JPH04274503A - Method for controlling parallel spring mechanism - Google Patents

Method for controlling parallel spring mechanism

Info

Publication number
JPH04274503A
JPH04274503A JP5816491A JP5816491A JPH04274503A JP H04274503 A JPH04274503 A JP H04274503A JP 5816491 A JP5816491 A JP 5816491A JP 5816491 A JP5816491 A JP 5816491A JP H04274503 A JPH04274503 A JP H04274503A
Authority
JP
Japan
Prior art keywords
parallel
spring mechanism
fixed end
parallel spring
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5816491A
Other languages
Japanese (ja)
Inventor
Akira Shimokawabe
明 下河辺
Hironari Seki
宏也 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP5816491A priority Critical patent/JPH04274503A/en
Publication of JPH04274503A publication Critical patent/JPH04274503A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/34Relative movement obtained by use of deformable elements, e.g. piezoelectric, magnetostrictive, elastic or thermally-dilatable elements
    • B23Q1/36Springs

Abstract

PURPOSE:To widen the servo zone of a parallel spring mechanism by utilizing a piezo-electric element by controlling the ratio between voltages applied across each piezo-electric element so that the input coefficient given by a specific equation can become zero. CONSTITUTION:A parallel spring mechanism which makes a traveling object 30 to make parallel displacement by bending two beams 20 respectively composed of plural piezo-electric elements 1 in S-shapes by applying voltages across each element 1 is constituted by fixing the two beams 20 composed of the elements 1 on both sides of a fixed end 10 and fixing the object 30 to the leading end of each beam in parallel with the fixed end 10. The ratio rj between the voltages applied across each element 1 is controlled so that the input coefficient bi in the formula can become zero. The ratio rj is the ratio of the voltage applied across the element 1 on the fixed end side to the voltage applied across the other element 1. The aj and phii (x) of the formula respectively represent the moment-voltage coefficient and the form factor of the i-th mode. Therefore, the control method of a parallel spring mechanism for piezo-electric bimorph driving which can widen a servo zone and can be used as a servo mechanism for various fields is realized.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、平行バネ機構の制御方
法に関するものであり、詳しくは、圧電素子駆動平行バ
ネ機構の広サーボ帯域化を可能とした制御方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control method for a parallel spring mechanism, and more particularly to a control method that enables a piezoelectric element-driven parallel spring mechanism to have a wide servo band.

【0002】0002

【従来の技術】サーボ機構は、物体の位置、方位、姿勢
などを制御量とし、目標値の任意の変化に追従するよう
に構成された制御系である。上記のサーボ機構において
は、微小変位装置が必要であり、そして、例えば、ディ
スク装置のヘッドなどにおいては、約4KHzまでのサ
ーボ帯域が要求され、通常は、ボイスコイル駆動型の平
行バネ機構が使用されている。
2. Description of the Related Art A servo mechanism is a control system that uses the position, orientation, posture, etc. of an object as control variables and is configured to follow any change in a target value. The above servo mechanism requires a minute displacement device, and for example, a servo band of up to about 4 KHz is required for the head of a disk device, and a voice coil-driven parallel spring mechanism is usually used. has been done.

【0003】特開昭61−209846号公報には、固
定端の両側に複数個の圧電素子から成る2本の梁を平行
に固定し、各梁の先端には前記固定端と平行させて移動
体を固設し、各圧電素子に印加する電圧により、前記各
梁をS字状に撓ませて前記移動体を平行移動させる平行
バネ機構が提案されている。
[0003] Japanese Patent Laid-Open No. 61-209846 discloses that two beams each consisting of a plurality of piezoelectric elements are fixed in parallel on both sides of a fixed end, and the tip of each beam is moved parallel to the fixed end. A parallel spring mechanism has been proposed in which the movable body is moved in parallel by a fixed body and a voltage applied to each piezoelectric element to bend each of the beams in an S-shape.

【0004】上記の圧電素子を利用した平行バネ機構は
、バネとアクチュエータとが一体化されてバックラッシ
が生じないため、高精度の位置決めができ、また、摩擦
が小さく、構造が簡単という利点を有する。
[0004] The above-mentioned parallel spring mechanism using a piezoelectric element has the advantage of high precision positioning because the spring and actuator are integrated and no backlash occurs, low friction, and simple structure. .

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
圧電素子を利用した平行バネ機構は、広サーボ帯域での
使用においては、高次の振動モードが励起され易くフィ
ードバック制御系の設計が困難である。本発明は、上記
実情に鑑みなされたものであり、その目的は、圧電素子
を利用した平行バネ機構の広サーボ帯域化を可能とした
平行バネ機構の制御方法を提供することにある。
[Problems to be Solved by the Invention] However, when using the above-mentioned parallel spring mechanism using piezoelectric elements in a wide servo band, high-order vibration modes are likely to be excited, making it difficult to design a feedback control system. . The present invention has been made in view of the above circumstances, and an object thereof is to provide a control method for a parallel spring mechanism that makes it possible to widen the servo band of the parallel spring mechanism using piezoelectric elements.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明の要旨
は、固定端の両側に複数の圧電素子から成る2本の梁を
平行に固定し、各梁の先端には前記固定端と平行させて
移動体を固設し、各圧電素子に印加する電圧により、前
記各梁をS字状に撓ませて前記移動体を平行移動させる
平行バネ機構において、特許請求の範囲第1項に記載の
数式〔数1〕における入力係数bi が零となるように
、各圧電素子の印加電圧比rj (固定端近接側の圧電
素子の印加電圧に対する他の圧電素子の印加電圧比)を
制御することを特徴とする平行バネ機構の制御方法に存
する。
[Means for Solving the Problems] That is, the gist of the present invention is to fix two beams made of a plurality of piezoelectric elements in parallel on both sides of a fixed end, and to attach a tip of each beam parallel to the fixed end. A parallel spring mechanism in which a movable body is fixedly mounted, and a voltage applied to each piezoelectric element causes each beam to bend in an S-shape to move the movable body in parallel, according to claim 1. The applied voltage ratio rj of each piezoelectric element (the ratio of the applied voltage of other piezoelectric elements to the applied voltage of the piezoelectric element on the side near the fixed end) is controlled so that the input coefficient bi in the mathematical formula [Equation 1] becomes zero. The present invention is characterized by a method of controlling a parallel spring mechanism.

【0007】以下、本発明を添付図面を参照して詳細に
説明する。図1及び図2は、本発明の制御方法の対象と
なる平行バネ機構の概念的説明図であり、図1は静止状
態、図2は駆動状態を示す。上記の平行バネ機構は、基
本的には、従来公知のものと同様であり、固定端(10
)の両側に複数個の圧電素子(1)(図示の例では2個
)から成る2本の梁(20)、(20)を平行に固定し
、各梁の先端には前記固定端と平行させて移動体(30
)を固設して構成される。
[0007] The present invention will now be described in detail with reference to the accompanying drawings. 1 and 2 are conceptual explanatory diagrams of a parallel spring mechanism that is a target of the control method of the present invention, with FIG. 1 showing a stationary state and FIG. 2 showing a driving state. The above parallel spring mechanism is basically the same as the conventionally known one, and the fixed end (10
), two beams (20), (20) each consisting of a plurality of piezoelectric elements (1) (two in the illustrated example) are fixed in parallel, and the tip of each beam is parallel to the fixed end. Let me move the object (30
) is fixedly installed.

【0008】圧電素子(1)は、シム材(2)と圧電体
(3)とを積層接合し、該圧電体の表面に電極(4)を
形成して構成される。シム材(2)は、金属薄板、例え
ば、リン青銅薄板にて構成される。圧電体(3)は、厚
さ0.1〜3mmの薄板状として使用され、チタン酸バ
リウム、チタン酸鉛、チタン酸・ジルコン酸鉛などのセ
ラミックス系またはフッ化ビニリデンと三フッ化ビニリ
デンとの共重合物、ポリフッ化ビニリデンなどの有機系
のいずれであってもよい。電極(4)は、圧電体(3)
の両面に、金属の蒸着、箔の接着または金属系塗布剤の
塗布等により膜状電極として形成される。この膜状電極
には電圧を印加する導線(図示せず)が取り付けられる
The piezoelectric element (1) is constructed by laminating and bonding a shim material (2) and a piezoelectric body (3), and forming an electrode (4) on the surface of the piezoelectric body. The shim material (2) is made of a metal thin plate, for example, a phosphor bronze thin plate. The piezoelectric body (3) is used in the form of a thin plate with a thickness of 0.1 to 3 mm, and is made of ceramics such as barium titanate, lead titanate, lead titanate/lead zirconate, or vinylidene fluoride and vinylidene trifluoride. It may be a copolymer or an organic material such as polyvinylidene fluoride. The electrode (4) is a piezoelectric material (3)
A film-like electrode is formed on both sides of the electrode by metal vapor deposition, foil adhesion, or application of a metal-based coating agent. A conducting wire (not shown) for applying voltage is attached to this membrane electrode.

【0009】圧電素子(1)は、通常、図示した例のよ
うに、シム材(2)の両面に圧電体(3)を積層した複
層型(バイモルフ)が使用されるが、シム材(2)の片
面に圧電体(3)を積層接合した単層型(ユニモルフ)
であってもよい。
As shown in the example shown in the figure, the piezoelectric element (1) is normally a multilayer type (bimorph) in which the piezoelectric material (3) is laminated on both sides of a shim material (2). Single-layer type (unimorph) in which piezoelectric material (3) is laminated and bonded to one side of 2).
It may be.

【0010】圧電素子(1)がバイモルフ型の場合は、
2枚の圧電体(3)、(3)のそれぞれには、その分極
処理方向と逆方向または同方向の電圧が印加され、これ
により、図中、矢示したように、一方の圧電体(3)は
伸長し、他方の圧電体(3)は収縮し、圧電素子(1)
は撓みを生じる。
When the piezoelectric element (1) is of bimorph type,
A voltage in the opposite direction or the same direction as the polarization direction is applied to each of the two piezoelectric bodies (3), (3), and as a result, as indicated by the arrow in the figure, one piezoelectric body ( 3) expands, the other piezoelectric body (3) contracts, and the piezoelectric element (1)
causes deflection.

【0011】従って、圧電素子(1)がバイモルフ型の
場合は、その撓み方向が交互に異なるように、各圧電素
子(1)を配置して梁(20)を構成することにより、
梁(20)をS字状に撓ませることができる。
[0011] Therefore, when the piezoelectric elements (1) are of the bimorph type, the beams (20) are constructed by arranging the piezoelectric elements (1) so that their deflection directions are alternately different.
The beam (20) can be bent into an S-shape.

【0012】また、圧電素子(1)がユニモルフ型の場
合も、上記と同様の原理で梁(20)をS字状に撓ませ
ることができる。
[0012] Also, when the piezoelectric element (1) is of a unimorph type, the beam (20) can be bent in an S-shape using the same principle as described above.

【0013】平行に配置された2本の梁(20)、(2
0)は、互いに同一の撓み状態を発揮するように構成さ
れ、その結果、固定端と平行させて各梁の先端に固設さ
れた移動体は、各梁のS字状の撓みに伴って平行移動さ
せられる。そして、圧電素子に印加する電圧の大きさに
より、各梁の撓み量が制御される。
Two beams (20), (2
0) are configured to exhibit the same deflection state, and as a result, the movable body fixed at the tip of each beam in parallel with the fixed end will bend in the S-shape of each beam. Moved in parallel. The amount of deflection of each beam is controlled by the magnitude of the voltage applied to the piezoelectric element.

【0014】本発明の特徴は、上記のように構成される
平行バネ機構において、特許請求の範囲第1項記載の数
式〔数1〕における入力係数bi が零となるように、
各圧電素子の印加電圧比rj (固定端近接側の圧電素
子の印加電圧に対する他の圧電素子の印加電圧比)を制
御する点にある。
A feature of the present invention is that in the parallel spring mechanism configured as described above, the input coefficient bi in the equation [Equation 1] set forth in claim 1 is zero.
The point is that the applied voltage ratio rj of each piezoelectric element (the applied voltage ratio of other piezoelectric elements to the applied voltage of the piezoelectric element near the fixed end) is controlled.

【0015】そして、上記の数式〔数1〕は、2本の梁
(2)をバネと考え、各バネの寸法および物性値は等し
く、また、電極の位置および大きさも等しいとし、次の
ようにして導出されたものである。
[0015] The above mathematical formula [Equation 1] assumes that the two beams (2) are springs, that the dimensions and physical properties of each spring are equal, and that the positions and sizes of the electrodes are also equal. It was derived as follows.

【0016】バネの横振動の運動方程式は下記の数式〔
数2〕の通りである。
The equation of motion of the lateral vibration of the spring is expressed by the following formula [
Equation 2] is as follows.

【0017】[0017]

【数2】[Math 2]

【0018】(上記の数式中、EIは曲げ剛性、ρは密
度、Aは断面積、P(x,t)は電圧印加によって圧電
素子が発生する分布外力を表す)
(In the above formula, EI is the bending rigidity, ρ is the density, A is the cross-sectional area, and P(x, t) represents the distributed external force generated by the piezoelectric element by voltage application.)

【0019】そして、平行バネの場合の境界条件は下記
の数式〔数3〕の通りである。
The boundary condition in the case of parallel springs is as shown in the following equation [Equation 3].

【0020】[0020]

【数3】[Math 3]

【0021】(上記の数式中、mは移動体の1/2の質
量を表す)
(In the above formula, m represents 1/2 the mass of the moving body)

【0022】一方、上記の数式〔数2〕の分布外力P(
x,t)は、幅が一定なn組の電極の場合は下記の数式
〔数4〕の通りである。
On the other hand, the distributed external force P(
x, t) is as shown in the following formula [Equation 4] in the case of n sets of electrodes having a constant width.

【0023】[0023]

【数4】[Math 4]

【0024】(上記の数式中、δ(xj1)及びδ(x
j2)はディラックのデルタ関数、xj1は電極j の
一端部の位置、xj2は電極j の他端部の位置、rj
 uは圧電素子(電極)j への印加電圧、rj は各
圧電素子への印加電圧比、aj はモーメント−電圧係
数を表す)
(In the above formula, δ(xj1) and δ(x
jj2) is the Dirac delta function, xj1 is the position of one end of electrode j, xj2 is the position of the other end of electrode j, rj
(u is the voltage applied to the piezoelectric element (electrode) j, rj is the voltage ratio applied to each piezoelectric element, and aj is the moment-voltage coefficient)

【0025】基準関数φ(x)を導入してモ
ード展開を行うと入力係数biが下記の数式〔数5〕の
ように求まる。ここに、入力係数bi は入力uがi次
のモードを励起する程度を表す係数である。
When the reference function φ(x) is introduced and mode expansion is performed, the input coefficient bi is determined as shown in the following equation [Equation 5]. Here, the input coefficient bi is a coefficient representing the extent to which the input u excites the i-th mode.

【0026】[0026]

【数5】[Math 5]

【0027】(上記の数式中、φi (x)はi次モー
ドの形状関数を表す) そして、電極jがモードiに与える影響cijは下記の
数式[数6]の通りである。
(In the above formula, φi (x) represents the shape function of the i-th mode.) The influence cij of the electrode j on the mode i is given by the following formula [Equation 6].

【0028】[0028]

【数6】[Math 6]

【0029】前記の数式〔数5〕におけるcijは、上
記数式〔数6〕によって計算で求めることも可能である
が、実験的に求めることが好ましい。実験的に求める方
法は、以下の通りである。
Although cij in the above equation [Equation 5] can be calculated by using the above equation [Equation 6], it is preferable to obtain it experimentally. The method for determining it experimentally is as follows.

【0030】n個の電極のうち、電極1と電極jの2組
の電極のみを用いてi次モードを消去する印加電圧比(
ri1:rij)を実験で求め、これを前記数式〔数5
〕に代入すると下記の数式〔数7〕が求められる。
Among the n electrodes, the applied voltage ratio (
ri1:rij) is determined by experiment, and this is calculated using the above formula [Equation 5
], the following formula [Equation 7] is obtained.

【0031】[0031]

【数7】[Math 7]

【0032】上記の数式〔数7〕と前記の数式〔数5〕
より、i次モードの入力係数bi に関する下記の数式
〔数8〕が得られる。
[0032] The above mathematical formula [Math. 7] and the above mathematical formula [Math. 5]
From this, the following formula [Equation 8] regarding the input coefficient bi of the i-th mode is obtained.

【0033】[0033]

【数8】[Math. 8]

【0034】ここで、消去したいモードをm1,m2,
・・・・mp 次とすれば、前記数式〔数8〕より、こ
れらのモードの入力係数bi に関する下記の数式〔数
9〕が求まる。そして、下記の数式〔数9〕における行
列Ψは、実験により求められる。
[0034] Here, select the mode you want to erase by m1, m2,
. The matrix Ψ in the following formula [Equation 9] is determined by experiment.

【0035】[0035]

【数9】[Math. 9]

【0036】そして、m1,m2,・・・・mp 次の
モードを同時に消去するには、下記の数式〔10〕で表
される条件を与えてやればよい。
In order to simultaneously erase the following modes m1, m2, .

【0037】[0037]

【数10】[Math. 10]

【0038】以上説明したように、本発明における前記
の数式〔数2〕は、直流から数kHzの広帯域まで問題
とするために、バネ部の質量をも考慮して分布質量系と
して扱い、梁の曲げ理論を用いて導出されたものである
As explained above, in order to deal with the problem from direct current to a wide band of several kHz, the above-mentioned mathematical formula [Equation 2] in the present invention is treated as a distributed mass system, taking into consideration the mass of the spring part, and the beam It was derived using the bending theory of

【0039】そして、特許請求の範囲第1項に記載の数
式〔数1〕における入力係数bi の値は、各電極の印
加電圧比rj を調整することにより変えることができ
、bi 値を零にすれば、i次のモードが不可制御にな
り、高次モードを不安定化するおそれがない。しかも、
本発明の制御方法によれば、例えば、バネの固定方法や
電極の形成方法などによって境界条件が曖昧となった場
合でも対応することができる。
The value of the input coefficient bi in the mathematical formula [Equation 1] described in claim 1 can be changed by adjusting the applied voltage ratio rj of each electrode, and the value of bi can be set to zero. Then, there is no risk that the i-th mode will become uncontrollable and the higher-order modes will become unstable. Moreover,
According to the control method of the present invention, it is possible to cope with cases where boundary conditions become ambiguous due to, for example, a method of fixing a spring or a method of forming an electrode.

【0040】[0040]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明は、その要旨を越えない限り、以下の実
施例に限定されるものではない。
EXAMPLES The present invention will be explained in more detail with reference to examples below, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

【0041】実施例1 1つの梁に4個の圧電素子を利用して次の仕様により平
行バネ機構を構成した。 圧電体(PZT系,三菱化成(株)製MPEC1):厚
み0.15mm シム材(りん青銅製):厚み0.1mm固定端と移動体
の間の梁の長さ:25.0mm梁の幅:12.0mm 移動体の重量:20.0g 電極:5.5mmの長さの電極を等間隔に形成
Example 1 A parallel spring mechanism was constructed using four piezoelectric elements on one beam according to the following specifications. Piezoelectric material (PZT type, MPEC1 manufactured by Mitsubishi Kasei Corporation): Thickness 0.15mm Shim material (phosphor bronze): Thickness 0.1mm Length of beam between fixed end and moving body: 25.0mm Beam width : 12.0mm Weight of moving body: 20.0g Electrodes: 5.5mm long electrodes formed at equal intervals

【004
2】上記の平行バネ機構において、各圧電素子の印加電
圧比rj を1.0:0.3:0.2:1.0とするこ
とにより、前記数式〔数1〕における2次および3次の
入力係数bi の値を実質的に零として平行バネ機構を
駆動させた。
004
2] In the above parallel spring mechanism, by setting the applied voltage ratio rj of each piezoelectric element to 1.0:0.3:0.2:1.0, the quadratic and cubic The parallel spring mechanism was driven by setting the value of the input coefficient bi to substantially zero.

【0043】上記の印加電圧比rj は、固定端近接側
の圧電素子(根元の圧電素子)を基準とするものであり
、固定端近接側の圧電素子に印加する電圧は、70Vの
交流電圧とした。
The above applied voltage ratio rj is based on the piezoelectric element near the fixed end (the piezoelectric element at the base), and the voltage applied to the piezoelectric element near the fixed end is an AC voltage of 70 V. did.

【0044】入力電圧から先端変位までの周波数応答を
測定し、その結果を図3(a)、(b)に示す。各図か
ら明らかなように、2次および3次モードがほぼ消去さ
れており、また、共振周波数付近での位相遅れもない。
The frequency response from the input voltage to the tip displacement was measured, and the results are shown in FIGS. 3(a) and 3(b). As is clear from each figure, the secondary and tertiary modes are almost eliminated, and there is no phase delay near the resonance frequency.

【0045】比較のため、上記の印加電圧比rj を1
:1:1:1に変更して周波数応答を測定した結果を図
4(a)、(b)に示すが、これらの図から明らかなよ
うに、約1.5kHz及び4kHzに高次共振モードが
存在し、また、2次および3次の共振点で位相が180
°以上遅れ、そのため、フィードバック制御系の設計が
困難である。
For comparison, the above applied voltage ratio rj is set to 1
Figures 4 (a) and (b) show the results of measuring the frequency response after changing the ratio to 1:1:1. As is clear from these figures, there are higher-order resonance modes at approximately 1.5 kHz and 4 kHz. exists, and the phase is 180 at the second and third resonance points.
It is difficult to design a feedback control system.

【0046】[0046]

【発明の効果】以上説明した本発明によれば、広サーボ
帯域化を可能とした圧電バイモルフ駆動平行バネ機構の
制御方法が提供され、本発明の制御方法は、各種分野の
サーボ機構としての利用価値が高い。
According to the present invention described above, a method of controlling a piezoelectric bimorph drive parallel spring mechanism that enables a wide servo band is provided, and the control method of the present invention can be used as a servo mechanism in various fields. High value.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の制御方法の対象となる平行バネ機構の
概念的説明図であり、静止状態を示す。
FIG. 1 is a conceptual explanatory diagram of a parallel spring mechanism, which is a target of the control method of the present invention, and shows a stationary state.

【図2】本発明の制御方法の対象となる平行バネ機構の
概念的説明図であり、駆動状態を示す。
FIG. 2 is a conceptual explanatory diagram of a parallel spring mechanism that is a target of the control method of the present invention, showing a driving state.

【図3】本発明の実施例における周波数応答の測定結果
である。
FIG. 3 is a measurement result of frequency response in an example of the present invention.

【図4】比較例における周波数応答の測定結果である。FIG. 4 is a measurement result of frequency response in a comparative example.

【符号の説明】[Explanation of symbols]

(1)  :圧電素子 (2)  :シム材 (3)  :圧電体 (4)  :電極 (10):固定端 (20):梁 (30):移動体 (1): Piezoelectric element (2): Shim material (3): Piezoelectric material (4): Electrode (10): Fixed end (20): Beam (30): Mobile object

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  固定端の両側に複数の圧電素子から成
る2本の梁を平行に固定し、各梁の先端には前記固定端
と平行させて移動体を固設し、各圧電素子に印加する電
圧により、前記各梁をS字状に撓ませて前記移動体を平
行移動させる平行バネ機構において、下記の数式〔数1
〕における入力係数bi が零となるように、各圧電素
子の印加電圧比rj (固定端近接側の圧電素子の印加
電圧に対する他の圧電素子の印加電圧比)を制御するこ
とを特徴とする平行バネ機構の制御方法。 【数1】 (上記式中、aj はモーメント−電圧係数、φi (
x)はi次モードの形状関数を表す)
Claim 1: Two beams consisting of a plurality of piezoelectric elements are fixed in parallel on both sides of a fixed end, a moving body is fixed at the tip of each beam parallel to the fixed end, and a movable body is fixed to each piezoelectric element. In a parallel spring mechanism that bends each beam in an S-shape and moves the moving body in parallel by an applied voltage, the following mathematical formula [Equation 1] is used.
] is characterized in that the applied voltage ratio rj of each piezoelectric element (the applied voltage ratio of other piezoelectric elements to the applied voltage of the piezoelectric element on the side near the fixed end) is controlled so that the input coefficient bi becomes zero. How to control a spring mechanism. [Equation 1] (In the above formula, aj is the moment-voltage coefficient, φi (
x) represents the shape function of the i-th mode)
JP5816491A 1991-02-28 1991-02-28 Method for controlling parallel spring mechanism Withdrawn JPH04274503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5816491A JPH04274503A (en) 1991-02-28 1991-02-28 Method for controlling parallel spring mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5816491A JPH04274503A (en) 1991-02-28 1991-02-28 Method for controlling parallel spring mechanism

Publications (1)

Publication Number Publication Date
JPH04274503A true JPH04274503A (en) 1992-09-30

Family

ID=13076357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5816491A Withdrawn JPH04274503A (en) 1991-02-28 1991-02-28 Method for controlling parallel spring mechanism

Country Status (1)

Country Link
JP (1) JPH04274503A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009048696A (en) * 2007-08-20 2009-03-05 Funai Electric Co Ltd Optical pickup device and optical disk device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009048696A (en) * 2007-08-20 2009-03-05 Funai Electric Co Ltd Optical pickup device and optical disk device

Similar Documents

Publication Publication Date Title
EP0867043B1 (en) Metal-electroactive ceramic composite transducers
US5831371A (en) Snap-action ferroelectric transducer
US7145284B2 (en) Actuator and micro-electromechanical system device
US7876026B2 (en) Large force and displacement piezoelectric MEMS lateral actuation
JP4209464B2 (en) Ultrasonic actuator device
JP4209465B2 (en) Drive device
JP5127293B2 (en) Drive device
US5633554A (en) Piezoelectric linear actuator
US20120250130A1 (en) Piezoelectric actuator, variable capacitor, and optical deflection device
US8222797B2 (en) Information processor and method for the production thereof
WO2002077994A1 (en) Actuator for positioning head element finely and head device with the actuator
US20080211353A1 (en) High temperature bimorph actuator
JP4814948B2 (en) Control device for vibration actuator
JPH04274503A (en) Method for controlling parallel spring mechanism
Smits et al. The effectiveness of a piezoelectric bimorph actuator to perform mechanical work under various constant loading conditions
JPH0455355B2 (en)
GB2375884A (en) Helical electro-active devices
JP2008236820A (en) Driving device
JP4587010B2 (en) Piezoelectric actuator
US11569430B2 (en) Method for operating an ultrasonic motor
US8299683B2 (en) Ultrasonic motor
EP3491732B1 (en) Actuator
Jones et al. Adaptive devices for precise position control
JPH0438152B2 (en)
JP4562878B2 (en) Piezoelectric actuator

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514