JPH04277440A - Manufacture of cathode ray tube - Google Patents

Manufacture of cathode ray tube

Info

Publication number
JPH04277440A
JPH04277440A JP3839191A JP3839191A JPH04277440A JP H04277440 A JPH04277440 A JP H04277440A JP 3839191 A JP3839191 A JP 3839191A JP 3839191 A JP3839191 A JP 3839191A JP H04277440 A JPH04277440 A JP H04277440A
Authority
JP
Japan
Prior art keywords
getter
cathode ray
ray tube
tube
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3839191A
Other languages
Japanese (ja)
Inventor
Shigemi Hirasawa
重實 平澤
Yukio Koizumi
幸生 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3839191A priority Critical patent/JPH04277440A/en
Publication of JPH04277440A publication Critical patent/JPH04277440A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the amount of rare gas and hold the electron emitting characteristics in good performance for a long period of time by heating a getter in the evacuating process at a temp. hither than the max. temp. of the body of a cathode ray tube concerned at the time of evacuation and lower than the activation temp. of the getter. CONSTITUTION:To remove rare gas such as Ar adsorbed to getter in the evacuating process, the getter is subjected to a heating process in the condition that the temp. of a cathode ray tube concerned within an evacuation furnace has passed the max. region and sunk therefrom. This is made with the conventional high frequency induction heating method, in which a 450 deg.C heating is conducted for three min. Thereby approx. 95% of the gas contained and/or adsorbed by the getter can be removed. The gas released from the getter into the cathode ray tube is sucked by the evacuation system quickly and discharged to outside the tube. This greatly reduces the residual amount of the gas of Ar, etc., which is inert and has a large molecular weight, in the cathode ray tube after the evacuation pipe was cut sealedly and a getter flush was performed, and the electron emitting characteristic of the cathode can be maintained in good performance for a long period of time. Thus the cathode ray tube as resultant product will be equipped with a long lifetime and high reliability.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、陰極線管、特に実用状
態になってからガス放出源となる恐れのある部材を管内
に多数有するカラー陰極線管の、管内真空度保持性能を
向上させ、陰極の良好な電子放出特性を長期間にわたっ
て維持できるようにした陰極線管の製造方法に関する。
[Industrial Field of Application] The present invention improves the ability to maintain vacuum inside the tube of cathode ray tubes, especially color cathode ray tubes that have many members that may become gas emission sources after being put into practical use. The present invention relates to a method for manufacturing a cathode ray tube that can maintain good electron emission characteristics over a long period of time.

【0002】0002

【従来の技術】陰極線管の管(バルブ)内を高真空にす
るために、製造に際して陰極線管全体を、陰極線管を構
成するガラス、特にカラー管の場合にはパネルとファン
ネルとを固着する低融点ガラスによる封着部、が耐え得
る最高温度の近傍に、かなり長い時間にわたって保持し
ながら、排気ポンプによって管内残留ガスの圧力が十分
低くなるまで排気している。しかし、公知のように、製
造中の排気工程だけで管内のガス圧を下げても、陰極線
管の管内には実用時に常に電子ビーム衝撃にさらされる
部材を多数格納しており、且つ一部の部材は実用中高温
になるから、実用中にそれらの部材の表面から次第に吸
着または吸蔵されていたガスが新たに放出されて来るこ
とは止むを得ない。このようなガスを吸着して陰極線管
内のガス圧を低く保つためにゲッタを使用することも公
知である。
[Prior Art] In order to create a high vacuum inside the tube (bulb) of a cathode ray tube, during manufacturing the entire cathode ray tube is made of glass, which is made up of a cathode ray tube, and in particular, in the case of a color tube, a glass plate is used to secure the panel and funnel. While maintaining the temperature near the maximum temperature that the sealing part made of melting point glass can withstand for a considerable period of time, the exhaust pump evacuates the residual gas in the tube until the pressure of the gas is sufficiently low. However, as is well known, even if the gas pressure inside the tube is lowered only through the exhaust process during manufacturing, the tube of a cathode ray tube contains many members that are constantly exposed to electron beam impact during actual use. Since members become hot during use, it is unavoidable that gases that have been adsorbed or occluded are gradually released from the surfaces of those members during use. It is also known to use getters to adsorb such gases and keep the gas pressure in the cathode ray tube low.

【0003】従来、陰極線管の製造に際して、排気作業
を終了し陰極線管と排気ポンプとを連結していた排気管
を封止切った後、高周波加熱等で850〜1300℃程
度にゲッタを加熱して陰極線管内にゲッタを構成するバ
リウム原子を飛散させ、陰極線管の内壁面にゲッタ膜を
形成させていた。このバリウムで形成されたゲッタ膜は
、管内の残留ガスを吸着して、管内真空度を10 ̄4T
orrから10 ̄7 〜10 ̄8Torr(なお1Pa
=(1/133)Torr)へ向上させ、この結果、陰
極からの電子放出特性を良好に保持できる筈であった。
Conventionally, when manufacturing cathode ray tubes, after finishing the exhaust work and sealing off the exhaust pipe connecting the cathode ray tube and the exhaust pump, the getter was heated to about 850 to 1300°C using high frequency heating or the like. The barium atoms constituting the getter were scattered inside the cathode ray tube to form a getter film on the inner wall surface of the cathode ray tube. This getter film made of barium adsorbs the residual gas inside the tube and reduces the vacuum inside the tube to 10 ̄4T.
orr to 10 ̄7 to 10 ̄8Torr (1 Pa
= (1/133) Torr), and as a result, the electron emission characteristics from the cathode could be maintained well.

【0004】なお、陰極線管の製造方法のうち、この種
のゲッタに関連する技術については、例えば特公平1−
23896号公報にゲッタを確実にフラッシュさせる方
法が記載されている。
[0004] Among the methods for manufacturing cathode ray tubes, techniques related to this type of getter are described in, for example, Japanese Patent Publication No. 1-1-1.
Japanese Patent No. 23896 describes a method for surely flashing the getter.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記従来の技
術には、封止切ったのち実用状態になってから、陰極線
管内に残留しているガスの中に、ゲッタ膜に吸収されな
いもの、特にアルゴンなどの希ガスで空気とほぼ等しい
大きい分子量を持つものが残っている場合が多いという
問題があることが判って来た。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional technology, after the sealing is broken and the cathode ray tube is put into practical use, gases remaining in the cathode ray tube that are not absorbed by the getter film, especially It has been found that there is a problem in that rare gases such as argon, which have a large molecular weight almost equal to that of air, often remain.

【0006】アルゴンは、もともと陰極線管内に含まれ
ていたものが残留した場合と、ゲッタに吸着されていて
、ゲッタのフラッシュ時に陰極線管内に放出されたもの
とがある。従来、ゲッタ・フラッシュ時に管内に残留し
ているアルゴン等の希ガスの内、半分以上はゲッタに吸
着されていたものであり、この様にして管内に放出され
たアルゴンは、イオン化して、陰極の電子放出層を破壊
する。特に、電子放出源として含浸形陰極を用いる場合
は、其の多孔質タングステン焼結体よりなる基体表面層
のバリウムを消耗させ、電子放出能力を低下させる(参
考文献:応用物理学会誌  56  No.11(19
87)pp.1423〜1432)。特にインライン方
式のカラー陰極線管では、中央電子銃の電子放出層の消
耗が大きいため、中央電子銃が緑色用である通常の場合
、スィッチ・オン時に画面がしばらくマゼンタ〜赤にな
るという不具合が生ずる。なお、上記アルゴンガスは、
ゲッタ製造工程で酸素と結合し易いバリウム等を酸化か
ら守るために使用されたものが工程中で吸着され残留し
たものと思われる。
[0006] There are two types of argon: argon that was originally contained in the cathode ray tube remains, and argon that is adsorbed by the getter and released into the cathode ray tube when the getter is flashed. Conventionally, more than half of the rare gas such as argon remaining in the tube during getter flashing was adsorbed by the getter, and the argon released into the tube in this way was ionized and sent to the cathode. destroys the electron emitting layer of In particular, when an impregnated cathode is used as an electron emission source, the barium in the surface layer of the substrate made of porous sintered tungsten is consumed, reducing the electron emission ability (Reference: Journal of Japan Society of Applied Physics 56 No. 11 (19
87) pp. 1423-1432). Particularly in in-line color cathode ray tubes, the electron emission layer of the central electron gun undergoes a large amount of wear, so when the central electron gun is normally used for green, there is a problem in which the screen turns magenta to red for a while when the switch is turned on. . In addition, the above argon gas is
It is thought that the substance used to protect barium, which easily combines with oxygen, from oxidation during the getter manufacturing process was adsorbed during the process and remained.

【0007】本発明は、ゲッタに吸着されて陰極線管内
に持ち込まれるアルゴン等の分子量の大きい希ガスの量
を低減し、陰極の電子放出特性を長期間にわたって良好
に保持できるようにする陰極線管の製造方法を提供する
ことにある。
The present invention is directed to a cathode ray tube that reduces the amount of a rare gas with a large molecular weight, such as argon, that is adsorbed by the getter and is brought into the cathode ray tube, thereby making it possible to maintain the electron emission characteristics of the cathode well over a long period of time. The purpose is to provide a manufacturing method.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明においては、封止切り後に各部材から陰極線管
のバルブ内部に放出されるガスを吸収するのに十分な量
のフラッシュ・ゲッタを管内に装着した陰極線管の製造
方法において、陰極線管全体を加熱し昇温状態で管内の
ガスを排気する通常の排気工程に、陰極線管の本体温度
が最高温度域を経て降温域に移行した過程で、前記ゲッ
タに対して、陰極線管本体の排気時最高温度より高く且
つゲッタの活性化温度よりも低い温度で加熱する処理を
付加して行なうことにした。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a flash getter in an amount sufficient to absorb the gas released from each member into the bulb of the cathode ray tube after the seal is cut. In the manufacturing method for cathode ray tubes that are installed inside the tube, during the normal exhaust process in which the entire cathode ray tube is heated and the gas inside the tube is exhausted while the temperature is rising, the temperature of the cathode ray tube body shifts from the highest temperature range to the lower temperature range. In the process, it was decided to additionally heat the getter at a temperature higher than the maximum temperature during exhaust of the cathode ray tube body and lower than the activation temperature of the getter.

【0009】[0009]

【作用】上記加熱処理は、具体的には陰極線管の排気工
程中で、陰極線管の本体温度が最高温度域を経て降温域
に移行した過程で、管内に残留するガスの圧力がそれま
での排気作業によって、10 ̄3Torr(≒10 ̄1
Pa)以下になった時に、通常、ゲッタを高周波誘導加
熱装置により加熱して行なう。この処理におけるゲッタ
の加熱温度は、少なくとも排気工程における陰極線管ゲ
ッタ部位の最高温度以上であることが、上記吸着希ガス
を放出させるために必要であり、また、其の加熱温度の
上限は、ゲッタ中に含まれるニッケル・アルミニウムと
バリウムとの反応が急激に発生し、反応熱でゲッタが蒸
発(ゲッタ・フラッシュ)する温度(活性化温度)以下
に抑制することが必要である。活性化温度は一般に80
0℃程度であるから、上記加熱処理でのゲッタ加熱温度
は300〜750℃が適当である。ゲッタに吸着、内蔵
されているアルゴン等の希ガスは、200〜300℃の
加熱で、ほぼ除去できることが判っており、上記加熱温
度は必要にして十分である。
[Effect] Specifically, the above heat treatment is performed during the evacuation process of the cathode ray tube, when the main body temperature of the cathode ray tube passes through the maximum temperature range and shifts to the temperature drop range, and the pressure of the gas remaining inside the tube is reduced to the previous level. Due to exhaust work, 10 ̄3Torr (≒10 ̄1
Pa), the getter is usually heated using a high-frequency induction heating device. The heating temperature of the getter in this process must be at least higher than the maximum temperature of the getter part of the cathode ray tube in the exhaust process in order to release the adsorbed rare gas, and the upper limit of the heating temperature is The reaction between the nickel/aluminum and barium contained therein rapidly occurs, and it is necessary to suppress the temperature below the temperature at which the getter evaporates (getter flash) due to the reaction heat (activation temperature). Activation temperature is generally 80
Since the temperature is about 0°C, the appropriate getter heating temperature in the above heat treatment is 300 to 750°C. It has been found that rare gases such as argon adsorbed and contained in the getter can be almost removed by heating at 200 to 300° C., and the above heating temperature is necessary and sufficient.

【0010】加熱時の管内真空度は、ゲッタ中のバリウ
ムと管内残留ガスとの反応によって決まる。管内残留ガ
ス圧力が10 ̄1Torr以上であると、ゲッタからの
アルゴンガス放出により、管内残留ガスとゲッタとの反
応の方が進行し、ゲッタ・フラッシュ時に良好なゲッタ
膜を作れない。しかし管内残留ガス圧力が10 ̄3To
rr以下という条件で加熱処理を行なうことにすれば、
上記のような不都合は生じなくなる。
The degree of vacuum inside the tube during heating is determined by the reaction between the barium in the getter and the residual gas inside the tube. If the residual gas pressure in the tube is 10-1 Torr or more, the reaction between the residual gas in the tube and the getter progresses due to the release of argon gas from the getter, making it impossible to form a good getter film during getter flash. However, the residual gas pressure in the pipe is 10 ̄3To
If we decide to carry out the heat treatment under the conditions of rr or less,
The above-mentioned inconvenience will no longer occur.

【0011】[0011]

【実施例】図1に本発明による陰極線管の製造工程の要
部を示すフローチャートを、図2には参考のために、従
来の製造方法の要部を示すフローチャートを、対比して
示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a flowchart showing the main parts of the manufacturing process of a cathode ray tube according to the present invention, and FIG. 2 shows a flowchart showing the main parts of a conventional manufacturing method for reference.

【0012】陰極線管の電子銃の電極類を支持するステ
ムをバルブのネック管端部に溶着封止したのち、排気を
行なう。排気工程では、ロータリポンプと拡散ポンプよ
りなる排気系を搭載した台車の上部に陰極線管を装着し
、陰極線管は排気炉内で加熱されるようにして、台車ご
と長大な排気炉内を移動させ移動中に排気を行なう。 ゲッタに吸着されていたアルゴン等の希ガスを除去する
ための、本発明に係るゲッタ加熱処理は、排気炉中での
陰極線管の温度が最高域を過ぎ、それから降下している
状態で行なう。降温時に行なうのは、排気がここまで進
んでいれば、陰極線管内の真空度が加熱処理を行なうの
に適当な状態にまで向上しているからである。ゲッタの
加熱は、通常の高周波誘導加熱法で行ない、約450℃
で3分間加熱する。これによってゲッタ材中に含有、吸
着されているガスの約95%を除去できる。ゲッタから
陰極線管内に放出されたガスは、速やかに排気系に吸引
されて管外へ排気される。その後、陰極線管と排気系と
を接続している排気管を溶封して封止切り(チップオフ
)する。排気工程が終了した後、ゲッタを約800℃に
管外から高周波誘導加熱法で加熱し、ニッケルとアルミ
ニウムの反応を起こさせ、その反応熱で1300℃位に
昇温させて、ゲッタ材を陰極線管内に飛散させ、バルブ
壁内面の所望位置にゲッタ膜を形成させる。
After the stem supporting the electrodes of the electron gun of the cathode ray tube is welded and sealed to the end of the neck tube of the bulb, the valve is evacuated. In the exhaust process, a cathode ray tube is attached to the top of a trolley equipped with an exhaust system consisting of a rotary pump and a diffusion pump, and the cathode ray tube is heated inside the exhaust furnace, and the entire trolley is moved inside the long exhaust furnace. Exhaust the air while moving. The getter heat treatment according to the present invention for removing the rare gas such as argon adsorbed on the getter is carried out in a state where the temperature of the cathode ray tube in the exhaust furnace has passed the maximum range and has been decreasing thereafter. The reason for performing this when the temperature is falling is that if the evacuation has progressed to this point, the degree of vacuum within the cathode ray tube has improved to a state suitable for performing the heat treatment. The getter is heated to approximately 450°C using the usual high-frequency induction heating method.
Heat for 3 minutes. This makes it possible to remove about 95% of the gas contained and adsorbed in the getter material. The gas released into the cathode ray tube from the getter is quickly sucked into the exhaust system and exhausted outside the tube. Thereafter, the exhaust pipe connecting the cathode ray tube and the exhaust system is melt-sealed and sealed (chip-off). After the exhaust process is completed, the getter is heated to about 800°C from outside the tube using high-frequency induction heating to cause a reaction between nickel and aluminum, and the reaction heat is used to raise the temperature to about 1300°C, and the getter material is exposed to cathode rays. The getter film is dispersed into the tube to form a getter film at a desired position on the inner surface of the valve wall.

【0013】従来の排気方法ではゲッタフラッシュ後に
、ゲッタ膜に吸収されないで陰極線管内の電子ビームの
通路に残留し、実用時にイオン化されて陰極の電子放出
層破壊の原因になっていたアルゴン等分子量の大きい不
活性ガスの残留量を、上記本発明製造方法では従来の半
分以下に低減することができる。そのため、陰極の電子
放出特性が、従来よりも長期間にわたって良好な状態に
保持される。インライン方式のカラー陰極線管では、中
央の電子銃の陰極は両側の電子銃の陰極よりも多くのイ
オン衝撃を受けて、スィッチオン時に色バランスに狂い
が生じ易かった。通常のカラー陰極線管では、視感度の
高い緑用電子銃として中央電子銃を用い、両側の電子銃
を赤、青に使用しているが、従来のように管内残留ガス
に多くのアルゴンが含まれている場合、スィッチオン時
に中央電子銃からの電子放出が比較的少なく抑制され、
初期数秒間の画面が赤〜マゼンタがかったものになって
いた。かかる現象は本発明により製造した陰極線管では
見られなかった。
In the conventional exhaust method, after the getter flash, molecular weight molecules such as argon remained in the electron beam path in the cathode ray tube without being absorbed by the getter film, and were ionized during practical use, causing destruction of the electron emission layer of the cathode. The amount of residual large inert gas can be reduced to less than half that of the conventional method using the manufacturing method of the present invention. Therefore, the electron emission characteristics of the cathode are maintained in a good state for a longer period of time than in the past. In an in-line color cathode ray tube, the cathode of the central electron gun receives more ion bombardment than the cathodes of the electron guns on both sides, which tends to cause color imbalance when switched on. Normal color cathode ray tubes use a central electron gun for green, which has high visibility, and electron guns on both sides for red and blue, but unlike conventional color cathode ray tubes, the residual gas inside the tube contains a lot of argon. In this case, electron emission from the central electron gun is suppressed to a relatively low level during switch-on, and
The screen for the first few seconds was red to magentaish. Such a phenomenon was not observed in the cathode ray tube manufactured according to the present invention.

【0014】本発明で行なうゲッタ加熱処理の温度は、
ゲッタの活性化温度以下であれば何度でも良いが、実際
には、陰極線管の排気工程中での脱ガス温度以下の場合
には殆ど効果がない。従って300〜750℃が適当で
ある。また、加熱処理時の管内真空度は高い方が良く、
残留ガス圧が10 ̄1Torr以上では、管内残留ガス
とゲッタ(バリウム)が反応し、ゲッタ・フラッシュ時
のアルミニウムとニッケルの反応がスムーズに進行しな
いか、又はゲッタ膜として有効なバリウム量が減少する
ので好ましくない。通常は、ロータリポンプと拡散ポン
プで排気して管内残留ガス圧力が10 ̄4〜10 ̄5T
orr以下になったところで加熱し、管内残留ガスによ
る加熱処理工程中のゲッタ材の消耗を100ppm以下
にする。
[0014] The temperature of the getter heat treatment performed in the present invention is as follows:
Any number of times is acceptable as long as the temperature is below the activation temperature of the getter, but in reality, there is almost no effect if the temperature is below the degassing temperature during the evacuation process of the cathode ray tube. Therefore, a temperature of 300 to 750°C is appropriate. Also, the higher the degree of vacuum inside the tube during heat treatment, the better.
If the residual gas pressure exceeds 10 ̄1 Torr, the residual gas in the tube will react with the getter (barium), and the reaction between aluminum and nickel during getter flash will not proceed smoothly, or the amount of barium effective as a getter film will decrease. So I don't like it. Normally, the residual gas pressure in the pipe is 10 ̄4 to 10 ̄5T by exhausting with a rotary pump and a diffusion pump.
When the temperature is below orr, heating is performed to reduce consumption of the getter material during the heat treatment process due to residual gas in the tube to below 100 ppm.

【0015】[0015]

【発明の効果】以上説明したように本発明によれば、排
気管を封止切り、ゲッタ・フラッシュを行なった後の陰
極線管内で、アルゴン等の不活性で大分子量を有するガ
スの残留量が大幅に低減され、しかも、ゲッタ・フラッ
シュに際してゲッタの消耗が少なく、陰極へのイオン衝
撃が減少して陰極の電子放出特性が長期間にわたって良
好に維持され、寿命の長い信頼性の高い陰極線管が得ら
れる。なお、インライン方式カラー陰極線管の場合に、
従来は中央電子銃の陰極の電子放出特性が、イオン衝撃
によって両側の電子銃の陰極のそれに比べて、1/1.
2程度に低下していたのが、本発明により同等レベルに
なった。
As explained above, according to the present invention, the residual amount of inert, large molecular weight gas such as argon is reduced in the cathode ray tube after the exhaust pipe is sealed and the getter flash is performed. Furthermore, the getter wear is reduced during getter flash, and ion bombardment to the cathode is reduced, and the electron emission characteristics of the cathode are maintained well over a long period of time, resulting in a highly reliable cathode ray tube with a long life. can get. In addition, in the case of an in-line color cathode ray tube,
Conventionally, the electron emission characteristics of the cathode of the central electron gun were reduced to 1/1 of those of the cathodes of the electron guns on both sides due to ion bombardment.
The present invention lowered the value to about 2, but the present invention brought it to the same level.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による陰極線管製造工程要部のフローチ
ャートである。
FIG. 1 is a flowchart of main parts of a cathode ray tube manufacturing process according to the present invention.

【図2】従来の陰極線管製造工程要部のフローチャート
である。
FIG. 2 is a flowchart of main parts of a conventional cathode ray tube manufacturing process.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】陰極線管のバルブ内部に放出されるガスを
吸収するためのフラッシュ・ゲッタを管内に装着した陰
極線管の製造方法において、陰極線管全体を加熱し昇温
状態で管内のガスを排気する排気工程に、陰極線管の本
体温度が最高温度域を経て降温域に移行した過程で、前
記ゲッタに対して、陰極線管本体の排気時最高温度より
高く且つゲッタの活性化温度よりも低い温度で加熱する
処理を付加したことを特徴とする陰極線管の製造方法。
Claim 1: A method for manufacturing a cathode ray tube in which a flash getter is installed inside the tube to absorb gas emitted inside the bulb of the cathode ray tube, in which the entire cathode ray tube is heated and the gas inside the tube is exhausted at an elevated temperature. During the evacuation process, during the process in which the temperature of the cathode ray tube body passes through the maximum temperature range and moves to the temperature drop range, the getter is heated to a temperature that is higher than the maximum temperature during exhaust of the cathode ray tube body and lower than the activation temperature of the getter. 1. A method for manufacturing a cathode ray tube, characterized by adding a heating process.
JP3839191A 1991-03-05 1991-03-05 Manufacture of cathode ray tube Pending JPH04277440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3839191A JPH04277440A (en) 1991-03-05 1991-03-05 Manufacture of cathode ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3839191A JPH04277440A (en) 1991-03-05 1991-03-05 Manufacture of cathode ray tube

Publications (1)

Publication Number Publication Date
JPH04277440A true JPH04277440A (en) 1992-10-02

Family

ID=12523987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3839191A Pending JPH04277440A (en) 1991-03-05 1991-03-05 Manufacture of cathode ray tube

Country Status (1)

Country Link
JP (1) JPH04277440A (en)

Similar Documents

Publication Publication Date Title
US5688708A (en) Method of making an ultra-high vacuum field emission display
JP3425929B2 (en) High pressure discharge lamp and manufacturing method thereof
US4457731A (en) Cathode ray tube processing
JP3189786B2 (en) Method for manufacturing plasma display panel
JPH04277440A (en) Manufacture of cathode ray tube
KR19980080595A (en) Apparatus having field emission cold cathode and vacuum tank exhaust method and system in same apparatus
US20130307404A1 (en) Vacuum tube and vacuum tube manufacturing apparatus and method
US5898272A (en) Cathode for gas discharge lamp
JP2007317486A (en) Plasma display panel, and method and device for manufacturing plasma display panel
JPH024093B2 (en)
KR102334309B1 (en) Staionary anode type X-ray Tube to have non-evaporable getter
CN102365706A (en) Deuterium lamp
JP3319265B2 (en) High pressure metal vapor discharge lamp
JPH05283003A (en) Manufacture of cold cathode discharge lamp
JP2003059404A (en) Method of manufacturing cathode-ray tube
JPS61281432A (en) Manufacture of fluorescent lamp
JPH10321136A (en) Manufacture of cathode-ray tube
JPH04274139A (en) Fluorescent lamp gas-discharging method
GB191505557A (en) Improvements in and relating to Electric Rectifiers and Methods of Operating the same.
JP4625382B2 (en) Manufacturing method of straight tube fluorescent lamp
EP1444714B1 (en) Process for calcium evaporation inside systems operating under vacuum
JP2005209462A (en) Processing method of dielectric protecting film and plasma display panel
JP3076701B2 (en) Manufacturing method of fluorescent lamp
JPS6366821A (en) Exhausting method for cathode-ray tube
JPH06251744A (en) Evaporation type getter pump