JPH04276078A - Chemical vapor growth method - Google Patents

Chemical vapor growth method

Info

Publication number
JPH04276078A
JPH04276078A JP12065991A JP12065991A JPH04276078A JP H04276078 A JPH04276078 A JP H04276078A JP 12065991 A JP12065991 A JP 12065991A JP 12065991 A JP12065991 A JP 12065991A JP H04276078 A JPH04276078 A JP H04276078A
Authority
JP
Japan
Prior art keywords
tin
diketone
indium
raw material
beta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12065991A
Other languages
Japanese (ja)
Inventor
Toshiro Maruyama
丸山 敏朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12065991A priority Critical patent/JPH04276078A/en
Publication of JPH04276078A publication Critical patent/JPH04276078A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To easily synthesize a transparent conductive thin film by using the indium substitution product of beta-diketone as the raw material for indium oxide and the tin substitution product of beta-diketone as a tin dopant and adding a gaseous reactant to the gaseous raw material. CONSTITUTION:The indium substitution product of beta-diketone is used as the raw material for indium oxide and the tin substitution product of beta-diketone as a tin dopant, and a gaseous reactant is added to the gaseous raw material to grow an indium oxide film doped with tin on the surface of a material to be treated. A bis-acetylacetonato tin to its derivative is used as the tin substitution product of beta-diketone and oxygen or air as the gaseous reactant. A carrier gas cylinder 1, a gaseous reactant cylinder 2, a vaporizer 5, a tin material 6, an indium material 7, a reactor 8, etc., are used to form a film on a material 10. A high-performance transparent conductive film is easily grown in this way.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、化学気相成長方法に関
し、さらに詳しくは、透明導電膜として有用な錫をドー
ピングした酸化インジウム膜の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chemical vapor deposition method, and more particularly to a method for manufacturing a tin-doped indium oxide film useful as a transparent conductive film.

【0002】0002

【従来の技術】化学気相成長(Chemical  V
apor  Deposition、CVD)法は、高
性能膜を量産できる方法として広く実用化されている。 酸化インジウム膜の化学気相成長法としては、リヤボヴ
ァ(Ryabova)ら、シン・ソリッド・フィルムズ
(Thin  Solid  Films)92(19
82)327〜332に報告されている。リヤボヴァら
によれば、酸化インジウム膜合成の原料としてインジウ
ムのアセチルアセトナートが適している。
[Prior art] Chemical vapor deposition (Chemical V
The apor deposition (CVD) method has been widely put into practical use as a method for mass-producing high-performance films. As a chemical vapor deposition method of indium oxide film, Ryabova et al., Thin Solid Films 92 (19
82) reported in 327-332. According to Ryabova et al., indium acetylacetonate is suitable as a raw material for synthesizing indium oxide films.

【0003】0003

【発明が解決しようとする課題】しかし、薄膜合成時の
錫の微量添加のみでは膜の低抵抗化が達成されず、リヤ
ボヴァらは成膜後10−2Torrの真空下400℃で
30〜45minアニーリングを行なうことによりを低
抵抗化を図っている。本発明は上記難点に鑑みてなされ
たものであり、その目的とするところは、アニーリング
を行なうことなく、薄膜合成時のドーピングのみで、高
い透明導電性を示す透明導電性薄膜を容易に合成し得る
新たな化学気相成長法の提供にある。
[Problems to be Solved by the Invention] However, it was not possible to reduce the resistance of the film by adding only a small amount of tin during thin film synthesis, and Ryabova et al. By doing this, we aim to lower the resistance. The present invention has been made in view of the above-mentioned difficulties, and its purpose is to easily synthesize a transparent conductive thin film exhibiting high transparent conductivity without annealing and only by doping during thin film synthesis. The objective is to provide a new chemical vapor deposition method for obtaining

【0004】0004

【課題を解決するための手段】インジウムのβジケトン
を酸化インジウムの原料、錫のβジケトン、例えば、錫
のβジケトンがビスアセチルアセトナート錫またはビス
アセチルアセトナート錫を錫のドーピング剤として用い
、反応ガスとして、例えば、酸素または空気を原料ガス
に加えることにより、被処理物表面に錫をドーピングし
た酸化インジウム膜を成長させることを特徴とする化学
気相成長方法。
[Means for Solving the Problems] A β diketone of indium is used as a raw material for indium oxide, a β diketone of tin, for example, a β diketone of tin is used as a tin bisacetylacetonate or a tin bisacetylacetonate as a doping agent for tin; A chemical vapor deposition method characterized in that a tin-doped indium oxide film is grown on the surface of a workpiece by adding, for example, oxygen or air to a source gas as a reactive gas.

【0005】[0005]

【作用】本発明方法によるときは、取り扱い上も安全な
原料を用いて、少ない工程で、アニーリングを行なって
得られるものより優れた高性能透明導電性膜を容易にに
成長させることができる。
[Operation] When the method of the present invention is used, a high-performance transparent conductive film superior to that obtained by annealing can be easily grown using raw materials that are safe to handle and in a small number of steps.

【実施例】以下、本発明の実施例について説明する。図
1に成膜装置の模式図を示す。原料としてアセチルアセ
トナートインジウムを用い、これを180〜190℃に
保った気化器内で気化した。錫源としてビスアセチルア
セトナート錫を用いた。これを気化器内の80℃に保た
れた気化室内で気化し、窒素ガスをキャリアガスとして
これを気化器内に導入した。反応ガスとして酸素ガス(
流量200cm3/min)を用い、これを気化器内に
導入した。全キャリア流量一定(750cm3/min
)のもとで錫源のキャリア流量と温度を変化させること
により、錫のドーピング量を広く(Sn/In=0〜0
.4)変化させた。基板として、硼珪酸ガラスとシリコ
ン単結晶を用いた。反応温度350〜500℃で反応さ
せたところ、錫をドーピングしたIn2O3薄膜が得ら
れた。図2に合成された薄膜のX線回折パターンの1例
を示す。図3に合成された膜厚215nmの薄膜の光透
過率を光の波長に対して示す。膜の可視光透過率は80
%以上であった。この膜の抵抗率は1.8×10−4Ω
・cmであった。図4に合成された薄膜の抵抗率、キャ
リア濃度、移動度を膜の原子比Sn/Inに対して示す
。以上本発明につき好適な実施例を挙げて種々説明した
が、本発明はこの実施例に限定されるものではなく、発
明の精神を逸脱しない範囲内で多くの改変を施し得るの
はもちろんのことである。
[Examples] Examples of the present invention will be described below. FIG. 1 shows a schematic diagram of the film forming apparatus. Indium acetylacetonate was used as a raw material and was vaporized in a vaporizer maintained at 180 to 190°C. Tin bisacetylacetonate was used as the tin source. This was vaporized in a vaporization chamber maintained at 80° C. inside the vaporizer, and introduced into the vaporizer using nitrogen gas as a carrier gas. Oxygen gas (
This was introduced into the vaporizer using a flow rate of 200 cm3/min). Total carrier flow rate constant (750cm3/min
) by changing the carrier flow rate and temperature of the tin source, the tin doping amount can be varied widely (Sn/In=0~0
.. 4) Changed. Borosilicate glass and silicon single crystal were used as the substrate. When the reaction was carried out at a reaction temperature of 350 to 500°C, a tin-doped In2O3 thin film was obtained. FIG. 2 shows an example of the X-ray diffraction pattern of the synthesized thin film. FIG. 3 shows the light transmittance of the synthesized thin film with a thickness of 215 nm versus the wavelength of light. The visible light transmittance of the film is 80
% or more. The resistivity of this film is 1.8×10-4Ω
・It was cm. FIG. 4 shows the resistivity, carrier concentration, and mobility of the synthesized thin film with respect to the atomic ratio Sn/In of the film. Although the present invention has been variously explained above with reference to preferred embodiments, the present invention is not limited to these embodiments, and it goes without saying that many modifications can be made without departing from the spirit of the invention. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】装置の概略図である。FIG. 1 is a schematic diagram of the device.

【図2】合成された薄膜のX線回折パターンの1例を示
す図である。
FIG. 2 is a diagram showing an example of an X-ray diffraction pattern of a synthesized thin film.

【図3】合成された薄膜の光の透過率を光の波長に対し
て示した図である。
FIG. 3 is a diagram showing the light transmittance of a synthesized thin film versus the wavelength of light.

【図4】合成された薄膜の抵抗率、キャリア濃度、移動
度を膜の原子比Sn/Inに対して示した図である。
FIG. 4 is a diagram showing the resistivity, carrier concentration, and mobility of a synthesized thin film with respect to the atomic ratio Sn/In of the film.

【符号の説明】[Explanation of symbols]

1  キャリアガスボンベ 2  反応ガスボンベ 3  ガス流量制御器 4  温度検出器 5  気化器 6  錫原料 7  インジウム原料 8  反応器 9  ヒーター 10  被処理物 1 Carrier gas cylinder 2 Reaction gas cylinder 3 Gas flow controller 4 Temperature detector 5. Vaporizer 6. Tin raw material 7 Indium raw material 8 Reactor 9 Heater 10 Object to be treated

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  インジウムのβジケトンを酸化インジ
ウムの原料、錫のβジケトンを錫のドーピング剤として
用い、反応ガスを原料ガスに加えることにより、被処理
物表面に錫をドーピングした酸化インジウム膜を成長さ
せることを特徴とする化学気相成長方法。
Claim 1: By using β-diketone of indium as a raw material for indium oxide, β-diketone of tin as a doping agent for tin, and adding a reactive gas to the raw material gas, an indium oxide film doped with tin is formed on the surface of a workpiece. A chemical vapor deposition method characterized by growing.
【請求項2】  錫のβジケトンがビスアセチルアセト
ナート錫またはビスアセチルアセトナート錫の誘導体で
ある特許請求範囲第1項記載の化学気相成長方法。
2. The chemical vapor deposition method according to claim 1, wherein the β diketone of tin is tin bisacetylacetonate or a derivative of tin bisacetylacetonate.
【請求項3】  反応ガスが酸素または空気である特許
請求範囲第1項記載の化学気相成長方法。
3. The chemical vapor deposition method according to claim 1, wherein the reactive gas is oxygen or air.
JP12065991A 1991-02-28 1991-02-28 Chemical vapor growth method Pending JPH04276078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12065991A JPH04276078A (en) 1991-02-28 1991-02-28 Chemical vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12065991A JPH04276078A (en) 1991-02-28 1991-02-28 Chemical vapor growth method

Publications (1)

Publication Number Publication Date
JPH04276078A true JPH04276078A (en) 1992-10-01

Family

ID=14791718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12065991A Pending JPH04276078A (en) 1991-02-28 1991-02-28 Chemical vapor growth method

Country Status (1)

Country Link
JP (1) JPH04276078A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000065611A1 (en) * 1999-04-22 2000-11-02 Seiko Instruments Inc. Method of forming conducting transparent film, method of repairing wiring connection, and apparatus for forming conducting transparent film
JP2004063195A (en) * 2002-07-26 2004-02-26 Konica Minolta Holdings Inc Article with transparent conductive thin film, its manufacturing method, and thin film forming device
JP2015506416A (en) * 2012-01-27 2015-03-02 ユーピー ケミカル カンパニー リミテッド Oxide film containing indium and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000065611A1 (en) * 1999-04-22 2000-11-02 Seiko Instruments Inc. Method of forming conducting transparent film, method of repairing wiring connection, and apparatus for forming conducting transparent film
JP2004063195A (en) * 2002-07-26 2004-02-26 Konica Minolta Holdings Inc Article with transparent conductive thin film, its manufacturing method, and thin film forming device
JP2015506416A (en) * 2012-01-27 2015-03-02 ユーピー ケミカル カンパニー リミテッド Oxide film containing indium and method for producing the same
US9431144B2 (en) 2012-01-27 2016-08-30 Up Chemical Co., Ltd. Indium-containing oxide film and preparing method thereof

Similar Documents

Publication Publication Date Title
Kane et al. Chemical vapor deposition of transparent electrically conducting layers of indium oxide doped with tin
Aarik et al. Texture development in nanocrystalline hafnium dioxide thin films grown by atomic layer deposition
Roy et al. Synthesis and optical characterization of pure and Cu doped SnO2 thin films deposited by spray pyrolysis
CN109824098A (en) A kind of Transition-metal dichalcogenide film and its preparation method and application
Ataev et al. Thermally stable, highly conductive, and transparent ZnO layers prepared in situ by chemical vapor deposition
KR20090057067A (en) Method of making low resistivity doped zinc oxide coatings and the articles formed thereby
RU2447030C2 (en) Method of making glass article with doped zinc oxide coating, having low resistivity, and coated glass article made using said method
Gritsenko et al. Effect of thermal annealing on properties of polycrystalline ZnO thin films
Suh et al. Atmospheric-pressure chemical vapor deposition of fluorine-doped tin oxide thin films
Johnson et al. Atmospheric pressure plasma enhanced chemical vapor deposition of zinc oxide and aluminum zinc oxide
Colibaba Sintering highly conductive ZnO: HCl ceramics by means of chemical vapor transport reactions
Lee et al. Effects of the deposition condition on the microstructure and properties of ZnO thin films deposited by metal organic chemical vapor deposition with ultrasonic nebulization
US7736698B2 (en) Method of depositing zinc oxide coatings on a substrate
CN109368605B (en) Preparation method of tellurium nanowire material, tellurium nanowire material and device
Nomura et al. Sulfur‐Doped Indium Oxide Thin Films as a New Transparent and Conductive Layer Prepared by OMCVD Process Using Butylindium Thiolate.
Watanabe et al. KrF laser CVD of titanium oxide from titanium tetraisopropoxide
Chergui et al. Atmospheric pressure metal-organic chemical vapor deposition (AP-MOCVD) growth of undoped and aluminium-doped ZnO thin film using hot wall reactor
Aper et al. Morphological and structural transformations of indium oxide nanostructures in ammonia growth ambient by atmospheric chemical vapor deposition
JPH04276078A (en) Chemical vapor growth method
Atabaev et al. Growth of ITO films by modified chemical vapor deposition method
Shanov et al. Laser chemical vapour deposition of thin aluminium coatings
LI et al. Effects of heat treatment on morphological, optical and electrical properties of ITO films by sol-gel technique
CN1400331A (en) Method for growing ZnO film by solid source chemical gas-phase deposition
CN1542916A (en) Method for preparing p type crystal film
Shanmugan et al. Rhombohedral In 2 O 3 thin films preparation from in metal film using Oxygen plasma