JPH04276437A - Manufacture of copper foil radiation beam curable coating - Google Patents

Manufacture of copper foil radiation beam curable coating

Info

Publication number
JPH04276437A
JPH04276437A JP3834691A JP3834691A JPH04276437A JP H04276437 A JPH04276437 A JP H04276437A JP 3834691 A JP3834691 A JP 3834691A JP 3834691 A JP3834691 A JP 3834691A JP H04276437 A JPH04276437 A JP H04276437A
Authority
JP
Japan
Prior art keywords
copper foil
radiation
radiation beam
weight
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3834691A
Other languages
Japanese (ja)
Other versions
JP2621671B2 (en
Inventor
Tomohisa Ota
共久 太田
Shunya Yokozawa
横沢 舜哉
Yutaka Yamaguchi
豊 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP3038346A priority Critical patent/JP2621671B2/en
Publication of JPH04276437A publication Critical patent/JPH04276437A/en
Application granted granted Critical
Publication of JP2621671B2 publication Critical patent/JP2621671B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To enable a copper foil which has heat resistance is the press opera tion and radiation beam curable coating for protection soluble in warm water or warm water in short time, to be provided by a method in which, after the copper foil is coated with a radiation beam-curable coating which contains acryl copolymer as a main component, the coating is irradiated with the radia tion beam. CONSTITUTION:Copper foil is coated with a radiation beam-curable coating containing the acryl copolymer as a main component which has unsaturated double bond in the molecule and weight-average molecular weight in the range of 1000-5000 and contains the acrylamide monomer of 5-50wt.% shown by the general formula as a component monomer of constituting the copolymer, and then radiation beam is irradiated to said coating. Acrylamide monomer polymerized by a radical generator such as e.g.alpha,alpha'-azobisisbutyronitrile, benzoyl peroxide which reacts only with the double bond of the monomer molecule together with heavy metal.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明の銅張積層板に使用する銅
箔の製造方法に関するものである。
FIELD OF INDUSTRIAL APPLICATION This invention relates to a method for manufacturing copper foil used in the copper-clad laminate of the present invention.

【0002】0002

【従来の技術】積層板を同一プレス熱盤内で同時に複数
枚製造する場合は一般に次のように行う。
2. Description of the Related Art When a plurality of laminates are simultaneously manufactured in the same press platen, the process is generally performed as follows.

【0003】銅張積層板の場合は成形すべき材料として
は、銅箔、プリプレグ(有機、無機の繊維を布又は紙状
にした基材に、熱硬化性樹脂を含浸後、乾燥させて、半
硬化状態にしたもの)がある。これらを積層した材料を
平滑かつ均一な厚みの金属板)鏡板)と交互に重ね、必
要とする複数枚にする。上下には金属板(鏡板)を配し
、クッション材を更にその外側に配する。これを加熱で
きるプレスの熱盤内に入れ、加熱加圧し、プリプレグ樹
脂を硬化させる。その後板状に一体化した銅張積層板を
金属板と分離し出来上がる。
In the case of copper-clad laminates, the materials to be molded include copper foil, prepreg (a base material made of organic or inorganic fibers in the form of cloth or paper, impregnated with thermosetting resin, dried, (semi-hardened). These laminated materials are alternately stacked with smooth and uniformly thick metal plates (mirror plates) to form the required number of sheets. Metal plates (mirrors) are placed on the top and bottom, and cushioning material is placed on the outside. This is placed in a hot platen of a press that can heat and pressurized to harden the prepreg resin. The copper-clad laminate is then separated from the metal plate to complete the process.

【0004】また多層印刷配線板は片側又は両側に導体
回路を有した内層板とプリプレグ並びに必要に応じて銅
箔、外層用片面銅張積層板を材料としこれらを積層した
ものを同様に加熱・加圧し製造する。
[0004] A multilayer printed wiring board is made of an inner layer board having conductor circuits on one or both sides, a prepreg, copper foil if necessary, and a single-sided copper-clad laminate for the outer layer. Manufactured under pressure.

【0005】このような製造法においては、銅張積層板
又は多層印刷配線板(以下これらを積層板と称す。)製
造時にシワ、折れ、異物、打こんの発生がさけられない
。その対策として、シワ・折れ・異物・打こんの発生を
低減し得る銅箔を提供するために、特開昭62−174
360号公報に記載されているような片面に剥離可能な
耐熱性フイルムを貼り合わせた、いわゆるフイルム付銅
箔が知られている。
[0005] In such a manufacturing method, wrinkles, folds, foreign matter, and dents are unavoidable during the production of copper-clad laminates or multilayer printed wiring boards (hereinafter referred to as laminates). As a countermeasure to this problem, in order to provide a copper foil that can reduce the occurrence of wrinkles, folds, foreign objects, and dents,
BACKGROUND ART A so-called film-attached copper foil, which has a peelable heat-resistant film bonded to one side, as described in Japanese Patent No. 360, is known.

【0006】[0006]

【発明が解決しようとする課題】このフイルム付銅箔は
プレス工程でシワ・折れ・異物・打こんの発生を防止す
ることはできるが、銅箔上の耐熱性フイルムの剥離に関
して、次のような問題点があった。すなわち、最近のエ
レクトロニクス化に伴って、フイルム剥離のロボットが
利用されるが、フイルムが20μm以下に薄くなればな
るほど、剥離不良が発生する。また、フイルムを酸、ア
ルカリ、水、有機溶剤等に溶解させることが考えられる
が、5分以内という短時間に溶解してかつプレス工程で
の耐熱性を満足するフイルムは見当らない。
[Problems to be Solved by the Invention] This film-coated copper foil can prevent wrinkles, folds, foreign objects, and dents from occurring during the pressing process, but the following problems occur regarding the peeling of the heat-resistant film on the copper foil. There was a problem. That is, with the recent advancement in electronics, film peeling robots are used, but as the film becomes thinner to 20 μm or less, peeling failures occur. Further, it is possible to dissolve the film in an acid, alkali, water, organic solvent, etc., but no film has been found that dissolves in a short time of 5 minutes or less and satisfies the heat resistance during the pressing process.

【0007】また、特願平2−101270号明細書に
記載されているように銅箔表面にアルカリ溶液に可溶な
塗膜を設けた放射線硬化型塗料付銅箔などが提案されて
いるが、アルカリ溶液に可溶な放射線硬化型塗料付銅箔
は、アルカリ溶液が必要のため、取り扱いにくいことや
アルカリ溶液の保守が難しいなどの問題が内在している
[0007]Also, as described in Japanese Patent Application No. 2-101270, a radiation-curable paint coated copper foil has been proposed in which a coating film soluble in an alkaline solution is provided on the surface of the copper foil. Copper foil coated with radiation-curable paint, which is soluble in alkaline solutions, requires an alkaline solution, which has inherent problems such as difficulty in handling and maintenance of the alkaline solution.

【0008】本発明はプレス工程での耐熱性を有し、短
時間に水あるいは温水で溶解する保護用の放射線硬化型
塗料付銅箔の製造方法を提供するものである。
[0008] The present invention provides a method for manufacturing a copper foil coated with a radiation-curable coating for protection, which has heat resistance during the pressing process and dissolves in water or warm water in a short time.

【0009】[0009]

【課題を解決するための手段】本発明は、不飽和二重結
合を分子内に有し、重量平均分子量が1,000〜50
,000の範囲にあり、構成する共重合体の成分モノマ
ーとして、一般式が で示されるアクリルアミドモノマーを5〜50重量%含
有するアクリル系共重合体を主成分とする放射線硬化型
塗料を銅箔に塗布した後、放射線を照射することを特徴
とする放射線硬化型塗布付銅箔の製造方法を提供するも
のである。本発明の特定の放射線硬化型塗料は、プレス
時における耐熱性を有すると同時に水あるいは温水によ
り短時間で溶解あるいは除去することが可能である。
[Means for Solving the Problems] The present invention has an unsaturated double bond in the molecule and a weight average molecular weight of 1,000 to 50.
,000 and contains 5 to 50% by weight of an acrylamide monomer represented by the general formula as a component monomer of the copolymer. The present invention provides a method for producing a radiation-curable coated copper foil, which is characterized in that the copper foil is coated with radiation and then irradiated with radiation. The specific radiation-curable coating material of the present invention has heat resistance during pressing and can be dissolved or removed in a short time with water or hot water.

【0010】以下本発明を詳細に説明する。本発明で用
いられるアクリル系共重合体は通常の合成法に従い、ア
クリルアミドモノマーをモノマー分子の二重結合に対し
てのみ反応する例えば、α,α′−アゾビスイソブチロ
ニトリル、ベンゾイルパーオキサイドのごときラジカル
発生剤又は重金属とともに接触作用をおよぼす触媒系の
ような開始剤(重合触媒)を用いて重合させることによ
り行うが、この際重合は塊状重合すなわち、トルエン、
ベンゼンなどの有機溶剤又は希釈剤の使用なしで行うこ
とが望ましい。このときの重合条件を、ラウリルメルカ
プタンあるいは四塩化炭素のごとき、調節剤の使用ある
いはラジカル発生剤の高濃度、重合時間又は重合温度を
適当に調節すると、無溶剤状態で比較的低粘度の重量平
均分子量が1,000〜50,000の範囲にあるアク
リル系共重合体を得ることができる。
The present invention will be explained in detail below. The acrylic copolymer used in the present invention is prepared using a conventional synthesis method, such as α,α′-azobisisobutyronitrile, benzoyl peroxide, etc. Polymerization is carried out using an initiator (polymerization catalyst) such as a radical generator such as a radical generator or a catalyst system that acts in contact with heavy metals.
It is desirable to do so without the use of organic solvents or diluents such as benzene. At this time, if the polymerization conditions are appropriately controlled by using a regulator such as lauryl mercaptan or carbon tetrachloride, or by adjusting the high concentration of a radical generator, polymerization time, or polymerization temperature, a relatively low weight average viscosity can be achieved in a solvent-free state. Acrylic copolymers having a molecular weight in the range of 1,000 to 50,000 can be obtained.

【0011】このアクリル系共重合体の必須成分である
アクリルアミドモノマーはアクリル系あるいはメタクリ
ル系のものが挙げられる。また、水又は温水への溶解性
あるいは除去性の点からは多量にアクリルアミドモノマ
ーを共重合することが望まれるが、耐熱性あるいは系全
体のガラス転移点が上昇することによる銅箔との接着性
などが低下するため、5〜50重量%の範囲内で使用す
る。
The acrylamide monomer which is an essential component of this acrylic copolymer may be acrylic or methacrylic. In addition, from the point of view of solubility or removability in water or hot water, it is desirable to copolymerize a large amount of acrylamide monomer, but it is also desirable to copolymerize a large amount of acrylamide monomer, but it also increases the heat resistance or the adhesion with copper foil due to the increase in the glass transition point of the entire system. It is used within the range of 5 to 50% by weight.

【0012】また、このアクリル系共重合体を構成する
アクリルアミド以外のモノマーとしてはメチル(メタ)
アクリレート、エチル(メタ)アクリレート、ブチル(
メタ)アクリレートなどのアクリル系あるいはメタクリ
ル系のアルキルエステルモノマーやスチレン、酢酸ビニ
ルなどのビニルモノマーや(メタ)アクリル酸、2−ヒ
ドロキシエチル(メタ)アクリレート、グリシジル(メ
タ)アクリレートなどの側鎖官能性基含有ビニル系モノ
マーが挙げられる。それらの使用割合は銅箔との接着性
が損われないように系全体のガラス転移点によって決定
される。
[0012] In addition, monomers other than acrylamide constituting this acrylic copolymer include methyl (meth)
Acrylate, ethyl (meth)acrylate, butyl (
Acrylic or methacrylic alkyl ester monomers such as meth)acrylate, vinyl monomers such as styrene and vinyl acetate, and side chain functionality such as (meth)acrylic acid, 2-hydroxyethyl (meth)acrylate, and glycidyl (meth)acrylate. Examples include group-containing vinyl monomers. Their usage ratio is determined by the glass transition point of the entire system so that the adhesion to the copper foil is not impaired.

【0013】なお、分子内に導入する不飽和二重結合を
有する基としては、ビニル基、ビニルオキシ基、ビニル
カルボニルオキシ基、アクリロイル基、メタクリロイル
基などが挙げられるが、特に良好な結果が得られるのは
反応性の優れたアクリロイル基、メタクリロイル基であ
る。
[0013] Examples of the group having an unsaturated double bond to be introduced into the molecule include vinyl group, vinyloxy group, vinyl carbonyloxy group, acryloyl group, methacryloyl group, etc., and particularly good results can be obtained. Acryloyl and methacryloyl groups have excellent reactivity.

【0014】本発明にかかる放射線硬化型塗料には必要
に応じ希釈剤、架橋性モノマー、可塑剤、粘着付与剤、
酸化防止剤、充填剤などの添加剤を配合してもよい。
The radiation-curable coating material according to the present invention may optionally contain a diluent, a crosslinking monomer, a plasticizer, a tackifier,
Additives such as antioxidants and fillers may be added.

【0015】銅箔は電解箔、圧延箔のいずれでもよい。 得られた放射線硬化型塗料は粘度が低いため、通常の塗
工法により、銅箔に塗布された後、放射線を照射する。 ここで、塗料の塗布厚は通常0.1〜50μm程度であ
るが、耐熱性と水あるいは温水での溶解性又は除去性と
コストの点から、1〜15μm程度が好ましい。
[0015] The copper foil may be either an electrolytic foil or a rolled foil. Since the resulting radiation-curable paint has a low viscosity, it is applied to copper foil using a conventional coating method and then irradiated with radiation. The coating thickness of the coating material is usually about 0.1 to 50 .mu.m, but is preferably about 1 to 15 .mu.m from the viewpoint of heat resistance, solubility or removability in water or warm water, and cost.

【0016】なお、放射線硬化型塗料は比較的低分子量
のアクリル共重合体を主成分とする無溶剤塗料であるが
、塗工作業性の点から、少量の溶剤を使用してもかまわ
ない。
Although the radiation-curable paint is a solvent-free paint whose main component is an acrylic copolymer of relatively low molecular weight, a small amount of solvent may be used from the viewpoint of coating workability.

【0017】本発明でいう放射線とは活性エネルギー線
で、α線、β線、γ線、中性子線、加速電子線のような
電離性放射線並びに紫外線をいう。電離性放射線の線量
は通常0.5〜50Mradの範囲で使用できるが、1
〜20Mrad程度が望ましい。また紫外線の場合、約
180〜460nmの波長範囲で、発生源としては高圧
の水銀ランプ等が適している。
Radiation as used in the present invention refers to active energy rays, including ionizing radiation such as α rays, β rays, γ rays, neutron beams, and accelerated electron beams, as well as ultraviolet rays. The dose of ionizing radiation can usually be used in the range of 0.5 to 50 Mrad, but 1
~20 Mrad is desirable. Further, in the case of ultraviolet rays, the wavelength range is about 180 to 460 nm, and a high-pressure mercury lamp or the like is suitable as the source.

【0018】また照射する場合注意を要するのは照射雰
囲気である。つまり発生したラジカルが空気中の酸素に
よって重合阻害されるので、場合によっては窒素などの
不活性ガスを用いて適当な酸素濃度にする必要がある。
[0018] Furthermore, when performing irradiation, care must be taken regarding the irradiation atmosphere. In other words, since the generated radicals are inhibited from polymerization by oxygen in the air, it may be necessary to use an inert gas such as nitrogen to maintain an appropriate oxygen concentration.

【0019】このようにして得られた保護用の塗料付銅
箔は前述したように積層板の製造に用いられ、プレス時
においては耐熱性に優れ、使用後、水あるいは温水によ
り容易に溶解あるいは除去することができる。
The copper foil coated with protective paint thus obtained is used in the production of laminates as described above, and has excellent heat resistance during pressing, and after use, is easily dissolved or dissolved in water or hot water. Can be removed.

【0020】[0020]

【作用】耐熱性と水あるいは温水での溶解・除去性に関
する本発明で用いられる放射線硬化型塗料の作用につい
て、明確ではないが以下のことが推定される。すなわち
、基本反応は放射線によって進行するアクリル共重合体
の不飽和二重結合のラジカル重合である。この反応が高
速で進行して、架橋が密になり、耐熱性が保持される。 そして、水あるいは温水に浸漬すると、アミド基に水分
子の水酸基が接近して容易に塗料と銅箔界面に水分子が
浸入して、結果として塗料が溶解あるいは除去するもの
と考えられる。
[Function] Although the effects of the radiation-curable paint used in the present invention regarding heat resistance and dissolution/removability in water or hot water are not clear, the following is presumed. That is, the basic reaction is radical polymerization of unsaturated double bonds in the acrylic copolymer that proceeds with radiation. This reaction proceeds at high speed, resulting in dense crosslinking and maintaining heat resistance. It is thought that when immersed in water or hot water, the hydroxyl groups of water molecules approach the amide groups, allowing the water molecules to easily penetrate into the interface between the paint and the copper foil, resulting in the paint being dissolved or removed.

【0021】[0021]

【実施例】以下、本発明を実施例に基づいて説明するが
、本発明はこれに限定されるものではない。
[Examples] The present invention will be explained below based on Examples, but the present invention is not limited thereto.

【0022】実施例1、2 撹拌機、温度計、滴下ロート及び窒素ガス吹き込み装置
を付した四つ口フラスコにメチルメタクリレート60重
量部、アクリルアミド25重量部、アクリル酸15重量
部及びα,α′−アゾビスイソブチロニトリル4重量部
からなる混合物を入れ、窒素気流中撹拌しながら、80
℃にする。更に同温度で6時間反応を続けることによっ
て、粘度が約104センチポイズ(E型粘度計、30℃
)、重量平均分子量Mwが約8,000(GPC法測定
のポリスチレン換算値)のプレポリマーを得た。次いで
100℃まで昇温し、グリシジルメタクリレート5重量
部、トリエチルベンジルアンモニウムクロライド0.5
重量部、熱重合防止剤0.1重量部添加してなる混合液
を滴下ロートにより30分間かけて滴下し、同温度で更
に約20時間反応を続けることによって、側鎖に不飽和
二重結合を持ったアクリル系共重合体を得た。このアク
リル系共重合体を放射線硬化型塗料として、18μmの
電解銅箔表面に厚さ3μm(実施例1)及び15μm(
実施例2)になるようにナイフコータ法で塗布した。 その後、加速電圧が175KVである低エネルギー電子
線照射装置(エナージーサイエンス社製  商品名エレ
クトロカーテン型式CB−175/15/10L)で酸
素濃度40ppm下で10Mradの線量だけそれぞれ
照射した。上記のようにして作成した放射線硬化型塗料
付銅箔の特性を表1にまとめて示す。
Examples 1 and 2 60 parts by weight of methyl methacrylate, 25 parts by weight of acrylamide, 15 parts by weight of acrylic acid, and α, α' were placed in a four-necked flask equipped with a stirrer, thermometer, dropping funnel, and nitrogen gas blowing device. - Add a mixture consisting of 4 parts by weight of azobisisobutyronitrile, and while stirring in a nitrogen stream,
℃. By continuing the reaction for another 6 hours at the same temperature, the viscosity was approximately 104 centipoise (E-type viscometer, 30°C).
), a prepolymer having a weight average molecular weight Mw of about 8,000 (polystyrene equivalent value measured by GPC method) was obtained. Then, the temperature was raised to 100°C, and 5 parts by weight of glycidyl methacrylate and 0.5 parts of triethylbenzylammonium chloride were added.
parts by weight and 0.1 parts by weight of a thermal polymerization inhibitor are added dropwise through a dropping funnel over 30 minutes, and the reaction is continued for about 20 hours at the same temperature to form an unsaturated double bond in the side chain. An acrylic copolymer with This acrylic copolymer was used as a radiation-curable paint on the surface of an 18 μm electrolytic copper foil to a thickness of 3 μm (Example 1) and 15 μm (Example 1).
Example 2) was coated using a knife coater method. Thereafter, each sample was irradiated with a dose of 10 Mrad at an oxygen concentration of 40 ppm using a low-energy electron beam irradiation device (manufactured by Energy Science Co., Ltd., trade name Electro Curtain Model CB-175/15/10L) with an accelerating voltage of 175 KV. Table 1 summarizes the properties of the copper foil coated with radiation-curable paint produced as described above.

【0023】実施例3 実施例1と同様にして、スチレン45重量部、アクリル
アミド40重量部、アクリル酸15重量部でプリポリマ
ーを合成し、更にグリシジルメタクリレート5重量部を
添加してアクリル系共重合体である放射線硬化型塗料を
作製した。そして、実施例1と同様の方法で塗布、電子
線照射して、放射線硬化型塗料付銅箔を作成した。特性
を表1に示す。
Example 3 In the same manner as in Example 1, a prepolymer was synthesized using 45 parts by weight of styrene, 40 parts by weight of acrylamide, and 15 parts by weight of acrylic acid, and 5 parts by weight of glycidyl methacrylate was further added to produce an acrylic copolymer. A radiation-curable paint was created by combining these two methods. Then, the coating was applied and irradiated with electron beams in the same manner as in Example 1 to create a copper foil coated with radiation-curable paint. The characteristics are shown in Table 1.

【0024】比較例1 実施例1と同様にして、メチルメタクリレート85重量
部及びアクリル酸15重量部からアクリルアミド含有し
ないアクリル系共重合体を合成した。この放射線硬化型
塗料を用いて実施例1と同様な方法で放射線硬化型塗料
付銅箔を作成し、特性を表1に示す。
Comparative Example 1 In the same manner as in Example 1, an acrylamide-free acrylic copolymer was synthesized from 85 parts by weight of methyl methacrylate and 15 parts by weight of acrylic acid. Using this radiation-curable paint, a radiation-curable paint-coated copper foil was prepared in the same manner as in Example 1, and its properties are shown in Table 1.

【0025】比較例2 実施例1と同様にして、ブチルアクリレート85重量部
及びアクリル酸15重量部からアクリルアミドを含有し
ないアクリル系共重合体を合成した。この放射線硬化型
塗料を用いて実施例1と同様な方法で放射線硬化型塗料
付銅箔を作成し、特性を表1に示す。
Comparative Example 2 In the same manner as in Example 1, an acrylic copolymer containing no acrylamide was synthesized from 85 parts by weight of butyl acrylate and 15 parts by weight of acrylic acid. Using this radiation-curable paint, a radiation-curable paint-coated copper foil was prepared in the same manner as in Example 1, and its properties are shown in Table 1.

【表1】[Table 1]

【0026】*    放射線硬化型塗料の表面状態を
観察。(    )はエンピツ硬度。 **   放射線硬化型塗料付銅箔をガラスエポキシ2
00μmのプリプレグ5枚と重ね、170℃、90kg
/cm2で90分間プレスを行い、片面銅箔張積層板を
作成した。 その時の銅箔保護用放射線硬化型塗料の表面状態を初期
と比較した。 ***  水と80℃の温水に上記放射線硬化型塗料付
片面銅張積層板を浸漬し、塗料の溶解時間の測定と、溶
解後の銅箔表面状態を調べた。
* Observation of the surface condition of the radiation-curable paint. ( ) is pencil hardness. ** Copper foil with radiation curing paint coated with glass epoxy 2
Layered with 5 sheets of 00μm prepreg, 170℃, 90kg
/cm2 for 90 minutes to produce a single-sided copper foil-clad laminate. The surface condition of the radiation-curable coating for protecting copper foil at that time was compared with the initial condition. *** The single-sided copper-clad laminate with the radiation-curable paint was immersed in water and hot water at 80°C, and the dissolution time of the paint was measured and the surface condition of the copper foil after dissolution was examined.

【0027】[0027]

【発明の効果】以上のように、本発明の耐熱性に優れ、
水又は温水に可溶な塗膜が得られる放射線硬化型塗料付
銅箔を使用することで、積層板製造時の取り扱い上のシ
ワ、オレの発生、異物、打こんの発生の低減が可能とな
るとともに、水あるいは温水の処理槽を短時間で通過さ
せるだけで容易に塗膜を除去することができ、多層印刷
配線板に使用する際のピン穴の仕上がりを向上させるこ
とが可能となる。
[Effects of the Invention] As described above, the present invention has excellent heat resistance,
By using copper foil coated with a radiation-curable paint that produces a coating film that is soluble in water or hot water, it is possible to reduce the occurrence of wrinkles, smudges, foreign objects, and dents during handling during the production of laminates. At the same time, the paint film can be easily removed by simply passing it through a water or hot water treatment tank for a short time, making it possible to improve the finish of pin holes when used in multilayer printed wiring boards.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  不飽和二重結合を分子内に有し、重量
平均分子量が1,000〜50,000の範囲にあり、
構成する共重合体の成分モノマーとして、一般式がで示
されるアクリルアミドモノマーを5〜50重量%含有す
るアクリル系共重合体を主成分とする放射線硬化型塗料
を銅箔に塗布した後、放射線を照射することを特徴とす
る放射線硬化型塗料付銅箔の製造方法。
Claim 1: having an unsaturated double bond in the molecule and having a weight average molecular weight in the range of 1,000 to 50,000;
After coating a copper foil with a radiation-curable paint mainly composed of an acrylic copolymer containing 5 to 50% by weight of an acrylamide monomer represented by the general formula as a constituent monomer of the copolymer, radiation is applied. A method for producing copper foil with a radiation-curable paint, which comprises irradiating the copper foil.
【請求項2】  不飽和二重結合が、アクリロイル基又
はメタクリロイル基である請求項1記載の放射線硬化型
塗料付銅箔の製造方法。
2. The method for producing a radiation-curable paint-coated copper foil according to claim 1, wherein the unsaturated double bond is an acryloyl group or a methacryloyl group.
【請求項3】  放射線が電子線である請求項1又は2
記載の放射線硬化型塗料付銅箔の製造方法。
[Claim 3] Claim 1 or 2, wherein the radiation is an electron beam.
The method for producing the radiation-curable paint-coated copper foil.
JP3038346A 1991-03-05 1991-03-05 Production method of radiation-curable copper foil with paint Expired - Lifetime JP2621671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3038346A JP2621671B2 (en) 1991-03-05 1991-03-05 Production method of radiation-curable copper foil with paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3038346A JP2621671B2 (en) 1991-03-05 1991-03-05 Production method of radiation-curable copper foil with paint

Publications (2)

Publication Number Publication Date
JPH04276437A true JPH04276437A (en) 1992-10-01
JP2621671B2 JP2621671B2 (en) 1997-06-18

Family

ID=12522727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3038346A Expired - Lifetime JP2621671B2 (en) 1991-03-05 1991-03-05 Production method of radiation-curable copper foil with paint

Country Status (1)

Country Link
JP (1) JP2621671B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111083883A (en) * 2019-12-03 2020-04-28 欣强电子(清远)有限公司 Method for preparing adhesive material multilayer FPC board stack

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111083883A (en) * 2019-12-03 2020-04-28 欣强电子(清远)有限公司 Method for preparing adhesive material multilayer FPC board stack
CN111083883B (en) * 2019-12-03 2022-10-11 欣强电子(清远)有限公司 Method for preparing adhesive material multilayer FPC board stack

Also Published As

Publication number Publication date
JP2621671B2 (en) 1997-06-18

Similar Documents

Publication Publication Date Title
US6713144B2 (en) Multilayer material
CA1057997A (en) Radiation curable composition containing prepolymer with bonded hydroxyalkyl ester and halo substituted anhydride
JPS61162501A (en) Resin composition curable with high-energy rays
EP0187044A2 (en) Radiation curable macromonomer compositions and products
JP5863673B2 (en) Method for producing acrylic acrylate resin
JP2002187906A (en) High-molecular weight photopolymerization initiator and photocurable material using the same
JP6232049B2 (en) Active energy ray-curable resin composition and cured product thereof
US4475998A (en) Modified epoxy (meth) acrylate resin and hardenable resin composition containing the same
JP2009256465A (en) Active energy ray-crosslinking type adhesive
JPH04276437A (en) Manufacture of copper foil radiation beam curable coating
CN116507680B (en) Free radically polymerizable crosslinking agent, curable composition, and adhesive therefrom
JP2874482B2 (en) Temporary surface protection method and resin composition used therefor
JPH11124404A (en) Activating energy beam curing composition containing maleimide derivative and curing of the same composition
JPH03297638A (en) Production of copper foil coated with radiation hardening type coating
JP2015168765A (en) Energy ray-curable resin composition
JP2844849B2 (en) Active energy ray-curable surface modifier for polymer material and method for producing the same
WO2022004746A1 (en) Laminate, production method for laminate, laminate-containing surface protective film for image display device, and article and image display device provided with laminate
JPH0277414A (en) Resin composition, coating composition and printing ink composition curable with actinic energy ray
JP2003221420A (en) Active radiation-curing composition and cured film
JPS58145712A (en) Radiation-curable resin composition
JPH04227916A (en) Unsaturated fluorocarbon block copolymer, its production, and actinic radiation-curing material
JPH023454A (en) Radiation-curable covering composition, solder resist, and plated resist
JPS6028318B2 (en) Photocurable pressure-sensitive adhesive composition
JP6807271B2 (en) Photocurable resin composition
JP7200657B2 (en) Methacrylate monomers, polymers, resin compositions, laminates and moldings