JPH042768A - Plasma electron beam heating apparatus - Google Patents

Plasma electron beam heating apparatus

Info

Publication number
JPH042768A
JPH042768A JP10222190A JP10222190A JPH042768A JP H042768 A JPH042768 A JP H042768A JP 10222190 A JP10222190 A JP 10222190A JP 10222190 A JP10222190 A JP 10222190A JP H042768 A JPH042768 A JP H042768A
Authority
JP
Japan
Prior art keywords
conductive
container
electron beam
cooling member
plasma electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10222190A
Other languages
Japanese (ja)
Inventor
Akihiko Toku
昭彦 悳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Seimaku KK
Original Assignee
Ulvac Seimaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Seimaku KK filed Critical Ulvac Seimaku KK
Priority to JP10222190A priority Critical patent/JPH042768A/en
Publication of JPH042768A publication Critical patent/JPH042768A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To allow large electric current to flow stably and uniformly from a vessel to a cooling member to easily control heat transmitting performance by combining the conductive vessel for the material to be heated with the recessed part of a cone-shaped conductive cooling member so as to leave a space between the vessel and the bottom part of the recessed part. CONSTITUTION:The plasma electron beams 15 from the electron gun 8 of hollow cathode irradiate the material 7 to be heated in the heat-resisting conductive vessel 6 disposed in contact with a water cooled copper hearth 5 of conductive cooling member so that the material is heated and evaporated. In this apparatus, the recessed part 26 in which the cross section becomes smaller in the direction of depth is formed in the hearth 5, and the vessel 6 is fitted in it, and the top end of the vessel 6 is hitted with a wooden hammer to be pressed enough. In this case, such a constitution is made that the vessel 6 does not reach the bottom of the recessed part 26 so that a spare space 17 is left. Thus, the vessel and the hearth are brought into contact with a part 18 of outer side wall of the vessel 6 where a large uniform contact pressure is given with the result that a good electrical and thermal conductivity is given between them.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、材料の加熱や溶解、脱ガス、特に真空蒸着装
置やイオンブレーティング装置などで蒸発源を加熱する
のに用いられるホローカソードのプラズマ電子ビーム加
熱装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to heating, melting, and degassing of materials, particularly for hollow cathodes used for heating evaporation sources in vacuum evaporation equipment, ion blating equipment, etc. The present invention relates to a plasma electron beam heating device.

[従来の技術] イオンブレーティング装置において従来のホローカソー
ドのプラズマ電子ビーム加熱装置を用いて蒸発源を加熱
する時の構成を第1θ図に模式的に示す。図において、
(1)は真空排気口(2)を備えた真空槽、(3)は真
空槽(1)内の上方に設けた基板ホルダ、(4)は基板
ホルダ(3)の下面に取り付けた基板、(23)は真空
槽(1)内下方に基板(4)と対向して配置される冷却
ハース、(22)は冷却ハース(23)の凹部(25)
内に置かれた耐熱性の導電性容器、(7)は容器(22
)内に収容した被加熱材料である。
[Prior Art] A configuration for heating an evaporation source using a conventional hollow cathode plasma electron beam heating device in an ion blating device is schematically shown in Fig. 1θ. In the figure,
(1) is a vacuum chamber equipped with a vacuum exhaust port (2), (3) is a substrate holder provided above the vacuum chamber (1), (4) is a substrate attached to the bottom surface of the substrate holder (3), (23) is a cooling hearth disposed inside the vacuum chamber (1) and facing the substrate (4); (22) is a recess (25) in the cooling hearth (23);
A heat-resistant conductive container (7) is placed inside the container (22
) is the material to be heated housed within the chamber.

又、(8)はホローカソード電子銃、(9)は中空陰極
、(20)は補助陽極、(10)はホローカソード電子
銃(8)と冷却ハース(23)との間に設けた直流電源
、(1))は高周波発生装置、(12) (12)は高
周波バイパス用コンデンサをそれぞれ示す。高周波発生
装置(1))及び高周波バイパス用コンデンサ(12)
(12)は、直流電源(lO)と並列に接続される。(
13)は基板バイアス用直流電源、(14)はシャッタ
(19)は可変抵抗器である。
Further, (8) is a hollow cathode electron gun, (9) is a hollow cathode, (20) is an auxiliary anode, and (10) is a DC power supply provided between the hollow cathode electron gun (8) and the cooling hearth (23). , (1)) indicate a high frequency generator, and (12) (12) indicate a high frequency bypass capacitor, respectively. High frequency generator (1)) and high frequency bypass capacitor (12)
(12) is connected in parallel with the DC power supply (lO). (
13) is a DC power supply for substrate bias, and (14) is a shutter (19) which is a variable resistor.

ホローカソード電子銃(8)にArガスを供給すると共
に電圧をかけて発生するプラズマ電子ビーム(15)に
よって被加熱材料(7)を蒸発させ、対向する基板(4
)の表面に被加熱材料(7)の薄膜を形成するようにし
ている。
The material to be heated (7) is evaporated by the plasma electron beam (15) generated by supplying Ar gas to the hollow cathode electron gun (8) and applying voltage.
) A thin film of the heated material (7) is formed on the surface of the heated material (7).

容器(22)と冷却ハース(23)との組合わせを拡大
した断面図を第1)図に示す。他の従来例として、第1
2図に導電性容器(22)を冷却ブロック(24)と組
合わせた例の断面図を示す。
An enlarged sectional view of the combination of the container (22) and the cooling hearth (23) is shown in Figure 1). As another conventional example, the first
FIG. 2 shows a cross-sectional view of an example in which the conductive container (22) is combined with the cooling block (24).

いずれの場合も、電圧をかけてプラズマ電子ビーム(1
5)が被加熱材料(7)に照射された時に、容器(22
)と冷却ハース(23)又は冷却ブロック(24)との
間の電気的、熱的導通を確保するようにして、容器(2
2)を冷却すると共に、中空陰極(9)から被加熱材料
(7)や容器(22)を介して冷却ハース(23)又は
冷却ブロック(24)への導通を確実なものにしようと
するものである。
In either case, a voltage is applied to the plasma electron beam (1
5) is irradiated onto the material to be heated (7), the container (22
) and the cooling hearth (23) or cooling block (24) to ensure electrical and thermal continuity between the container (2
2) and to ensure continuity from the hollow cathode (9) to the cooling hearth (23) or cooling block (24) via the heated material (7) and container (22). It is.

この場合、電流は中空電極(9)からプラズマ電子ビー
ム(15)を介し、容器(22)を経由して冷却ハース
(23)又は冷却ブロック(24)へと流れる。
In this case, the current flows from the hollow electrode (9) via the plasma electron beam (15) via the container (22) to the cooling hearth (23) or cooling block (24).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来のものでは、容器(22)と冷却ハ
ース(23)又は冷却ブロック(24)との間に十分な
接触圧が得られにくい為に導通不良を生じ易く、放電の
発生が確実ではなかった。又、仮に放電が発生しても冷
却ハース(23)あるいは冷却ブロック(24)に十分
な電流を流せないなどの問題があったC すなわち、第1)図に示す従来例においては容器(22
)と冷却ハース(23)とは−見、容器(22)の外面
と冷却ハース(23)の凹部(25)の内面とで広い面
積にわたって接触しているかの如くであるが、実際には
両表面の微細な凹凸のために実質的に接触している面積
は非常に少なく、接触抵抗が大きいものである。従って
凹凸をつぶして実質的接触面積を増加させて接触抵抗を
小さくするために、従来から、容器(22)を冷却ハー
ス(23)の凹部(25)に嵌め込んだ後に容器(22
)の縁を図中に矢印aで示すように冷却ハース(23)
に向けて木槌で打ち込むことによって、容器(22)と
冷却へ一部(23)との間の接触圧を高めるようにして
いた。
However, with the conventional type, it is difficult to obtain sufficient contact pressure between the container (22) and the cooling hearth (23) or the cooling block (24), which tends to cause poor conduction, and the generation of electric discharge is not certain. Ta. Furthermore, even if a discharge were to occur, there was a problem that sufficient current could not be passed through the cooling hearth (23) or the cooling block (24).
) and the cooling hearth (23) - At first glance, it seems as if the outer surface of the container (22) and the inner surface of the recess (25) of the cooling hearth (23) are in contact over a wide area, but in reality both are in contact. Due to the fine irregularities on the surface, the actual contact area is very small and the contact resistance is high. Therefore, in order to reduce the contact resistance by crushing the unevenness and increasing the substantial contact area, conventionally, after fitting the container (22) into the recess (25) of the cooling hearth (23), the container (22)
) with the edge of the cooling hearth (23) as shown by arrow a in the figure.
The contact pressure between the container (22) and the cooling part (23) was increased by hammering the cooling part (23) towards the container (22).

しかし、容器(22)と冷却ハース(23)との接触す
べき面が広いので逆に力が分散して十分な接触圧が得ら
れず、又、容器(22)の底部の一部が冷却ハース(2
3)の凹部(25)の底に達するとそれ以上容器(22
)は進まないため、十分な接触圧が得られないという欠
点があった。又、時には導通部分が片寄って、不均一な
電流分布が生じ易いという不都合もあった。
However, since the contact surface between the container (22) and the cooling hearth (23) is wide, the force is dispersed and sufficient contact pressure cannot be obtained, and a part of the bottom of the container (22) is not cooled. Hearth (2
When the bottom of the recess (25) in 3) is reached, no further container (22
) does not advance, so there is a drawback that sufficient contact pressure cannot be obtained. In addition, there is also the disadvantage that sometimes the conductive portions tend to be uneven, resulting in non-uniform current distribution.

さらに、容器(22)の加熱と冷却とを繰返すうちに、
容器(22)の熱膨張のために冷却ハース(23)の凹
部(25)が広がり、容器(22)との間に隙間が発生
して導通不良が生じるようになるという欠点もあった。
Furthermore, as the container (22) is repeatedly heated and cooled,
There is also a drawback that the concave portion (25) of the cooling hearth (23) expands due to thermal expansion of the container (22), creating a gap between the cooling hearth (23) and the container (22), resulting in poor conduction.

又、第12図に示す従来例においては、容器(22)と
冷却ブロック(24)との間の接触圧は容器(22)の
自重に依るため、容器(22)の材質として比重の大き
いものを選定する必要があった。あるいは重量を増やす
ために容器(22)の器壁等を厚くする必要があるが、
この場合は被加熱材料(7)の収容容積が小さくなるな
どの問題がある。又、以上のようにして窩比重や肉厚の
容器を使用しても、なお導通不良を生じ易いため、放電
が発生する確率が低く、あるいは放電が発生しても電流
が十分に流れない例を多発するという欠点があった。
In addition, in the conventional example shown in FIG. 12, the contact pressure between the container (22) and the cooling block (24) depends on the own weight of the container (22), so the material of the container (22) has a high specific gravity. It was necessary to select. Or, in order to increase the weight, it is necessary to thicken the walls of the container (22).
In this case, there are problems such as a reduction in the storage capacity of the material to be heated (7). In addition, even if a container with a specific cavity density and a wall thickness is used as described above, conduction defects are likely to occur, so the probability of discharge occurring is low, or even if discharge occurs, the current may not flow sufficiently. The disadvantage was that it occurred frequently.

又、上記いずれの従来例においても容器(22)と冷却
ハース(23)あるいは冷却ブロック(24)との間の
接触面が一定である上に、接触圧が不均等になり易いた
め、容器(22)と冷却ハース(23)あるいは冷却ブ
ロック(24)との間の熱伝導を制御しにくいという欠
点があった。
In addition, in any of the above conventional examples, the contact surface between the container (22) and the cooling hearth (23) or the cooling block (24) is constant, and the contact pressure tends to be uneven. 22) and the cooling hearth (23) or the cooling block (24) is difficult to control.

本発明は以上のような問題に鑑みてなされ、被加熱材料
の所望の量を一定速度で確実に蒸発させるために、導電
性耐熱容器から導電性冷却部材へと大電流が確実に且つ
均一に流れるようにし、又、伝熱特性を制御し易くする
ことによって、安定な放電発生を確実に得ることができ
るホローカソードのプラズマ電子ビーム加熱装置を提供
することを目的としている。
The present invention was made in view of the above problems, and in order to reliably evaporate a desired amount of heated material at a constant rate, a large current is reliably and uniformly passed from a conductive heat-resistant container to a conductive cooling member. It is an object of the present invention to provide a hollow cathode plasma electron beam heating device that can reliably generate stable discharge by allowing the discharge to flow and by making it easy to control the heat transfer characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、ホローカソード電子銃からのプラズマ電子
ビームを導電性冷却部材に接して配置された耐熱性の導
電性容器内の被加熱材料に照射してこれを加熱蒸発させ
るようにしたプラズマ電子ビーム加熱装置において、前
記導電性冷却部材に深さ方向に次第に断面積が小さくな
るような凹部を形成し、前記導電性容器は、前記導電性
冷却部材と組合わせた時に前記導電性冷却部材と前記導
電性容器との接触面が前記導電性容器の側壁外面の少な
くとも一部分であると共に、前記導電性容器の底部と前
記凹部の底部との間に予備空間を形成するような形に構
成されたことを特徴とするプラズマ電子ビーム加熱装置
、あるいは、ホローカソード電子銃からのプラズマ電子
ビームを導電性冷却部材に接して配置された耐熱性の導
電性容器内の被加熱材料に照射してこれを加熱蒸発させ
るようにしたプラズマ電子ビーム加熱装置において、前
記導電性冷却部材に深さ方向に次第に断面積が小さくな
るような凹部を形成し、前記導電性容器を前記凹部と嵌
合するように形成し、前記導電性冷却部材と前記導電性
容器とを組合わせる時には、前記凹部の側壁面とこれに
対向する前記導電性容器の面との間に導電性スペーサを
挿入することによって、前記導電性冷却部材と前記導電
性容器とは前記導電性スペーサを介して接触すると共に
、前記導電性容器の底部と前記凹部の底部との間に予備
空間を形成するように構成されたことを特徴とするプラ
ズマ電子ビーム加熱装置、によって達成される。
The above purpose is to irradiate a plasma electron beam from a hollow cathode electron gun onto a material to be heated in a heat-resistant conductive container placed in contact with a conductive cooling member to heat and evaporate the material. In the heating device, a concave portion whose cross-sectional area gradually decreases in the depth direction is formed in the conductive cooling member, and when the conductive container is combined with the conductive cooling member, the conductive cooling member and the The contact surface with the conductive container is at least a part of the outer surface of the side wall of the conductive container, and the conductive container is configured to form a preliminary space between the bottom of the conductive container and the bottom of the recess. A plasma electron beam heating device characterized by the In the plasma electron beam heating device for evaporation, a recess whose cross-sectional area gradually decreases in a depth direction is formed in the conductive cooling member, and the conductive container is formed to fit into the recess. , when the conductive cooling member and the conductive container are combined, a conductive spacer is inserted between the side wall surface of the recess and the surface of the conductive container opposing thereto. The plasma is characterized in that the member and the conductive container are in contact with each other via the conductive spacer, and a preliminary space is formed between the bottom of the conductive container and the bottom of the recess. This is accomplished by an electron beam heating device.

[作   用] 以上のように構成されるプラズマ電子ビーム加熱装置に
おいては、ホローカソード電子銃から耐熱性の導電性容
器内の被加熱材料に向けてプラズマ電子ビームを照射す
る時に、導電性容器から導電性冷却部材に大電流が確実
に且つ均一に流れ、又、熱伝導も確実に行なわれるので
、放電が確実なものとなり、被加熱材料からの安定した
蒸発が確実に得られる。
[Function] In the plasma electron beam heating device configured as described above, when the plasma electron beam is irradiated from the hollow cathode electron gun toward the material to be heated in the heat-resistant conductive container, the plasma electron beam is emitted from the conductive container. A large current flows reliably and uniformly through the conductive cooling member, and heat conduction is also performed reliably, so that discharge is reliable and stable evaporation from the material to be heated is reliably obtained.

〔実 施 例〕〔Example〕

次に、実施例について図面を参照して説明する。 Next, examples will be described with reference to the drawings.

本発明に係る導電性冷却部材と耐熱性の導電性容器との
組合わせの第1実施例をイオンブレーティング装置に適
用した場合の全体の構成を第1図に示す。(5)は水冷
銅ハース、(6)は水冷銅ハース(5)のすり鉢形の凹
部(26)に嵌合された耐熱性の導電性容器で、モリブ
デン(MO)製である。
FIG. 1 shows the overall configuration when a first embodiment of the combination of a conductive cooling member and a heat-resistant conductive container according to the present invention is applied to an ion blasting device. (5) is a water-cooled copper hearth, and (6) is a heat-resistant conductive container fitted into a mortar-shaped recess (26) of the water-cooled copper hearth (5), and is made of molybdenum (MO).

中に被加熱材料(7)として粒状のフッ化マグネシウム
 (MgFt)を収容している。図に示すように、水冷
銅ハース(5)と導電性容器(6)とを嵌合させ、導電
性容器(6)の上端を木槌でたたいて十分に加圧した時
に、導電性容器(6)は凹部(26)の底までは到達せ
ず、予備空間(17)が残るような構成になっている。
Granular magnesium fluoride (MgFt) is contained therein as a material to be heated (7). As shown in the figure, when the water-cooled copper hearth (5) and the conductive container (6) are fitted together and the upper end of the conductive container (6) is sufficiently pressurized by hitting it with a mallet, the conductive container (6) does not reach the bottom of the recess (26), leaving a spare space (17).

又、両者は導電性容器(6)の側壁外面の一部で接触す
る。この接触部を(18)で示す。その他の構成は第1
θ図に示す従来例と共通なので、同一部分には同じ符号
を付した。
Moreover, both contact at a part of the outer surface of the side wall of the conductive container (6). This contact portion is indicated by (18). Other configurations are the first
Since this is common to the conventional example shown in the θ diagram, the same parts are given the same reference numerals.

導電性容器(6)の拡大断面図を第2図に、水冷銅ハー
ス(5)の拡大断面図を第3図に示す。
FIG. 2 shows an enlarged sectional view of the conductive container (6), and FIG. 3 shows an enlarged sectional view of the water-cooled copper hearth (5).

導電性容器はすり鉢形であり、第2図においてd = 
62.5+am、 e = 47ffim、h = 3
1n+s、 t = 8mm。
The conductive container is mortar-shaped, and in Fig. 2, d =
62.5+am, e = 47ffim, h = 3
1n+s, t = 8mm.

θ、=14’である。水冷銅ハース(5)の凹部(26
)もすり鉢形であり、第3図においてD = 60mm
、E = 46+sm、  F = 75mm、H=2
8■賜、I = 63mm。
θ,=14'. Concave part (26) of water-cooled copper hearth (5)
) It is mortar-shaped, and D = 60 mm in Fig. 3.
, E = 46+sm, F = 75mm, H = 2
8. I = 63mm.

θ2=14°である。導電性容器(6)を水冷銅ハス(
5)の凹部(26)に嵌合させた時、導電性容器(6)
の底面と凹部(26)の底面との間に予備空間(17)
が生じ、その空間の高さはG = 2mmである。
θ2=14°. The conductive container (6) is placed in a water-cooled copper lotus (
When fitted into the recess (26) of 5), the conductive container (6)
A preliminary space (17) between the bottom of the recess (26) and the bottom of the recess (26).
occurs, and the height of the space is G = 2 mm.

導電性容器(6)と水冷銅ハース(5)との接触部(1
8)は、導電性容器(6)の側壁外面のうち、水冷銅ハ
ース(5)の凹部(26)に嵌合している部分に限定さ
れる。
Contact part (1) between the conductive container (6) and the water-cooled copper hearth (5)
8) is limited to a portion of the outer surface of the side wall of the conductive container (6) that fits into the recess (26) of the water-cooled copper hearth (5).

以上のように構成される装置の作用を第1図に基いて以
下に説明する。
The operation of the apparatus configured as described above will be explained below with reference to FIG.

真空槽Tll内を10−”Torr以下に排気し、ホロ
ーカソード電子銃(8)へアルゴン(Ar)ガスを20
0〜3005CCMの流量で導入し、真空槽(1)内の
圧力が0、01〜0.05Torrになったら、ホロー
カソード電子銃(8)と水冷銅ハース(5)及び補助陽
極(2o)との間に、直流電源(lO)による直流電圧
に高周波発生装置fil)による高周波電圧を重畳させ
た電圧を発生させる。このようにして重畳高周波電圧に
よって励起された中空陰極(9)内のArガスが電離さ
れてプラズマになり、また直流電圧の作用にょって、プ
ラズマ中のイオンは中空陰極内壁を衝撃してこれを白熱
し、プラズマ中の電子は中空陰極先端の開口部からプラ
ズマ電子ビーム(16) (15)となって補助陽極(
20)及び被加熱材料[7)  [MgFz)に向って
飛行する。導電性容器(6)と水冷銅ハース(5)とは
十分な接触圧によって接触部(18)における導通が確
保されているので、中空陰極(9)先端と被加熱材料(
7)や導電性容器(6)との間に安定な放電が形成され
た。放電開始後、プラズマ電子ビームの電流値を増加さ
せると、電流は導電性容器(6)から水冷銅ハース(5
)へスムーズに流れた。安定な放電開始までの時間は1
分〜lO数分であった。
The inside of the vacuum chamber Tll is evacuated to 10-” Torr or less, and argon (Ar) gas is pumped into the hollow cathode electron gun (8) at 20-” Torr or less.
When the pressure inside the vacuum chamber (1) reaches 0.01 to 0.05 Torr, the hollow cathode electron gun (8), water-cooled copper hearth (5) and auxiliary anode (2o) are introduced at a flow rate of 0 to 3005 CCM. During this period, a voltage is generated by superimposing a high frequency voltage from a high frequency generator fil) on a DC voltage from a DC power source (lO). In this way, the Ar gas in the hollow cathode (9) excited by the superimposed high-frequency voltage is ionized and becomes plasma, and due to the action of the DC voltage, the ions in the plasma impact the inner wall of the hollow cathode and form a plasma. becomes incandescent, and the electrons in the plasma become a plasma electron beam (16) (15) from the opening at the tip of the hollow cathode and reach the auxiliary anode (
20) and the material to be heated [7) [MgFz]. Conductivity between the conductive container (6) and the water-cooled copper hearth (5) is ensured at the contact portion (18) by sufficient contact pressure, so that the tip of the hollow cathode (9) and the heated material (
7) and the conductive container (6). After the discharge starts, when the current value of the plasma electron beam is increased, the current flows from the conductive container (6) to the water-cooled copper hearth (5).
) flowed smoothly. The time until stable discharge starts is 1
minutes to several 10 minutes.

被加熱材料(7)と導電性容器(6)の温度が上昇する
と、容器(6)の熱膨張によって容器(6)と水冷銅ハ
ース(5)との接触部(18)における接触圧が増大し
、温度上昇と相俟って両面間の接触がより確実なものと
なるため、接触抵抗が減少して増々大電流を流せるよう
になる。
When the temperature of the material to be heated (7) and the conductive container (6) increases, the contact pressure at the contact portion (18) between the container (6) and the water-cooled copper hearth (5) increases due to thermal expansion of the container (6). However, as the temperature rises, the contact between the two surfaces becomes more reliable, reducing the contact resistance and allowing a larger current to flow.

本実施例では放電電圧25〜35Vで安定に300A以
上の放電電流を水冷銅ハース(5)へ流すことができた
。又、イオンブレーティングに際しては、被加熱材料(
7)の予備加熱後に、真空槽内圧力3〜7 X 10−
’Torrで放電電流を80〜160Aに設定し、電圧
28〜38Vで被加熱材料のMgF 2を安定に蒸発さ
せることができた。
In this example, a discharge current of 300 A or more could be stably passed through the water-cooled copper hearth (5) at a discharge voltage of 25 to 35 V. In addition, during ion blating, the material to be heated (
After preheating in step 7), the pressure inside the vacuum chamber is 3 to 7 x 10-
The discharge current was set at 80 to 160 A at Torr, and the MgF 2 of the material to be heated could be stably evaporated at a voltage of 28 to 38 V.

蒸発が安定した後にシャッター(14)を開いて基板(
4)上にMgF2を蒸着させたところ、ホローカソード
電子銃(8)の中空陰極(9)の先端から容器(6)の
開口部中央までの距離が60〜200ff1m、容器(
6)の開口部から基板(4)までの距離が390〜43
0+amであるときに、MgF2の基板(4)上への堆
積速度は、電力5〜6Kwで120〜130nm/ll
l1nであった。
After the evaporation has stabilized, open the shutter (14) and release the substrate (
4) When MgF2 was vapor-deposited on top of the container (
The distance from the opening of 6) to the substrate (4) is 390 to 43
0+am, the deposition rate of MgF2 onto the substrate (4) is 120-130 nm/ll with a power of 5-6 Kw.
It was l1n.

蒸着が終了して次の蒸着のためのセツティングを行なう
時に、必要に応じて水冷銅ハース(5)から容器(6)
を−旦はずすという脱着操作を繰り返しても、何ら不都
合を生じなかった。
When evaporation is completed and setting is performed for the next evaporation, if necessary, move the water-cooled copper hearth (5) to the container (6).
Even after repeated attachment and detachment operations, no inconvenience occurred.

第1図に示されるように、容器(6)を水冷銅ハース(
5)の凹部(26)に嵌め込み、上方から木槌を用いて
これを圧入した時、接触部(18)は容器(6)の側壁
外面の一部に限定される。従って上方から加えられる力
が同じならば、接触面積に逆比例して接触圧が太き(な
り、その接触部(18)においては圧力分布も均一化し
やすい。
As shown in Figure 1, the container (6) is connected to the water-cooled copper hearth (
When it is fitted into the recess (26) of 5) and press-fitted from above using a mallet, the contact portion (18) is limited to a part of the outer surface of the side wall of the container (6). Therefore, if the force applied from above is the same, the contact pressure increases in inverse proportion to the contact area, and the pressure distribution tends to be uniform in the contact area (18).

又、予備空間(17)が設けであるので、従来例のよう
に容器(6)を圧入した時、容器(6)の底が凹部(2
6)の底につかえて十分圧入することができないという
不都合が解消される。さらに、容器(6)や水冷銅ハー
ス(5)を繰り返し使用することによって凹部(26)
が広がっても、予備空間(17)が設けられているので
、木槌で容器(6)をさらに圧入することによって電気
及び熱の導通を確保することができる。
In addition, since the preliminary space (17) is provided, when the container (6) is press-fitted as in the conventional example, the bottom of the container (6) is in the recess (2).
6) The inconvenience of not being able to press-fit sufficiently because it gets stuck at the bottom is solved. Furthermore, by repeatedly using the container (6) and the water-cooled copper hearth (5), the recess (26)
Even if the container (6) expands, since the preliminary space (17) is provided, electrical and thermal conduction can be ensured by further press-fitting the container (6) with a mallet.

又、容器(6)と水冷銅ハース(5)との間の熱伝導特
性についてみると、接触圧が同じであるとすると、接触
部(18)の接触面積が小さい程、熱伝導による伝熱量
は少なく、冷却されに(いため、同じ電力を投入した場
合は被加熱材料(7)や容器(6)の加熱に要する時間
が短縮される。
Also, looking at the heat conduction characteristics between the container (6) and the water-cooled copper hearth (5), assuming that the contact pressure is the same, the smaller the contact area of the contact part (18), the greater the amount of heat transferred by thermal conduction. Since the heating material (7) and the container (6) are heated less, the time required to heat the heated material (7) and the container (6) is shortened when the same electric power is input.

次に第4図を参照して第2実施例について説明する。第
1実施例の第2図及び第3図に示される導電性容器(6
)と水冷銅ハース(5)との組合せの代りに、第4図に
その断面図を示す導電性容器(6)と水冷銅ハース(5
)との組合せを用いた。その他の構成は第1実施例と共
通である。
Next, a second embodiment will be described with reference to FIG. The conductive container (6
) and a water-cooled copper hearth (5), a conductive container (6) and a water-cooled copper hearth (5), the cross-sectional view of which is shown in FIG.
) was used in combination with Other configurations are common to the first embodiment.

第4図において、第1図乃至第3図と機能が共通の部分
には同一の符号を付した。第4図の導電性容器(6)は
材質がタングステン(W)で、すり鉢形の側壁の厚さが
二段階になっており、d = 62.5mm、 h =
 31mm、 t == 8mm、Δt = 1mm、
θ1=14°である。水冷銅ハース(5)は第3図に示
す第1実施例のものと同じである。容器(6)を十分に
圧入した時に接触部(18)はc = 14mmの部分
に限定され、又、容器(6)の底面と凹部(26)の底
面との間に形成される予備空間(17)はG = 2m
mである。
In FIG. 4, parts having the same functions as those in FIGS. 1 to 3 are given the same reference numerals. The conductive container (6) in Fig. 4 is made of tungsten (W) and has a mortar-shaped side wall with two thicknesses, d = 62.5 mm, h =
31mm, t == 8mm, Δt = 1mm,
θ1=14°. The water-cooled copper hearth (5) is the same as that of the first embodiment shown in FIG. When the container (6) is fully press-fitted, the contact portion (18) is limited to a portion c = 14 mm, and the preliminary space ( 17) is G = 2m
It is m.

容器(6)に蒸着のための被加熱材料として錠剤状の硫
化亜鉛(Z、S)を充填し、第1実施例と同じ条件のプ
ラズマ電子ビームで照射、加熱したところ、ZnSを安
定して蒸発させることができた。蒸着時の2nSの基板
(4)上への堆積速度は電力3〜4KWで90〜130
nm/minであった。その他の条件は第1実施例と同
様である。
When the container (6) was filled with tablet-shaped zinc sulfide (Z, S) as a material to be heated for vapor deposition and irradiated and heated with a plasma electron beam under the same conditions as in the first example, ZnS was stabilized. I was able to evaporate it. The deposition rate of 2nS on the substrate (4) during evaporation was 90-130 at a power of 3-4KW.
It was nm/min. Other conditions are the same as in the first embodiment.

本実施例においても、Cの領域に限定された接触部(1
8)での導電性容器(6)と水冷銅ハース(5)との接
触が確実になされたために、放電が安定して行なわれた
ことが明らかである。
In this embodiment as well, the contact portion (1
It is clear that the electrical discharge occurred stably because the conductive container (6) and the water-cooled copper hearth (5) were securely contacted in step 8).

又、本実施例の接触部(18)は容器(6)の側壁部の
上部であるので、熱伝導による冷却は容器(6)の上部
で効率的に行なわれる。被加熱材料(7)にプラズマ電
子ビーム(15)を照射する際にビームは容器(6)に
も照射されるので、被加熱材料(7)の蒸発温度が高い
場合には特に、容器(6)の上端部が蒸発したり、溶け
たりするのを防ぐ目的で上端部を効率的に冷却する必要
があるが、本実施例の構成はこの目的に良く適っている
Furthermore, since the contact portion (18) of this embodiment is located at the upper part of the side wall of the container (6), cooling by heat conduction is efficiently performed at the upper part of the container (6). When the material to be heated (7) is irradiated with the plasma electron beam (15), the beam is also irradiated to the container (6), so especially when the evaporation temperature of the material to be heated (7) is high, ) It is necessary to efficiently cool the upper end part in order to prevent it from evaporating or melting, and the configuration of this embodiment is well suited for this purpose.

次に他の実施例について耐熱性の導電性容器と導電性冷
却部材との組合せを説明する。いずれの実施例において
もその他の構成は第1実施例と共通である。又、第2.
3図と機能が共通の部分には同一の符号を付した。いず
れの実施例においても圧入した時に容器と冷却部材との
接触部において十分な接触圧が得られて確実な放電が行
なわれ、被加熱材料が安定に蒸発された。
Next, a combination of a heat-resistant conductive container and a conductive cooling member will be described with respect to another embodiment. In either embodiment, the other configurations are the same as in the first embodiment. Also, second.
Parts that have the same functions as those in Figure 3 are given the same reference numerals. In all of the examples, sufficient contact pressure was obtained at the contact portion between the container and the cooling member when the container and the cooling member were press-fitted, so that reliable discharge was performed and the material to be heated was stably evaporated.

第3実施例の構成の断面図を第5図に示す。導電性容器
(6)はタンタル(Tal製で、すり鉢形の底にさらに
小さいすり鉢形の台がついた形である。
A sectional view of the configuration of the third embodiment is shown in FIG. The conductive container (6) is made of tantalum (Tal) and has a mortar-shaped bottom with a smaller mortar-shaped stand attached.

図において容器(6)の寸法は、d = 62.5mm
、 e ”20mm、  h + = 33mm、  
h 2= 7mm、t = 6mm、θ1=14°であ
る。水冷部材は二段の凹部(26)を有する水冷銅ハー
ス(5)でありその寸法は、D = 60mm、E =
20mm、  F =75mm、 H+ =28mn+
、 H2ニア1)1)1)゜■=63mm、θ2=14
°である。容器(6)と水冷銅ハース(5)とはc r
 = 14mmと02=5mrOの2箇所で接触し、予
備空間(■)も2箇所生じる。予備空間(17)はh2
 =82であるのでいずれもG=21)III+である
In the figure, the dimensions of the container (6) are d = 62.5 mm
, e”20mm, h+=33mm,
h2=7mm, t=6mm, θ1=14°. The water-cooling member is a water-cooled copper hearth (5) having a two-stage recess (26), and its dimensions are D = 60 mm, E =
20mm, F = 75mm, H+ = 28mn+
, H2 near 1) 1) ゜■ = 63mm, θ2 = 14
°. What is the container (6) and the water-cooled copper hearth (5)?
= 14mm and 02 = 5mrO, contact occurs at two locations, and two spare spaces (■) are also created. Spare space (17) is h2
=82, so both G=21)III+.

本実施例も第2実施例と同様に、容器(6)の上端部を
効率的に冷却することができる。
Similarly to the second embodiment, this embodiment can also efficiently cool the upper end of the container (6).

次に第4実施例の断面図を第6図に示す。本実施例の導
電性容器(6)はモリブデン(MO)製のすり鉢形であ
り、その寸法は図において、d=62.5mm、 e 
=46a+m、 h = 33mm、  t = 6+
mn、θ1=14°である。冷却部材はすり鉢形の凹部
(26)を有する水冷銅ハース(5)であり、寸法は、
D=60ma+、E = 46a+m%F = 75m
m、 H=28mm、  I =63n+m、θ2=1
4°である。これらを組合せる時には耐熱性、導電性が
あり、可撓性のあるスペーサ、例えば第7A図、第7B
図に示すような、長さ12 = 90mm、幅w = 
6mm、厚さΔt = 0.2a+mの可撓性のある(
フレキシブルな)タングステン(w)製のスペーサ(2
1)を、第8図に示すように容器(6)の外周に巻きつ
けて、これを水冷銅ハース(5)の凹部(26)に嵌め
込んだ後、木槌で容器(6)の上端からたたき込んで圧
入する。
Next, a sectional view of the fourth embodiment is shown in FIG. The conductive container (6) of this example is made of molybdenum (MO) and has a mortar shape, and its dimensions are d=62.5 mm and e in the figure.
=46a+m, h = 33mm, t = 6+
mn, θ1=14°. The cooling member is a water-cooled copper hearth (5) having a mortar-shaped recess (26), and the dimensions are as follows.
D=60ma+, E=46a+m%F=75m
m, H=28mm, I=63n+m, θ2=1
It is 4°. When these are combined, use a heat-resistant, conductive, and flexible spacer, such as Figures 7A and 7B.
As shown in the figure, length 12 = 90mm, width w =
Flexible (
flexible) tungsten (w) spacer (2
1) around the outer periphery of the container (6) as shown in Fig. 8, and after fitting it into the recess (26) of the water-cooled copper hearth (5), use a mallet to tighten the upper end of the container (6). Push it in and press it in.

スペーサ(21)があるために、容器(6)と凹部(2
6)との間にG=Δt/sin θ1で与えられる予備
空間(17)が生じる。本実施例においてはG=0.8
3mmである。又、容器(6)と水冷銅ハース(5)と
の間の接触部(18)はスペーサ(21)の部分に限定
される。
Because of the spacer (21), the container (6) and the recess (2
6), a preliminary space (17) given by G=Δt/sin θ1 is created. In this example, G=0.8
It is 3mm. Further, the contact portion (18) between the container (6) and the water-cooled copper hearth (5) is limited to the spacer (21).

次に第5実施例を第9図に示す。本実施例は第12図に
示す従来例を改良したもので、すり鉢形のグラファイト
製容器(6)の底面にあるテーパーのついた凸部を、水
冷銅ブロック(27)の中央に設けたすり鉢形の凹部(
26)に嵌め込むようにしたものである。図において容
器(6)の寸法は、d = 62.5mm、 h r 
= 33mm、 h 2 = 10mm、t=81)I
fl+、θ□=14°であり、水冷銅ブロック(27)
の寸法は、F = 100a+m、I = 40mm、
H= 10mm、 E =201)II1)、θ、=1
4°である。両者を組合せて圧入した時には図に示され
るように予備空間(17)が、容器(6)底面の凸部と
水冷銅ブロック(27)の凹部(26)との間、及び凹
部(26)の肩部の2箇所に生じるような構成になって
おり、予備空間(17)はり。
Next, a fifth embodiment is shown in FIG. The present embodiment is an improvement on the conventional example shown in FIG. shaped recess (
26). In the figure, the dimensions of the container (6) are d = 62.5 mm, h r
= 33mm, h2 = 10mm, t=81)I
fl+, θ□=14°, water-cooled copper block (27)
The dimensions are F = 100a+m, I = 40mm,
H=10mm, E=201)II1), θ,=1
It is 4°. When the two are press-fitted together, as shown in the figure, a preliminary space (17) is created between the convex part on the bottom of the container (6) and the concave part (26) of the water-cooled copper block (27), and also in the concave part (26). It is structured so that it occurs in two places on the shoulder, and there is a spare space (17).

=HであるためいずれもG = 2mmである。又、両
者の接触部(18)はc=8mmの部分に限定される。
=H, so G = 2mm in both cases. Further, the contact portion (18) between the two is limited to a portion where c=8 mm.

以上の実施例のうち、被加熱材料の蒸発温度が高い場合
は容器(6)の上端部を効率良く冷却する必要がある為
に、第1図や第4図、第8図に示す実施例が適している
。他方、被加熱材料の蒸発温度が比較的低く、容器(6
)全体がその比較的低い温度に上昇した方が良い場合は
、第6図や第9図に示す実施例が適している。なぜなら
ば接触部(18)を通って放熱される熱量が少ないため
に加熱に要する時間が短縮されるからである。又、接触
部(18)の面積が小さくても必要があれば大電流を流
すことができる。
Among the above embodiments, when the evaporation temperature of the material to be heated is high, it is necessary to efficiently cool the upper end of the container (6), so the embodiments shown in FIGS. 1, 4, and 8 is suitable. On the other hand, the evaporation temperature of the material to be heated is relatively low, and the container (6
) The embodiments shown in FIGS. 6 and 9 are suitable if it is better to raise the entire body to that relatively low temperature. This is because the amount of heat radiated through the contact portion (18) is small, so the time required for heating is shortened. Further, even if the area of the contact portion (18) is small, a large current can be passed if necessary.

以上、本発明の各実施例について説明したが、勿論、本
発明はこれらに限定されることな(、本発明の技術的思
想に基いて種々の変形が可能である。
Although each embodiment of the present invention has been described above, the present invention is of course not limited to these (and various modifications can be made based on the technical idea of the present invention).

例えば耐熱性の導電性容器や導電性スペーサとしてはタ
ンタル、タングステン、モリブデン、グラファイトの他
に、ニオブ、レニウム、ハフニウムなどの高融点金属、
窒化硼素、炭化タンタル、炭化チタン、炭化タングステ
ン、炭化ジルコニウム、硼化タンタルなどの導電性高融
点化合物、あるいはそれらを主成分とする高融点の導電
体を使用することができる。
For example, heat-resistant conductive containers and conductive spacers include tantalum, tungsten, molybdenum, graphite, and high-melting point metals such as niobium, rhenium, and hafnium.
Conductive high melting point compounds such as boron nitride, tantalum carbide, titanium carbide, tungsten carbide, zirconium carbide, tantalum boride, etc., or high melting point conductors containing these as main components can be used.

又、スペーサとして実施例ではタングステン製の均質な
ものを用いたが、代りに、導電性容器に接する面から導
電性冷却部材に接する面に向って厚さ方向に連続的又は
非連続的に組成が変化するものであっても良い。
In addition, although a homogeneous spacer made of tungsten was used in the embodiment, instead, a spacer made of tungsten may be made of a material made of tungsten that is continuous or discontinuous in the thickness direction from the surface in contact with the conductive container to the surface in contact with the conductive cooling member. may change.

又、導電性容器と導電性冷却部材とが接触するどちらか
の面あるいはそれぞれの面に、スペーサに使用する材料
の層が形成されていても良い。
Further, a layer of a material used for a spacer may be formed on either or each surface where the conductive container and the conductive cooling member are in contact with each other.

又、導電性容器と導電性冷却部材との接触部は面に限定
されず、線状あるいは点状であっても良い。スペーサも
容器側壁の全周にわたる必要はなく、複数に分割された
ものを分散して置いても良い。
Further, the contact portion between the conductive container and the conductive cooling member is not limited to a surface, but may be linear or dotted. The spacer also does not need to cover the entire circumference of the side wall of the container, and may be divided into a plurality of pieces and placed in a distributed manner.

又、例えば第1実施例のように導電性容器と導電性冷却
部材との接触部が容器側壁の一部の全周にわたる場合に
は、冷却部材の凹部の底部に貫通孔を設けるか、容器側
壁の外面に容器の底から上端に至る溝を設けると良い。
For example, in the case where the contact portion between the conductive container and the conductive cooling member covers the entire circumference of a part of the side wall of the container as in the first embodiment, a through hole may be provided at the bottom of the recess of the cooling member, or a through hole may be provided at the bottom of the concave portion of the cooling member. It is preferable to provide a groove on the outer surface of the side wall extending from the bottom of the container to the top.

それによって、大気中で木槌を使用して容器と冷却部材
とを嵌合したものを真空槽中で真空引きしても、両者の
嵌合が弛むということがな(、両者の接触をより確実な
ものとすることができる。
As a result, even if the container and cooling member are fitted together in the atmosphere using a mallet and then evacuated in a vacuum chamber, the fitting between the two will not loosen (the contact between the two will be improved). It can be made certain.

又、ホローカソード電子銃としては補助陽極を持たない
もの、あるいはプラズマ電子ビームを収束又は偏向させ
るための磁場や電場を使用したものも用いることができ
る。
Further, as the hollow cathode electron gun, one without an auxiliary anode, or one using a magnetic field or electric field for converging or deflecting the plasma electron beam can also be used.

又、被加熱材料としては導電体や半導体、あるいは非金
属、誘電体、セラミックスなどの非導電体のいずれも用
いることができる。
Further, as the material to be heated, any of conductors, semiconductors, and non-conductors such as nonmetals, dielectrics, and ceramics can be used.

又、導電性冷却部材の凹部は深さ方向に次第に断面積が
減少するように形成されるが例えば第5図のように、途
中や予備空間に減少しない部分があっても良く、少なく
とも接触部分の断面積が減少するように構成されていれ
ば良い。
Furthermore, although the concave portion of the conductive cooling member is formed so that the cross-sectional area gradually decreases in the depth direction, there may be a portion in the middle or in the preliminary space where the cross-sectional area does not decrease, as shown in FIG. It is sufficient if the structure is such that the cross-sectional area of the structure is reduced.

[発明の効果] 本発明は以上のような構成であるので、耐熱性の導電性
容器を導電性冷却部材の凹部に圧入した時、均一で大き
な接触圧が得られ、両者間の電気的、熱的導通が良くな
る。従って、ホローカソード電子銃から被加熱材料に向
けてプラズマ電子ビームを照射する時に、導電性容器か
ら導電性冷却部材へ大電流を安定にかつ均一に流すこと
ができ、放電発生が確実になる。導電性容器や導電性冷
却部材を繰返し使用しても上記の効果は変わらない。又
、導電性容器の冷却手段を容易に制御できる。又、本発
明の構成は比較的簡単なので、安価な製作費で大きな効
果を得ることができる。
[Effects of the Invention] Since the present invention has the above-described configuration, when a heat-resistant conductive container is press-fitted into the recess of the conductive cooling member, a uniform and large contact pressure is obtained, and the electrical connection between the two is reduced. Improves thermal conduction. Therefore, when a plasma electron beam is irradiated from the hollow cathode electron gun toward the material to be heated, a large current can be stably and uniformly passed from the conductive container to the conductive cooling member, and discharge generation is ensured. Even if the conductive container and the conductive cooling member are used repeatedly, the above effects remain unchanged. Furthermore, the cooling means for the conductive container can be easily controlled. Further, since the structure of the present invention is relatively simple, great effects can be obtained with low manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例をイオンブレーティング装
置に適用した場合の構成を模式的に示した図、第2図及
び第3図はそれぞれ第1実施例の導電性容器と水冷銅ハ
ースとの断面図、第4図は第2実施例の断面図、第5図
は第3実施例の断面図、第6図は第4実施例の断面図、
第7A図及び第7B図は第4実施例に用いるスペーサの
平面図及び断面図、第8図はスペーサを導電性容器に組
合せた状態を示す斜視図、第9図は第5実施例の断面図
、第1O図は従来の導電性容器と水冷銅ハースの組合せ
をイオンブレーティング装置に適用した場合の構成を模
式的に示した図、第1)図は従来の導電性容器と水冷銅
ハースとの組合せの断面図、及び第12図は従来の導電
性容器と水冷銅ブロックとの組合せの断面図である。 なお図において、 5)・・・・・・・・・・・・ 6)・・・・・・・・・・・・ 8)・・・・・・・・・・・・ 15  ・・・・・・・・・・・ 17  ・・・・・・・・・・・ 18  ・・・・・・・・・・・ 水冷銅ハース 導電性容器 ホローカソード電子銃 プラズマ電子ビーム 予  備  空  間 接   触   部 ス  ベ  −  サ 凹         部 水冷銅ブロック 代 理 人 飯  阪 泰  雄 第4図 第8図 27・・・・・・・水冷銅ブロック 第10図
Fig. 1 is a diagram schematically showing the configuration when the first embodiment of the present invention is applied to an ion brating device, and Figs. 2 and 3 respectively show the conductive container and water-cooled copper of the first embodiment. 4 is a sectional view of the second embodiment, FIG. 5 is a sectional view of the third embodiment, FIG. 6 is a sectional view of the fourth embodiment,
7A and 7B are a plan view and a cross-sectional view of a spacer used in the fourth embodiment, FIG. 8 is a perspective view showing the spacer assembled with a conductive container, and FIG. 9 is a cross-sectional view of the fifth embodiment. Figure 1) is a diagram schematically showing the configuration when a combination of a conventional conductive container and a water-cooled copper hearth is applied to an ion brating device. FIG. 12 is a sectional view of a combination of a conventional conductive container and a water-cooled copper block. In the figure, 5)・・・・・・・・・・・・ 6)・・・・・・・・・・・・ 8)・・・・・・・・・・・・ 15 ・・・・・・・・・・・・・・・ 17 ・・・・・・・・・・・・ 18 ・・・・・・・・・・・・ Water-cooled copper hearth Conductive container Hollow cathode electron gun Plasma electron beam Reserve Air Indirect contact Water-cooled copper block Figure 4 Figure 8 Figure 27 Water-cooled copper block Figure 10

Claims (6)

【特許請求の範囲】[Claims] (1)ホローカソード電子銃からのプラズマ電子ビーム
を導電性冷却部材に接して配置された耐熱性の導電性容
器内の被加熱材料に照射してこれを加熱蒸発させるよう
にしたプラズマ電子ビーム加熱装置において、前記導電
性冷却部材に深さ方向に次第に断面積が小さくなるよう
な凹部を形成し、前記導電性容器は、前記導電性冷却部
材と組合わせた時に前記導電性冷却部材と前記導電性容
器との接触面が前記導電性容器の側壁外面の少なくとも
一部分であると共に、前記導電性容器の底部と前記凹部
の底部との間に予備空間を形成するような形に構成され
たことを特徴とするプラズマ電子ビーム加熱装置。
(1) Plasma electron beam heating in which the material to be heated in a heat-resistant conductive container placed in contact with a conductive cooling member is irradiated with a plasma electron beam from a hollow cathode electron gun to heat and evaporate the material. In the apparatus, a concave portion whose cross-sectional area gradually decreases in the depth direction is formed in the conductive cooling member, and when the conductive container is combined with the conductive cooling member, the conductive cooling member and the conductive The contact surface with the conductive container is at least a portion of the outer surface of the side wall of the conductive container, and the conductive container is configured to form a preliminary space between the bottom of the conductive container and the bottom of the recess. Characteristic plasma electron beam heating device.
(2)ホローカソード電子銃からのプラズマ電子ビーム
を導電性冷却部材に接して配置された耐熱性の導電性容
器内の被加熱材料に照射してこれを加熱蒸発させるよう
にしたプラズマ電子ビーム加熱装置において、前記導電
性冷却部材に深さ方向に次第に断面積が小さくなるよう
な凹部を形成し、前記導電性容器を前記凹部と嵌合する
ように形成し、前記導電性冷却部材と前記導電性容器と
を組合わせる時には、前記凹部の側壁面とこれに対向す
る前記導電性容器の面との間に導電性スペーサを挿入す
ることによって、前記導電性冷却部材と前記導電性容器
とは前記導電性スペーサを介して接触すると共に、前記
導電性容器の底部と前記凹部の底部との間に予備空間を
形成するように構成されたことを特徴とするプラズマ電
子ビーム加熱装置。
(2) Plasma electron beam heating in which the material to be heated in a heat-resistant conductive container placed in contact with a conductive cooling member is irradiated with a plasma electron beam from a hollow cathode electron gun to heat and evaporate the material. In the apparatus, a recess whose cross-sectional area gradually decreases in the depth direction is formed in the conductive cooling member, the conductive container is formed to fit in the recess, and the conductive cooling member and the conductive When combining the conductive cooling member and the conductive container, a conductive spacer is inserted between the side wall surface of the recess and the surface of the conductive container opposing thereto. A plasma electron beam heating device characterized in that the plasma electron beam heating device is configured to make contact via a conductive spacer and to form a preliminary space between the bottom of the conductive container and the bottom of the recess.
(3)前記導電性容器及び前記導電性スペーサは導電性
高融点材料、高融点金属及び導電性高融点化合物のいず
れか、あるいはこれらのいずれかを主成分とする高融点
導電体である請求項(1)又は(2)に記載のプラズマ
電子ビーム加熱装置。
(3) The conductive container and the conductive spacer are any one of a conductive high melting point material, a high melting point metal, and a conductive high melting point compound, or a high melting point conductor containing any of these as a main component. The plasma electron beam heating device according to (1) or (2).
(4)前記導電性高融点材料はグラファイトである請求
項(3)に記載のプラズマ電子ビーム加熱装置。
(4) The plasma electron beam heating device according to claim (3), wherein the conductive high melting point material is graphite.
(5)前記高融点金属はタングステン、タンタル、レニ
ウム、モリブデン、ニオブ又はハフニウムである請求項
(3)に記載のプラズマ電子ビーム加熱装置。
(5) The plasma electron beam heating device according to claim 3, wherein the high melting point metal is tungsten, tantalum, rhenium, molybdenum, niobium, or hafnium.
(6)前記導電性高融点化合物は窒化硼素、炭化タンタ
ル、炭化チタン、炭化タングステン、炭化ジルコニウム
又は硼化タンタルである請求項(3)に記載のプラズマ
電子ビーム加熱装置。
(6) The plasma electron beam heating device according to (3), wherein the conductive high melting point compound is boron nitride, tantalum carbide, titanium carbide, tungsten carbide, zirconium carbide, or tantalum boride.
JP10222190A 1990-04-18 1990-04-18 Plasma electron beam heating apparatus Pending JPH042768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10222190A JPH042768A (en) 1990-04-18 1990-04-18 Plasma electron beam heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10222190A JPH042768A (en) 1990-04-18 1990-04-18 Plasma electron beam heating apparatus

Publications (1)

Publication Number Publication Date
JPH042768A true JPH042768A (en) 1992-01-07

Family

ID=14321614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10222190A Pending JPH042768A (en) 1990-04-18 1990-04-18 Plasma electron beam heating apparatus

Country Status (1)

Country Link
JP (1) JPH042768A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980086806A (en) * 1997-05-09 1998-12-05 오자와 미또시 Plasma thin film deposition apparatus capable of safely depositing various materials having various characteristics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980086806A (en) * 1997-05-09 1998-12-05 오자와 미또시 Plasma thin film deposition apparatus capable of safely depositing various materials having various characteristics

Similar Documents

Publication Publication Date Title
US4122292A (en) Electric arc heating vacuum apparatus
KR20050116137A (en) Method and device for the generation of a plasma through electric discharge in a discharge space
JPH042768A (en) Plasma electron beam heating apparatus
US9966234B2 (en) Film forming device
US5055672A (en) Fast atom beam source
US6821399B2 (en) Cathode mounting system for cathodic arc cathodes
US6608432B2 (en) Cathode target mounting for cathodic arc cathodes
US20100230276A1 (en) Device and method for thin film deposition using a vacuum arc in an enclosed cathode-anode assembly
JPH11154487A (en) Cathode for discharge tube
EP0637046B1 (en) Thermoionic emissive cathode method of fabricating the same thermoionic emissive cathode and electron beam apparatus
JPH0837099A (en) Plasma generating device
US4560907A (en) Ion source
JP2694659B2 (en) Method for producing ultrafine metal nitride particles
JPH0794072A (en) Hot cathode for electron radiation, its manufacture, and electron beam working device using it
JPH03163733A (en) High-speed atomic beam radiating device
Isfort et al. Development of a UHV compatible hollow cathode arc source for the deposition of hard nitride coatings
JP3910243B2 (en) Hollow cathode for plasma generation
JPS59207600A (en) Electron gun for plasma electron beam melting furnace
JP2506779Y2 (en) Ion source
JPH10332898A (en) Electron gun of ion-plasma type and method for manufacturing it
JPH10158823A (en) Ion plating device and formation of thin film by this device
KR920004897B1 (en) Impregnated type dispensor cathode and manufacturing method the same
JPS5812699B2 (en) High temperature metal ion source device
JPH11288688A (en) Cathode for discharge tube and arc lamp
KR100271126B1 (en) Vapor deposition machine