】[0037]

【実施例8】攪拌装置と還流冷却器を備えた容量300
mlのジャケット付きガラス製フラスコにTHFを10
0gと実施例7の方法で調製した固体超強酸10gを張
り込み、10℃攪拌下、無水酢酸14.2gを10分か
けて添加し、5時間重合反応を行った。反応終了後、固
体超強酸触媒を濾過分離する。触媒分離後の反応粗液か
ら未反応THFを分離し、さらにn−ブタノール60g
及び20%水酸化ナトリウム水溶液60gを添加し、還
流冷却下に2時間加水分解反応を行った。
[Example 8] Capacity 300 equipped with stirring device and reflux condenser
Add 10 ml of THF to a jacketed glass flask.
0 g and 10 g of a solid super strong acid prepared by the method of Example 7 were charged, and while stirring at 10° C., 14.2 g of acetic anhydride was added over 10 minutes, and a polymerization reaction was carried out for 5 hours. After the reaction is completed, the solid superacid catalyst is separated by filtration. After separating the catalyst, unreacted THF was separated from the reaction crude liquid, and 60 g of n-butanol was added.
and 60 g of a 20% aqueous sodium hydroxide solution were added, and a hydrolysis reaction was carried out for 2 hours under reflux cooling.

【0038】冷却後、静置分液し、下層の水層を抜き取
り、上層有機層に水50gを加え、攪拌水洗を行った。 この水洗操作を同様に3回繰り返した後、有機層からn
−ブタノール/H2Oを留去、減圧乾燥することにより
数平均分子量850のPTMGが缶出製品として65.
7g得られた。
After cooling, the mixture was allowed to stand still for liquid separation, the lower aqueous layer was extracted, and 50 g of water was added to the upper organic layer, followed by stirring and washing with water. After repeating this water washing operation three times in the same way, n.
- By distilling off the butanol/H2O and drying under reduced pressure, PTMG with a number average molecular weight of 850 is produced as a canned product of 65.
7g was obtained.

【0039】[0039]

【実施例9】塩化チタン(TiCl2)とオキシ塩化ジ
ルコニウムZrOCl2.8H2Oとをモル比1:9の
割合で大過剰の水に溶解し、攪拌下に濃アンモニア水で
中和、加水分解して各々の水酸化物の混合沈殿物を得た
。この沈殿懸濁液を濾過し、濾液pHが中性になるまで
充分水洗を行った。得られた水を含むペースト状の金属
水酸化物を100℃で一昼夜乾燥し、乳白色の塊状固形
物を得た。これを粉砕後、ふるいにかけ、300〜40
0メッシュの粉末を450℃で1時間焼成し、白色のT
iO2−ZrO2粉末を得た。
[Example 9] Titanium chloride (TiCl2) and zirconium oxychloride ZrOCl2.8H2O were dissolved in a large excess of water at a molar ratio of 1:9, and each was neutralized with concentrated ammonia water and hydrolyzed with stirring. A mixed precipitate of hydroxides was obtained. This precipitate suspension was filtered and thoroughly washed with water until the pH of the filtrate became neutral. The obtained paste-like metal hydroxide containing water was dried at 100° C. for a day and night to obtain a milky white lumpy solid. After crushing this, sift it and
0 mesh powder was fired at 450°C for 1 hour to form a white T.
iO2-ZrO2 powder was obtained.

【0040】次いで、内容量500mlのプラスチック
製容器内で、ふっ化水素アンモニウム1.5gを純水1
00mlに溶解し、上記の方法で得られたシリカ・アル
ミナ15gを7日間浸漬した。さらに、湯浴上で蒸発乾
固した後、オーブン中120℃で24時間乾燥して、ふ
っ化水素アンモニウム担持TiO2−ZrO2触媒を得
た。
Next, in a plastic container with a content capacity of 500 ml, 1.5 g of ammonium hydrogen fluoride was added to 1 g of pure water.
00 ml of the silica/alumina obtained by the above method was immersed for 7 days. Further, the mixture was evaporated to dryness on a hot water bath, and then dried in an oven at 120°C for 24 hours to obtain a TiO2-ZrO2 catalyst supported on ammonium hydrogen fluoride.

【0041】調製した触媒の酸強度をハメット指示薬に
より測定した結果、H0<−13.16であり、100
%硫酸の酸強度(H0=−11.93)の17倍以上で
あることが示された。
As a result of measuring the acid strength of the prepared catalyst using a Hammett indicator, H0<-13.16, 100
% sulfuric acid (H0=-11.93).

【0042】[0042]

【実施例10】攪拌装置と還流冷却器を備えた容量30
0mlのジャケット付きガラス製フラスコにTHFを1
00gと実施例9の方法で調製した固体超強酸10gを
張り込み、10℃攪拌下、無水酢酸14.2gを10分
かけて添加し、5時間重合反応を行った。
[Example 10] Capacity 30 equipped with stirring device and reflux condenser
Add 1 ml of THF to a 0 ml jacketed glass flask.
00g and 10g of the solid super strong acid prepared by the method of Example 9 were charged, and while stirring at 10°C, 14.2g of acetic anhydride was added over 10 minutes, and a polymerization reaction was carried out for 5 hours.

【0043】反応終了後、固体超強酸触媒を濾過分離す
る。触媒分離後の反応粗液から未反応THFを分離し、
さらにn−ブタノール60g及び20%水酸化ナトリウ
ム水溶液60gを添加し、還流冷却下に2時間加水分解
反応を行った。冷却後、静置分液し、下層の水層を抜き
取り、上層有機層に水50gを加え、攪拌水洗を行った
。この水洗操作を同様に3回繰り返した後、有機層から
n−ブタノール/H2Oを留去、減圧乾燥することによ
り数平均分子量980のPTMGが缶出製品として86
.3g得られた。
After the reaction is completed, the solid superacid catalyst is separated by filtration. Separating unreacted THF from the reaction crude liquid after catalyst separation,
Furthermore, 60 g of n-butanol and 60 g of 20% aqueous sodium hydroxide solution were added, and a hydrolysis reaction was carried out for 2 hours under reflux cooling. After cooling, the mixture was allowed to stand still for liquid separation, the lower aqueous layer was extracted, 50 g of water was added to the upper organic layer, and the mixture was stirred and washed with water. After repeating this water washing operation three times, n-butanol/H2O is distilled off from the organic layer and dried under reduced pressure to produce PTMG with a number average molecular weight of 980 as a canned product.
.. 3g was obtained.

【0044】[0044]

【比較例1】塩化チタン(TiCl2)とオキシ塩化ジ
ルコニウムZrOCl2・8H2Oとをモル比1:9の
割合で大過剰の水に溶解し、攪拌下に濃アンモニア水で
中和、加水分解して各々の水酸化物の混合沈殿物を得た
。この沈殿懸濁液を濾過し、濾液pHが中性になるまで
充分水洗を行った。得られた水を含むペースト状の金属
水酸化物を100℃で一昼夜乾燥し、乳白色の塊状固形
物を得た。これを粉砕後、ふるいにかけ、300〜40
0メッシュの粉末を450℃で1時間焼成し、白色のT
iO2−ZrO2粉末を得た。
[Comparative Example 1] Titanium chloride (TiCl2) and zirconium oxychloride ZrOCl2.8H2O were dissolved in a large excess of water at a molar ratio of 1:9, and each was neutralized with concentrated ammonia water and hydrolyzed with stirring. A mixed precipitate of hydroxides was obtained. This precipitate suspension was filtered and thoroughly washed with water until the pH of the filtrate became neutral. The obtained paste-like metal hydroxide containing water was dried at 100° C. for a day and night to obtain a milky white lumpy solid. After crushing this, sift it and
0 mesh powder was baked at 450℃ for 1 hour to form a white T.
iO2-ZrO2 powder was obtained.

【0045】次に、上記TiO2−ZrO2粉末をU型
反応管にとり、五弗化アンチモン(SbF5)気化装置
、真空ポンプ系に連結させ、系内を真空脱気した後Sb
F5蒸気を導入し、その後50℃で再び真空排気する操
作を4回繰り返した。最後に、室温でSbF5蒸気飽和
のまま、4時間放置後、50℃、5mmHgにて1時間
、真空排気を行った。調製した触媒の酸強度をハメット
指示薬により測定した結果、H0<−13.16であり
、100%硫酸の酸強度(H0=−11.93)の17
倍以上であることが示された。
Next, the above TiO2-ZrO2 powder was placed in a U-shaped reaction tube, connected to an antimony pentafluoride (SbF5) vaporizer and a vacuum pump system, and after the system was vacuum degassed, Sb
The operation of introducing F5 vapor and then evacuation again at 50°C was repeated four times. Finally, after being left saturated with SbF5 vapor at room temperature for 4 hours, it was evacuated at 50° C. and 5 mmHg for 1 hour. As a result of measuring the acid strength of the prepared catalyst using a Hammett indicator, H0<-13.16, which is 17% higher than the acid strength of 100% sulfuric acid (H0=-11.93).
It was shown that it is more than double.

【0046】比較例1と実施例9とを比較すると、ふっ
化水素アンモニウム(NH4F・HF)担持の固体超強
酸と高価な五弗化アンチモン(SbF5)担持の固体超
強酸が同等の酸強度を持っていることを示している。
Comparing Comparative Example 1 and Example 9, it is found that the solid super strong acid supported on ammonium hydrogen fluoride (NH4F.HF) and the solid super strong acid supported on expensive antimony pentafluoride (SbF5) have the same acid strength. It shows that you have it.

【0047】[0047]

【比較例2】攪拌装置と還流冷却器を備えた容量300
mlのジャケット付きガラス製フラスコにTHFを10
0gと比較例1の方法で調製した固体超強酸10gを張
り込み、10℃攪拌下、無水酢酸14.2gを10分か
けて添加し、5時間重合反応を行った。
[Comparative Example 2] Capacity 300 equipped with stirring device and reflux condenser
Add 10 ml of THF to a jacketed glass flask.
0 g and 10 g of a solid super strong acid prepared by the method of Comparative Example 1 were charged, and while stirring at 10° C., 14.2 g of acetic anhydride was added over 10 minutes, and a polymerization reaction was carried out for 5 hours.

【0048】反応終了後、固体超強酸触媒を濾過分離す
る。触媒分離後の反応粗液から未反応THFを分離し、
さらにn−ブタノール60g及び20%水酸化ナトリウ
ム水溶液60gを添加し、還流冷却下に2時間加水分解
反応を行った。冷却後、静置分液し、下層の水層を抜き
取り、上層有機層に水50gを加え、攪拌水洗を行った
After the reaction is completed, the solid superacid catalyst is separated by filtration. Separating unreacted THF from the reaction crude liquid after catalyst separation,
Furthermore, 60 g of n-butanol and 60 g of 20% aqueous sodium hydroxide solution were added, and a hydrolysis reaction was carried out for 2 hours under reflux cooling. After cooling, the mixture was allowed to stand still for liquid separation, the lower aqueous layer was extracted, 50 g of water was added to the upper organic layer, and the mixture was stirred and washed with water.

【0049】この水洗操作を同様に3回繰り返した後、
有機層からn−ブタノール/H2Oを留去、減圧乾燥す
ることにより数平均分子量960のPTMGが缶出製品
として84.7g得られた。比較例2と実施例10を比
較すると、ふっ化水素アンモニウム(NH4F・HF)
担持の固体超強酸と高価な5弗化アンチモン(SbF5
)担持の固体超強酸が同等の反応成績であることを示し
ている。
After repeating this water washing operation three times,
By distilling off n-butanol/H2O from the organic layer and drying under reduced pressure, 84.7 g of PTMG having a number average molecular weight of 960 was obtained as a canned product. Comparing Comparative Example 2 and Example 10, ammonium hydrogen fluoride (NH4F・HF)
Supported solid super acid and expensive antimony pentafluoride (SbF5)
) shows that the supported solid superacid has equivalent reaction results.

【0050】[0050]

【実施例11】撹拌装置と還流冷却器を備えた容量30
0mlのジャケット付きガラス製フラスコにTHFを1
00gと実施例1の方法で調製した固体超強酸5gを張
り込み、0℃攪拌下、25%発煙硫酸20gを約60分
かけて添加し、さらに4時間重合反応を行った。反応終
了後、固体超強酸触媒を濾過分離する。触媒分離後、濾
液に水110g加え、未反応THFを分離し、還流冷却
下に2時間加水分解反応を行った。冷却、静置後、下層
の硫酸水を抜き取り、上層有機層にトルエン60gと水
50を加え、攪拌水洗を行った。
[Example 11] Capacity 30 equipped with stirring device and reflux condenser
Add 1 ml of THF to a 0 ml jacketed glass flask.
00g and 5g of the solid super strong acid prepared by the method of Example 1 were charged, and while stirring at 0°C, 20g of 25% oleum was added over about 60 minutes, and the polymerization reaction was further carried out for 4 hours. After the reaction is completed, the solid superacid catalyst is separated by filtration. After separating the catalyst, 110 g of water was added to the filtrate to separate unreacted THF, and a hydrolysis reaction was carried out for 2 hours under reflux cooling. After cooling and standing, the sulfuric acid water in the lower layer was extracted, and 60 g of toluene and 50 g of water were added to the upper organic layer, followed by stirring and washing with water.

【0051】この水洗操作を同様に3回繰り返した後、
有機層からトルエンを留去、減圧乾燥することにより数
平均分子量2750のPTMGが缶出製品として62.
9g得られた。
After repeating this water washing operation three times,
By distilling off toluene from the organic layer and drying under reduced pressure, PTMG with a number average molecular weight of 2,750 is obtained as a canned product of 62.
9g was obtained.

【0052】[0052]

【発明の効果】本発明の方法により、回収・リサイクル
の簡単で、かつ従来より安価な固体超強酸触媒を重合触
媒として使用することにより、高収率で効率良くポリオ
キシテトラメチレングリコールを製造することが可能に
なった。
[Effects of the Invention] By the method of the present invention, polyoxytetramethylene glycol can be produced efficiently in high yield by using a solid super acid catalyst that is easy to recover and recycle and is cheaper than conventional ones as a polymerization catalyst. It became possible.

Claims (1)

【特許請求の範囲】[Claims] 【請求項】  一般式:MxOy(x、yは1ないし3
の整数)で示される金属酸化物の群から選ばれる複合金
属酸化物とふっ化水素アンモニウム(NH4F・HF)
とからなる固体超強酸触媒の存在下、テトラヒドロフラ
ンを重合させることを特徴とするポリオキシテトラメチ
レングリコールの製造方法。
[Claim] General formula: MxOy (x, y are 1 to 3
composite metal oxide selected from the group of metal oxides represented by
A method for producing polyoxytetramethylene glycol, which comprises polymerizing tetrahydrofuran in the presence of a solid superacid catalyst consisting of.
JP12068291A 1991-03-04 1991-03-04 Production of polyoxytetramethylene glycol Pending JPH04277522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12068291A JPH04277522A (en) 1991-03-04 1991-03-04 Production of polyoxytetramethylene glycol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12068291A JPH04277522A (en) 1991-03-04 1991-03-04 Production of polyoxytetramethylene glycol

Publications (1)

Publication Number Publication Date
JPH04277522A true JPH04277522A (en) 1992-10-02

Family

ID=14792341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12068291A Pending JPH04277522A (en) 1991-03-04 1991-03-04 Production of polyoxytetramethylene glycol

Country Status (1)

Country Link
JP (1) JPH04277522A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207793B1 (en) 1997-01-17 2001-03-27 Korea Ptg Co., Ltd. Process for production of polytetramethylene-ether-glycol-diester using halloysite catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207793B1 (en) 1997-01-17 2001-03-27 Korea Ptg Co., Ltd. Process for production of polytetramethylene-ether-glycol-diester using halloysite catalyst

Similar Documents

Publication Publication Date Title
US5773648A (en) Preparation of polytetrahydrofuran
JP2003526605A (en) Purification method of 1,3-propanediol
US5149862A (en) Preparation of polytetramethylene ether glycol using an acidic zirconia catalyst
JPH0446133A (en) Production of cyclohexane-1,2-diol
JP3540822B2 (en) Method for producing glycerol carbonate
JPH04306228A (en) Production of polyoxytetramethylene glycol
US5344964A (en) Method for preparing ester end-capped polyalkylene ether
JPS5883028A (en) Preparation of polytetramethylene glycol
JPH04277522A (en) Production of polyoxytetramethylene glycol
JPS6335623A (en) Production of polytetramethylene ether glycol
CN102153473A (en) Method for preparing perfluor alkyl ethyl acrylate
US5072049A (en) Process for the preparation of bis(4-hydroxyphenyl) sulfone
JPS6029370B2 (en) Method for producing alkylene oxide adducts
US3823185A (en) Improved process for the preparation of ethoxylated isethionates
KR100558707B1 (en) Method for preparing polytetramethylene ether glycol diester
JPS6312854B2 (en)
JPH08231706A (en) Production of polyoxyalkylene glycol or its ester
JPH05155805A (en) Production of halogenated carboxylic acid
CN114195817B (en) Synthesis method of trifluoro methyl sulfonate
JP2815071B2 (en) Method for producing dichlorodiphenyl sulfone
JPH0920823A (en) Production of poly(tetramethylene ether)glycol
JP3200470B2 (en) Method for producing alkyltetralin
JPH0449261A (en) Production of 2-alkoxycyclohexanol
JPH0616805A (en) Production of polyoxytetramethylene glycol diester
CN114671797A (en) Preparation method of procymidone