JPH04274781A - Highly sensitive detector of magnetic field - Google Patents

Highly sensitive detector of magnetic field

Info

Publication number
JPH04274781A
JPH04274781A JP3036356A JP3635691A JPH04274781A JP H04274781 A JPH04274781 A JP H04274781A JP 3036356 A JP3036356 A JP 3036356A JP 3635691 A JP3635691 A JP 3635691A JP H04274781 A JPH04274781 A JP H04274781A
Authority
JP
Japan
Prior art keywords
primary coil
electromagnetic wave
coil
wave shielding
secondary coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3036356A
Other languages
Japanese (ja)
Inventor
Tokuo Chiba
徳男 千葉
Nobuhiro Shimizu
信宏 清水
Satoru Nakayama
哲 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP3036356A priority Critical patent/JPH04274781A/en
Publication of JPH04274781A publication Critical patent/JPH04274781A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent transmission of high-frequency noise to SQUID from outside. CONSTITUTION:An electromagnetic wave shielding film 3 is disposed on a primary coil 1 so that it covers the whole of the primary coil, and further a secondary coil is disposed on the electromagnetic wave shielding film 3. The electromagnetic wave shielding film 3 is connected to the ground. The primary coil 1 and the secondary coil 2 are formed of superconducting thin films, while the electromagnetic wave shielding film 3 is formed of a thin film having excellent conductivity. High-frequency noise falling on the secondary coil side from outside is can be led to the ground by the electromagnetic wave shielding film 3 formed between the primary coil 1 and the secondary coil 2 and the noise is not transmitted to SQUID 4 on the primary coil side. Therefore, the sensitivity can be improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は高感度磁気センサ、電
流計、変位計、または高周波信号増幅器などに応用する
直流駆動型超伝導量子干渉素子( DC  Super
conducting  QuantumInterf
erence Device : DC SQUIDと
略す) に関するものである。
[Industrial Application Field] This invention is a direct current-driven superconducting quantum interference device (DC Super) that is applied to high-sensitivity magnetic sensors, ammeters, displacement meters, high-frequency signal amplifiers, etc.
conducting QuantumInterf
erence Device (abbreviated as DC SQUID).

【0002】0002

【従来の技術】DC SQUIDは高感度磁気センサ、
電流計、変位計、または高周波信号増幅器などに応用さ
れる超伝導素子である。検出コイルで検出された磁場信
号は信号電流として入力コイルに伝達され、信号磁束と
してワッシャーコイルに入力される。ワッシャーコイル
に伝達された信号磁束は2つのジョセフソン素子によっ
て信号電圧に変換され、トランスを介して増幅およびイ
ンピーダンス変換され外部制御回路へ伝送される。
[Prior art] DC SQUID is a highly sensitive magnetic sensor,
A superconducting element used in ammeters, displacement meters, high-frequency signal amplifiers, etc. The magnetic field signal detected by the detection coil is transmitted to the input coil as a signal current, and is input to the washer coil as a signal magnetic flux. The signal magnetic flux transmitted to the washer coil is converted into a signal voltage by two Josephson elements, amplified and impedance-converted via a transformer, and transmitted to an external control circuit.

【0003】図2は従来の超伝導薄膜トランスの構成を
示す図である。1は1次コイル、2は2次コイルである
。従来の超伝導薄膜トランスは、1次コイル1と2次コ
イル2は層間絶縁膜を介して形成され、1次コイル1と
2次コイル2間に電磁波遮蔽手段を有していなかった。
FIG. 2 is a diagram showing the structure of a conventional superconducting thin film transformer. 1 is a primary coil, and 2 is a secondary coil. In the conventional superconducting thin film transformer, the primary coil 1 and the secondary coil 2 are formed with an interlayer insulating film interposed therebetween, and there is no electromagnetic shielding means between the primary coil 1 and the secondary coil 2.

【0004】0004

【発明が解決しようとする課題】超伝導薄膜トランスは
1次コイルと2次コイル間に浮遊容量を有する。従来の
超伝導薄膜トランスは、1次コイルと2次コイル間に電
磁波遮蔽手段を有していなかったため、2次コイル側へ
の高周波電磁波雑音が浮遊容量を介して1次コイル側の
SQUID4に伝達される。
SUMMARY OF THE INVENTION A superconducting thin film transformer has stray capacitance between the primary coil and the secondary coil. Conventional superconducting thin film transformers did not have electromagnetic wave shielding means between the primary coil and the secondary coil, so high-frequency electromagnetic wave noise on the secondary coil side was transmitted to the SQUID4 on the primary coil side via stray capacitance. be done.

【0005】高周波雑音はSQUIDの特性を悪化させ
、磁場測定器の感度が低下する問題があった。そこで、
この発明の目的は従来のこのような課題を解決するため
SQUIDに高周波雑音が伝送されない超伝導薄膜トラ
ンスを得ることである。
[0005] High frequency noise deteriorates the characteristics of the SQUID, and there is a problem in that the sensitivity of the magnetic field measuring device decreases. Therefore,
The purpose of the present invention is to obtain a superconducting thin film transformer in which high frequency noise is not transmitted to the SQUID in order to solve the above-mentioned conventional problems.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、この発明は超伝導薄膜トランスにおいて、1次コイ
ルと2次コイルの間にアース電位の導電性の良い薄膜を
配置することにより、電磁波を遮蔽して、1次コイルと
2次コイルの間で電磁波が伝送されないようにした。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a superconducting thin film transformer by arranging a highly conductive thin film at ground potential between the primary coil and the secondary coil. Electromagnetic waves are shielded to prevent them from being transmitted between the primary and secondary coils.

【0007】[0007]

【作用】上記のように構成された超伝導薄膜トランスに
おいては、1次コイルと2次コイルの間のアース電位の
導電性の良い薄膜は電磁波を遮蔽する作用を有するため
、1次コイルと2次コイルの間で電磁波が伝送されない
ことになる。
[Function] In the superconducting thin film transformer configured as described above, the thin film with good conductivity at ground potential between the primary coil and the secondary coil has the effect of shielding electromagnetic waves. Electromagnetic waves will not be transmitted between the next coils.

【0008】[0008]

【実施例】以下に本発明の実施例について図面を参照し
て説明する。図1は本発明の実施例を示す超伝導薄膜ト
ランスの構成を示す図である。1は1次コイル、2は2
次コイル、3は電磁波遮蔽膜、4はSQUID、5は外
部制御回路である。1次コイル1上に電磁波遮蔽膜3が
1次コイル1全体を覆うように配置され、さらに電磁波
遮蔽膜3上に2次コイルが配置された構造を示している
。1次コイル電磁波遮蔽膜3はアースに接続されている
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing the configuration of a superconducting thin film transformer showing an embodiment of the present invention. 1 is the primary coil, 2 is the 2
The next coil, 3 is an electromagnetic wave shielding film, 4 is a SQUID, and 5 is an external control circuit. A structure is shown in which an electromagnetic wave shielding film 3 is placed on the primary coil 1 so as to cover the entire primary coil 1, and a secondary coil is further placed on the electromagnetic wave shielding film 3. The primary coil electromagnetic wave shielding film 3 is connected to ground.

【0009】1次コイル1および2次コイル2の材料と
しては、例えばニオブ(Nb)、窒化ニオブ(NbN)
、鉛(Pb)、鉛インジウム(Pb−In)合金などの
超伝導材料が用いられるが、他の超伝導材料を用いても
良い。電磁波遮蔽膜3の材料としては、例えば銅(Cu
)、アルミニウム(Al)などの導電性の良い材料が用
いられる。図1に示した構成の超伝導薄膜トランスは、
半導体の製造プロセスなどで公知の薄膜プロセスを用い
容易に製造することができる。例えば、1次コイル膜堆
積、1次コイルパターニング、層間絶縁膜堆積、電磁波
遮蔽膜堆積、電磁波遮蔽膜パターニング、2次コイル膜
堆積、2次コイルパターニングの工程を用いて製造する
ことができる。
Materials for the primary coil 1 and the secondary coil 2 include, for example, niobium (Nb) and niobium nitride (NbN).
, lead (Pb), lead-indium (Pb-In) alloy, and other superconducting materials are used, but other superconducting materials may also be used. As a material for the electromagnetic wave shielding film 3, for example, copper (Cu
), aluminum (Al), and other materials with good conductivity are used. The superconducting thin film transformer with the configuration shown in Figure 1 is
It can be easily manufactured using a thin film process known in the semiconductor manufacturing process. For example, it can be manufactured using the steps of primary coil film deposition, primary coil patterning, interlayer insulating film deposition, electromagnetic shielding film deposition, electromagnetic shielding film patterning, secondary coil film deposition, and secondary coil patterning.

【0010】上記のような構成の超伝導薄膜トランスに
よれば、SQUIDからの信号電圧は1次コイル1から
2次コイル2に伝達されるが、外部制御回路5からの高
周波電磁波雑音は電磁波遮蔽膜3によって遮蔽され、2
次コイル2から1次コイル1には伝達されず、SQUI
Dの特性を悪化させることなく、磁場測定器の感度を向
上させることができる。
According to the superconducting thin film transformer configured as described above, the signal voltage from the SQUID is transmitted from the primary coil 1 to the secondary coil 2, but the high frequency electromagnetic noise from the external control circuit 5 is shielded from the electromagnetic wave. shielded by membrane 3, 2
SQUI is not transmitted from the secondary coil 2 to the primary coil 1.
The sensitivity of the magnetic field measuring device can be improved without deteriorating the characteristics of D.

【0011】図1に示した実施例において、1次コイル
1と2次コイル2の形成層を入れ換えても、電磁波遮蔽
膜3は電磁波を遮蔽する作用を有し、その作用及び効果
は前の実施例と変わるところはない。
In the embodiment shown in FIG. 1, even if the formation layers of the primary coil 1 and the secondary coil 2 are exchanged, the electromagnetic wave shielding film 3 still has the function of shielding electromagnetic waves, and its function and effect are the same as those of the previous one. There is no difference from the embodiment.

【0012】0012

【発明の効果】以上説明したように本発明によれば、超
伝導薄膜トランスにおいて電磁波雑音を電磁波遮蔽膜で
遮蔽し、SQUIDへ伝達される電磁波雑音を減少させ
、信号雑音の減少やSQUIDの素子特性悪化の防止が
可能となり、感度を向上させることができる。
As explained above, according to the present invention, electromagnetic wave noise is shielded by an electromagnetic wave shielding film in a superconducting thin film transformer, and the electromagnetic wave noise transmitted to the SQUID is reduced, and signal noise is reduced and the SQUID element is It is possible to prevent deterioration of characteristics and improve sensitivity.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1実施例を示す超伝導薄膜トランス
の構造を示した図である。
FIG. 1 is a diagram showing the structure of a superconducting thin film transformer showing a first embodiment of the present invention.

【図2】従来例を示す超伝導薄膜トランスの構造を示し
た図である。
FIG. 2 is a diagram showing the structure of a conventional superconducting thin film transformer.

【符号の説明】 1  1次コイル 2  2次コイル 3  電磁波遮蔽膜 4  SQUID 5  外部制御回路[Explanation of symbols] 1 Primary coil 2 Secondary coil 3 Electromagnetic wave shielding film 4 SQUID 5 External control circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  磁場を検出し信号電流とする検出コイ
ルと、前記信号電流を信号電圧に変換するジョセフソン
素子と、前記信号電圧を増幅しインピーダンス変換を行
うトランスとを備えた超伝導量子干渉素子において、前
記トランスが1次コイルと2次コイル間に電磁波遮蔽手
段を有する超伝導薄膜トランスで構成されることを特徴
とする高感度磁場検出器。
1. A superconducting quantum interference device comprising: a detection coil that detects a magnetic field and converts it into a signal current; a Josephson element that converts the signal current into a signal voltage; and a transformer that amplifies the signal voltage and converts impedance. A highly sensitive magnetic field detector, characterized in that the transformer is a superconducting thin film transformer having electromagnetic shielding means between a primary coil and a secondary coil.
JP3036356A 1991-03-01 1991-03-01 Highly sensitive detector of magnetic field Pending JPH04274781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3036356A JPH04274781A (en) 1991-03-01 1991-03-01 Highly sensitive detector of magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3036356A JPH04274781A (en) 1991-03-01 1991-03-01 Highly sensitive detector of magnetic field

Publications (1)

Publication Number Publication Date
JPH04274781A true JPH04274781A (en) 1992-09-30

Family

ID=12467554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3036356A Pending JPH04274781A (en) 1991-03-01 1991-03-01 Highly sensitive detector of magnetic field

Country Status (1)

Country Link
JP (1) JPH04274781A (en)

Similar Documents

Publication Publication Date Title
EP0545948B1 (en) High symmetry dc squid system
US6169397B1 (en) Damped superconducting coil system having a multiturn, planar geometry superconducting coil and shunt resistors electrically connecting successive coil turns
US6362617B1 (en) Wideband, high dynamic range antenna
US4866378A (en) Displacement transducer with opposed coils for improved linearity and temperature compensation
US5173660A (en) Packaged squid system with integral superconducting shielding layer
EP0591641B1 (en) DC superconducting quantum interference device
US4924184A (en) Magnetic resonance apparatus
US5218297A (en) Superconductive quantum interference device in high temperature environments having reduced inductance and improved thermal noise response
US7365534B2 (en) Apparatus for measuring magnetic fields using a superconducting quantum interference device
US6154026A (en) Asymmetric planar gradiometer for rejection of uniform ambient magnetic noise
US5488382A (en) Low noise amplifier
US3898565A (en) Magnetic wave communication system
Mezzena et al. Sensitivity enhancement of Quantum Design dc superconducting quantum interference devices in two-stage configuration
US3546580A (en) Magnetic field variometer using a low noise amplifier and a coil-core arrangement of minimum weight and maximum sensitivity
JPH04274781A (en) Highly sensitive detector of magnetic field
US3551706A (en) Hall effect device configurations for extended frequency range
US6285186B1 (en) Superconducting quantum interference device having bias wiring layer
Lee et al. Double relaxation oscillation SQUID with reference junction for biomagnetic multichannel applications
US5596273A (en) Highly sensitive magnetic field detector using low-noise DC SQUID
Koshelets et al. DC SQUID preamplifier for DC-SQUID magnetometer
US6323645B1 (en) Superconducting quantum interference device
JP3062959B2 (en) High sensitivity magnetic field detector
JPH0743441A (en) Superconducting magnetic sensor
JP2592965Y2 (en) Superconducting detection coil
Jin et al. 35/spl planck/two-stage SQUID system for gravity wave detection