JPH0427426A - Microcapsule and production thereof - Google Patents

Microcapsule and production thereof

Info

Publication number
JPH0427426A
JPH0427426A JP13268590A JP13268590A JPH0427426A JP H0427426 A JPH0427426 A JP H0427426A JP 13268590 A JP13268590 A JP 13268590A JP 13268590 A JP13268590 A JP 13268590A JP H0427426 A JPH0427426 A JP H0427426A
Authority
JP
Japan
Prior art keywords
dispersion
emulsion
hydrosol
core material
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13268590A
Other languages
Japanese (ja)
Other versions
JP2905261B2 (en
Inventor
Minoru Nomichi
稔 野路
Akira Kunugise
椚瀬 彰
Yumiko Imai
由美子 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP13268590A priority Critical patent/JP2905261B2/en
Priority to PCT/JP1991/000659 priority patent/WO1991017822A1/en
Priority to DE69114674T priority patent/DE69114674T2/en
Priority to EP91909095A priority patent/EP0484546B1/en
Priority to KR1019920700055A priority patent/KR100187515B1/en
Publication of JPH0427426A publication Critical patent/JPH0427426A/en
Priority to US08/120,654 priority patent/US5470512A/en
Application granted granted Critical
Publication of JP2905261B2 publication Critical patent/JP2905261B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)

Abstract

PURPOSE:To microencapsulate a chemically and/or physically unstable core material by using capsule walls formed by aggregating colloidal fine particles with an electrolyte. CONSTITUTION:A core material is added to a hydrosol contg. colloidal fine particles in water as a dispersive medium, they are dispersed in an oily medium and the colloidal fine particles in the resulting emulsion are aggregated with an electrolyte to produce microcapsules. The core material used is not especially limited and may be selected among various materials such as dyes, pigments, pharmaceuticals, agricultural chemicals, perfume, chemical products, adhesives, enzyme and fungi. The core material is usually added by 0.1-50wt.% of the amt. of the hydrosol. Any solvent known as a hydrophobic solvent may be used as an org. solvent.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は新規なマイクロカプセル及びその製法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel microcapsule and a method for producing the same.

〔従来の技術〕[Conventional technology]

マイクロカプセルの製造法に関しては数多く報告されて
おり、中でも物理化学的、及び、化学的にInする方法
として、コンプレックスコアセルベーション法、シンプ
ルコアセルベーション法、及び、界面重合法、in 5
itu重合法などが知られている。これらの方法は、特
殊な装置を使用する必要がないこと、カプセルの粒子径
か1ミクロン以下から数ミリの範囲の任意な粒径のカプ
セルを製造することが可能であること、カプセル膜の性
質および緻密性を制御できるなどの利点があるため多く
の分野で活用されている。
Many methods have been reported regarding the production of microcapsules, among which physicochemical and chemical methods include complex coacervation method, simple coacervation method, interfacial polymerization method, and in5 method.
The itu polymerization method and the like are known. These methods do not require the use of special equipment, can produce capsules with any particle size ranging from 1 micron or less to several millimeters, and are dependent on the properties of the capsule membrane. It is used in many fields because of its advantages such as being able to control density and precision.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、コアセルベーション法はカプセル膜材料として
天然高分子のゼラチン−アラビアゴム系が最も一般的で
あるが、耐水性か悪く、コストか高く、高濃度のカプセ
ル液が得にくく、また、カプセル化の工程が複雑である
などの欠点を有している。一方、界面重合法やin 5
itu重合法などの化学的製造法はカプセル膜の原料の
反応性が高いため、包含する芯物質とも反応したり、芯
物質が強い酸又はアルカリ性にさらされたりする場合が
あり、必ずしも満足する方法でない。
However, in the coacervation method, the most common capsule membrane material is gelatin-gum arabic, a natural polymer, but it has poor water resistance, high cost, and is difficult to obtain a highly concentrated capsule liquid. It has disadvantages such as the complicated process. On the other hand, interfacial polymerization method and in 5
Chemical production methods such as the itu polymerization method have high reactivity of the raw materials for the capsule membrane, so they may react with the core material contained therein, or the core material may be exposed to strong acid or alkalinity, so this method is not always satisfactory. Not.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記問題点を解決すべく鋭意検討した結
果、本発明を完成した。
The present inventors have completed the present invention as a result of intensive studies to solve the above problems.

即ち、本発明は、 (1)コロイド状微粒子を電解質を用いて凝集させて得
られたカプセル膜で芯物質を包含したマイクロカプセル
That is, the present invention provides: (1) Microcapsules containing a core substance in a capsule membrane obtained by agglomerating colloidal fine particles using an electrolyte.

(2)水を分散媒とするコロイド状微粒子の分散体(ヒ
ドロゾル)に芯物質を加え、これを油性媒体中に分散さ
せ、乳濁液となし、該乳濁液中のコ(3)乳濁液か、水
を分散媒とするコロイド状微粒子の分散体(ヒドロゾル
)に水溶性芯物質を加え、これを油性媒体中に分散させ
、W/O型乳濁液となしたものである上記(2)に記載
の方法。
(2) A core substance is added to a dispersion (hydrosol) of colloidal fine particles using water as a dispersion medium, and this is dispersed in an oily medium to form an emulsion. A water-soluble core substance is added to a suspension or a dispersion (hydrosol) of colloidal particles using water as a dispersion medium, and this is dispersed in an oily medium to form a W/O emulsion. The method described in (2).

(4)乳濁液が、水を分散媒とするコロイド状微粒子の
分散体(ヒドロゾル)に油溶性芯物質を分散しO/W型
乳濁液とし、これを更に油性媒体中に分散させ、0/W
/O型乳濁液となしたものである上記(2)に記載の方
法。
(4) The emulsion is obtained by dispersing an oil-soluble core substance in a dispersion (hydrosol) of colloidal particles using water as a dispersion medium to obtain an O/W type emulsion, which is further dispersed in an oily medium, 0/W
/O-type emulsion according to the method described in (2) above.

(5)乳濁液か、水を分散媒とするコロイド状微粒子の
分散体(ヒドロゾル)に水不溶性粉末状芯物質を分散し
、これを油性媒体中に分散させ、W(S)/O型乳濁液
となしたものである上記(2)に記載の方法に関する。
(5) A water-insoluble powder core material is dispersed in an emulsion or a dispersion (hydrosol) of colloidal fine particles using water as a dispersion medium, and this is dispersed in an oily medium to form a W(S)/O type. It relates to the method described in (2) above, which is an emulsion.

本発明で使用する水を分散媒とするコロイド状微粒子の
分散体(ヒドロゾル)において、コロイド状微粒子の粒
径は、通常は5〜1/O00n好ましくはlO〜500
nmである。又、ヒドロゾルとしては、例えば、金、銀
、白金なとの金属のゾル、酸化ケイ素、酸化ジルコニウ
ム、酸化アルミニウム、酸化鉄、酸化銅、酸化亜鉛、酸
化クロムなどの金属酸化物のゾル、硫化ヒ素、硫化亜鉛
、硫化鉛なとの金属硫化物のゾル、その他ハロゲン化銀
、硫酸バリウム、水酸化第二鉄などのゾル、有機高分子
からなる微粒子のゾル及びこれらの混合物のゾルか挙げ
られる。無機系ゾルは凝集法や解膠法なとの公知の方法
で製造される。又、有機系ゾルは、例えば、スチレン、
メチル(メタ)アクリレート、酢酸ビニル、塩化ビニル
、塩化ビニリデン、などの単独、又は、混合物を公知の
乳化重合法で重合させて製造される。ヒドロゾルの固形
分濃度は特に限定されるものでなく、油性媒体中にヒド
ロゾルを分散させる際に、その分散か容易に行われる範
囲であればよく、通常は、5〜50重量%である。
In the dispersion (hydrosol) of colloidal fine particles using water as a dispersion medium used in the present invention, the particle size of the colloidal fine particles is usually 5 to 1/O00n, preferably 1/O to 500n.
It is nm. Hydrosols include, for example, sols of metals such as gold, silver, and platinum, sols of metal oxides such as silicon oxide, zirconium oxide, aluminum oxide, iron oxide, copper oxide, zinc oxide, and chromium oxide, and arsenic sulfide. Examples include sols of metal sulfides such as zinc sulfide and lead sulfide, sols of other silver halides, barium sulfate, and ferric hydroxide, sols of fine particles made of organic polymers, and sols of mixtures thereof. The inorganic sol is manufactured by a known method such as a flocculation method or a peptization method. In addition, organic sols include, for example, styrene,
It is produced by polymerizing methyl (meth)acrylate, vinyl acetate, vinyl chloride, vinylidene chloride, etc., singly or as a mixture, using a known emulsion polymerization method. The solid content concentration of the hydrosol is not particularly limited as long as it can be easily dispersed when dispersing the hydrosol in an oily medium, and is usually 5 to 50% by weight.

次いて、該ヒドロゾルに芯物質を混合又は、分散する。Next, a core material is mixed or dispersed in the hydrosol.

芯物質が水溶性物質の場合は混合だけでよく、油溶性物
質又は水不溶性粉末状物質の場合は分散しなければなら
ない。芯物質は特に限定されるものではなく、染料、顔
料、医薬品、農薬、香料、化成品、接着剤、酵素、菌体
、など種々のものか使用できる。例えば、水溶性染料の
ような水溶性芯物質の場合、ヒドロゾルに芯物質を混合
し溶解させる。オリーブ油のような油溶性芯物質の場合
、ヒドロゾルに芯物質を分散させ、0/W型分散体にす
る。この際の分散体の安定性は重要で、芯物質の包含率
に大きく関与している。すなわち、分散体の安定性か悪
いと芯物質の包含率も悪く、全くカプセル化できない場
合もある。分散体を安定化させるため分散剤を用いるの
か好ましい。分散剤は0/W型乳濁液を安定化させる公
知の界面活性剤、高分子分散剤か用いられる。ただし、
ヒドロゾル中の微粒子を分散中に凝集させるものであっ
てはならない。例えば、脂肪酸塩、アルキル硫酸エステ
ル塩、ポリオキシエチレンアルキルエーテル、ポリオキ
シエチレンアルキルフェノールエーテル、ポリオキシエ
チレンソルビタン脂肪酸エステル、ポリビニルアルコー
ル、カルボキシメチルセルロースなとかある。また、カ
ーボンブラック、磁性鉄のような水不溶性粉末状芯物質
の場合、油溶性芯物質の場合と同じようにヒドロゾルに
水不溶性粉末状芯物質を分散させる。この際、ヒドロゾ
ル中の微粒子が粉末状芯物質に凝集されないような組み
合わせにしなければならない。例えば、ヒドロゾル中の
微粒子と粉末状芯物質の表面電荷を同種のものちする。
If the core substance is a water-soluble substance, only mixing is required; if it is an oil-soluble substance or a water-insoluble powdered substance, it must be dispersed. The core material is not particularly limited, and various materials such as dyes, pigments, pharmaceuticals, agricultural chemicals, fragrances, chemical products, adhesives, enzymes, and bacterial cells can be used. For example, in the case of a water-soluble core material such as a water-soluble dye, the core material is mixed and dissolved in a hydrosol. In the case of an oil-soluble core material such as olive oil, the core material is dispersed in a hydrosol to form an 0/W type dispersion. The stability of the dispersion at this time is important and is greatly involved in the inclusion rate of the core substance. That is, if the stability of the dispersion is poor, the inclusion rate of the core substance will be poor, and in some cases, encapsulation may not be possible at all. It is preferable to use a dispersant to stabilize the dispersion. The dispersant used may be a known surfactant or polymer dispersant that stabilizes the O/W type emulsion. however,
The microparticles in the hydrosol must not aggregate during dispersion. Examples include fatty acid salts, alkyl sulfate salts, polyoxyethylene alkyl ethers, polyoxyethylene alkylphenol ethers, polyoxyethylene sorbitan fatty acid esters, polyvinyl alcohol, and carboxymethyl cellulose. Further, in the case of a water-insoluble powdery core material such as carbon black or magnetic iron, the water-insoluble powdery core material is dispersed in a hydrosol in the same manner as in the case of an oil-soluble core material. At this time, the combination must be such that the fine particles in the hydrosol are not aggregated into a powdery core substance. For example, the surface charges of the fine particles in the hydrosol and the powdery core material are the same.

また、粉末状芯物質自身がヒドロゾル中で凝集しないよ
うに粉末状芯物質の表面に分散剤などを吸着させるよう
な処理をしてもよい。以上のように芯物質を溶解したり
分散したヒドロゾルを一次分散体と呼ぶ。
Further, a treatment may be applied to adsorb a dispersant or the like onto the surface of the powdery core material so that the powdery core material itself does not aggregate in the hydrosol. A hydrosol in which the core substance is dissolved or dispersed as described above is called a primary dispersion.

この−次分散体中の芯物質とヒドロゾルとの割合は特に
限定されるものではな(分散体が形成され得る割合であ
ればよい。
The ratio of the core material to the hydrosol in this second-order dispersion is not particularly limited (as long as a dispersion can be formed).

通常は、ヒドロゾルに対し芯物質を、0.1〜50重量
%の範囲で用いる。また、芯物質とヒドロゾル中の微粒
子との割合も特に限定されないか、得られるカプセル粒
子の膜厚に関与するためカプセルの使用目的に応じて調
節されるべきである。次に、この−灰分散体を分散剤を
含む有機溶媒(油性媒体)に更に分散し、芯物質か水溶
性物質の場合W/O型乳濁液に、芯物質が粉末状芯物質
の場合W (S)/O型乳濁液に、芯物質か油溶性物質
の場合0/W/O型乳濁液にする。これらの乳濁液を二
次分散体を呼ぶ。
Usually, the core material is used in an amount of 0.1 to 50% by weight based on the hydrosol. Furthermore, the ratio of the core material to the fine particles in the hydrosol is not particularly limited, or should be adjusted depending on the intended use of the capsules since it affects the film thickness of the resulting capsule particles. Next, this -ash dispersion is further dispersed in an organic solvent (oil-based medium) containing a dispersant, and if the core material is a water-soluble material, a W/O emulsion is obtained, or if the core material is a powdered core material, a W/O type emulsion is obtained. If the core substance or oil-soluble substance is used, make it a 0/W/O type emulsion. These emulsions are called secondary dispersions.

ここで用いる有機溶媒は一般に疎水性溶媒として知られ
ているものならどのうよな溶媒でも使用できるか、例え
ば脂肪族系溶媒としてはC0〜C+□の炭化水素、特に
n−ヘキサン、n−へブタン、n−オクタン等が、芳香
族系溶媒としては、ベンゼン、トルエン、キシレン等か
、ハロゲン化物系溶媒としては塩化物か一般的であり、
クロロホルム、ジクロルメタン、テトラクロルメタン、
モノ又はジクロルベンゼン等がある。これらの溶媒は単
独で用いても良く、又、二種以上の混合溶媒としても良
い。有機溶媒の使用量は、得られる乳濁液がW2O型、
W (S)/O型、又は、0 /W/O型となる限り限
定されないか、通常、乳濁液の25体積%以上、好まし
くは40〜90体積%とするのかよい。分散剤としては
、非イオン性界面活性剤、例えば、ポリオキシエチレン
ソルビタントリオレート、ポリオキシエチレンソルビタ
ンモノオレート、ポリオキシエチレンソルビタンモノス
テアレート、ポリオキシエチレンソルビタントリステア
レート、ポリオキシエチレンソルビタンモノステアレー
ト、ソルビタントリオレート、ソルビタンモノオレート
、ソルビタントリステアレート、ソルビタンモノステア
レート、ソルビタンモノパルミテート、ポリオキシエチ
レンアルキルエーテル、ポリオキシエチレンアルキルフ
ェノールエーテルなと、(水添)大豆レシチン、(水添
)卵黄レシチンなとのリン脂質、及び特開昭56−13
5501に開示れている高分子分散剤等が挙げられる。
The organic solvent used here can be any solvent that is generally known as a hydrophobic solvent.For example, as an aliphatic solvent, C0 to C+□ hydrocarbons, especially n-hexane, n- Common examples include butane, n-octane, etc., benzene, toluene, xylene, etc. as aromatic solvents, and chloride as halide solvents.
Chloroform, dichloromethane, tetrachloromethane,
Examples include mono- or dichlorobenzene. These solvents may be used alone or as a mixed solvent of two or more. The amount of organic solvent used is such that the emulsion obtained is W2O type,
It is not limited as long as it is W(S)/O type or 0/W/O type, and it may normally be 25% by volume or more, preferably 40 to 90% by volume of the emulsion. As dispersants, nonionic surfactants such as polyoxyethylene sorbitan triolate, polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan tristearate, polyoxyethylene sorbitan monostearate can be used. sorbitan triolate, sorbitan monooleate, sorbitan tristearate, sorbitan monostearate, sorbitan monopalmitate, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, (hydrogenated) soybean lecithin, (hydrogenated) Phospholipids such as egg yolk lecithin, and JP-A-1983-13
Examples include polymeric dispersants disclosed in Japanese Patent No. 5501.

これらは単独で用いてもよ(、又、2種以上を併用して
もよい。これら分散剤の使用量は一次分散体に対して0
.01〜30重量%か好ましく、特に0.2〜20重量
%か好ましい。
These dispersants may be used alone (or two or more types may be used in combination.The amount of these dispersants used is 0% to the primary dispersion.
.. 01 to 30% by weight is preferred, particularly 0.2 to 20% by weight.

次に、得られた二次分散体中のコロイド状微粒子は、電
解質を用いて凝集させ、本発明のマイクロカプセルを得
る。この凝集を行う方法としては、例えば、二次分散体
を電解質水溶液の中へ加えるか、または、電解質水溶液
を二次分散体の中へ加える方法等か挙げられる。電解質
としては、特に限定されないか、得られるカプセル粒子
を応用する時障害を起こさない者か好ましい。例えば、
アルカリ金属、アルカリ土類金属、鉄、コ/くルト、ニ
ッケル、銅、亜鉛、アルミニウムなとの塩化物、臭化物
、塩化アンモニウム、塩化テトラメチルアンモニウムや
、ポリアクリル酸、ポリスチレンスルホン酸、キトサン
などの高分子電解質なとがある。特に、コロイド状粒子
のもっている荷電と反対の荷電をもつ多価のイオンを発
生する電解質を用いるのか好ましい。電解質の使用量は
、コロイド状微粒子か凝集するのに十分な量で良く(S
chulze−Hardyの法則て言う臨界凝結濃度以
上であればよい)、1〜50重量%(但し、高分子電解
質では0.1〜5重量%)の電解質水溶液を二次分散体
に対して5〜500体積%用いるのが好ましい。
Next, the colloidal fine particles in the obtained secondary dispersion are aggregated using an electrolyte to obtain the microcapsules of the present invention. Examples of methods for performing this aggregation include adding a secondary dispersion into an electrolyte aqueous solution, or adding an electrolyte aqueous solution into a secondary dispersion. The electrolyte is preferably one that is not particularly limited or does not cause problems when the obtained capsule particles are applied. for example,
Alkali metals, alkaline earth metals, iron, co/silt, nickel, copper, zinc, aluminum, chlorides, bromides, ammonium chloride, tetramethylammonium chloride, polyacrylic acid, polystyrene sulfonic acid, chitosan, etc. There are polymer electrolytes. In particular, it is preferable to use an electrolyte that generates multivalent ions having a charge opposite to that of the colloidal particles. The amount of electrolyte used should be sufficient to aggregate colloidal particles (S
5 to 50% by weight (however, 0.1 to 5% by weight for polymer electrolytes) of an electrolyte aqueous solution to the secondary dispersion (as long as it is above the critical coagulation concentration called Chulze-Hardy's law). It is preferable to use 500% by volume.

本発明の方法を行う際の温度は、分散系かこわれない温
度であれば特に限定されず、通常は20〜70°Cで行
うことができる。
The temperature at which the method of the present invention is carried out is not particularly limited as long as it does not damage the dispersion system, and it can usually be carried out at 20 to 70°C.

二次分散体を電解質水溶液の中へ加えるか、又は電解質
水溶液を二次分散体中へ加える際、その添加速度は、乳
濁状態がこわれないような速度であれば特に限定されな
い。
When adding the secondary dispersion into the electrolyte aqueous solution or when adding the electrolyte aqueous solution into the secondary dispersion, the rate of addition is not particularly limited as long as the rate does not break the emulsion state.

このようにして、本発明のマイクロカプセルがスラリー
状て得られる。これから粉末状のマイクロカプセルとす
る場合、その方法には特に制限かなく、慣用の方法が採
用できる。例えば、カプセル粒子スラリーをアルコール
および水などで洗浄し、吸引濾過で固液分離し、乾燥す
ることによって得られる。その他、噴霧乾燥法などで直
接粉末状微粒子が得られる。
In this way, the microcapsules of the present invention are obtained in the form of a slurry. When making powdered microcapsules from this, there are no particular restrictions on the method, and any conventional method can be used. For example, it can be obtained by washing a capsule particle slurry with alcohol and water, separating solid and liquid by suction filtration, and drying. In addition, powdery fine particles can be obtained directly by a spray drying method or the like.

本発明で得られるカプセル粒子の粒子径は、二次分散体
の分散条件で決定され、通常1μm〜500μmの粒径
の物が得られる。すなわち、使用する分散剤の種類と量
、及び、攪拌条件(撹拌翼径、回転数など)を選択する
ことによって所望の粒子径のカプセル粒子を得ることが
できる。
The particle size of the capsule particles obtained in the present invention is determined by the dispersion conditions of the secondary dispersion, and particles having a particle size of 1 μm to 500 μm are usually obtained. That is, capsule particles having a desired particle size can be obtained by selecting the type and amount of the dispersant used and the stirring conditions (diameter of the stirring blade, rotation speed, etc.).

本発明の方法によれば、穏和な条件で、容易な操作で、
しかも短時間で所望のマイクロカプセルを高収率で得る
ことが出来る。
According to the method of the present invention, under mild conditions and with easy operation,
Moreover, desired microcapsules can be obtained in a short time and in high yield.

〔実施例〕〔Example〕

実施例中の得量の後()内の数字は、使用したコロイド
状微粒子のうちのカプセル膜となったものの割合を示す
The number in parentheses after the amount obtained in the examples indicates the proportion of the colloidal fine particles used that became a capsule membrane.

実施例1 コロイダルシリカ(SiO□、スノーテックス01粒径
/O〜201m、固形分濃度20%)16mgに染料(
青色2号) 20mgを溶解させたものをソルビタント
リオレート0.2g、ポリオキシエチレンソルビタンモ
ノオレート2.0gを溶解したクロロホルム48 ml
にホモジナイザーを用いて分散しく9000rpm、 
30秒)W/O型乳濁液を調製する。次に攪拌器のつい
た300−の丸底フラスコに20wt%の塩化カルシウ
ム水溶液75m1を取り、攪拌しながら上記の乳濁液を
約5分かけて滴下する。そのまま30〜60分室温で攪
拌を続ける。得られたカプセル粒子(マイクロカプセル
)のスラリーにメタノールを20m1加えて吸引濾過て
カプセル粒子を濾別し、乾燥する。外観が青色の粒子か
得られた。
Example 1 A dye (
Blue No. 2) 20mg dissolved in 0.2g of sorbitan triolate and 48ml of chloroform in which 2.0g of polyoxyethylene sorbitan monooleate was dissolved.
Disperse at 9000 rpm using a homogenizer,
30 seconds) Prepare a W/O emulsion. Next, 75 ml of a 20 wt % calcium chloride aqueous solution was placed in a 300-mm round bottom flask equipped with a stirrer, and the above emulsion was added dropwise over about 5 minutes while stirring. Continue stirring at room temperature for 30 to 60 minutes. 20 ml of methanol is added to the resulting slurry of capsule particles (microcapsules) and filtered with suction to separate the capsule particles, followed by drying. Particles with a blue appearance were obtained.

平均粒径は5μmで得量は2.9g(90%)であった
The average particle size was 5 μm and the yield was 2.9 g (90%).

実施例2 コロイダルシリカ(SiO□、スノーテックス01粒径
/O〜20nm、固形分濃度20%)16mgにポリオ
キシエチレンソルビタントリオレート0.16gを溶解
したリモネン(香料)8−を分散し0/W型乳濁液を調
製する(−取分散体)。更に、ソルビタントリオレート
0.2g、ポリオキシエチレンソルビタンモノオレート
2.0gを溶解したクロロホルム64m1に上記の一次
分散体をホモジナイザーを用いて分散し、(5QOOr
prn、 30秒)O/W/O型乳濁液を調製する(二
次分散体)。これを攪拌器のついた300m1の丸底フ
ラスコに取り、撹拌しなから/Owt%の塩化カルシウ
ム水溶液24ydを約5分かけて室温で滴下する。その
まま15〜30分室温で攪拌を続ける。
Example 2 Limonene (fragrance) 8- in which 0.16 g of polyoxyethylene sorbitan triolate was dissolved in 16 mg of colloidal silica (SiO□, Snowtex 01 particle size/O ~ 20 nm, solid content concentration 20%) was dispersed. A W-type emulsion is prepared (-separated dispersion). Furthermore, the above primary dispersion was dispersed using a homogenizer in 64 ml of chloroform in which 0.2 g of sorbitan triolate and 2.0 g of polyoxyethylene sorbitan monooleate were dissolved.
prn, 30 seconds) Prepare an O/W/O emulsion (secondary dispersion). This was placed in a 300 ml round bottom flask equipped with a stirrer, and while stirring, 24 yd of an Owt% calcium chloride aqueous solution was added dropwise at room temperature over about 5 minutes. Continue stirring at room temperature for 15 to 30 minutes.

得られたカブ七粒子スラリーにメタノールを20m1加
えて吸引濾過てカプセル粒子を濾別し、乾燥する。リモ
ネンを内包したカプセル粒子か得られその平均粒径は1
6μmで、得量は8.7g(85,3%)であった。
20 ml of methanol is added to the resulting slurry of seven turnip particles, filtered with suction to remove capsule particles, and dried. Capsule particles containing limonene were obtained, and the average particle size was 1.
At 6 μm, the yield was 8.7 g (85.3%).

実施例3 ジルコニアゾル(ZrO2、NZS −3OA 、8産
化学(株)、粒径95nm、固形分濃度35%)16m
gに赤色226号(有機顔料)2gを超音波分散器で分
散する。該分散体をソルビタンモノパルミテート0.6
g、大豆レシチン60mgを溶解した塩化メチレン48
m1にホモジナイザーを用いて分散しく9000rpm
、 30秒)W (S)/O型乳濁液を調製する。これ
を攪拌器のついた300mjの丸底フラスコに取り、攪
拌しなから15wt%の硫酸ナトリウム水溶液24yd
を室温で約5分かけて滴下する。そのまま15〜30分
室温で攪拌を続ける。得られたカプセル粒子スラリーに
メタノールを20m1加えて吸引濾過てカプセル粒子を
濾別し、乾燥する。赤色のカプセル粒子か得られ、その
平均粒径は9μm得量は7.2g(95%)てあった。
Example 3 Zirconia sol (ZrO2, NZS-3OA, Yasan Kagaku Co., Ltd., particle size 95 nm, solid content concentration 35%) 16 m
Disperse 2 g of Red No. 226 (organic pigment) into g using an ultrasonic disperser. The dispersion was mixed with 0.6 sorbitan monopalmitate.
g, 48 methylene chloride in which 60 mg of soybean lecithin was dissolved
Using a homogenizer on m1, disperse at 9000 rpm.
, 30 seconds) Prepare a W (S)/O type emulsion. Transfer this to a 300mJ round bottom flask equipped with a stirrer, and add 24yd of 15wt% sodium sulfate aqueous solution without stirring.
is added dropwise over about 5 minutes at room temperature. Continue stirring at room temperature for 15 to 30 minutes. 20 ml of methanol is added to the obtained capsule particle slurry, and the slurry is suction-filtered to separate the capsule particles and dried. Red capsule particles were obtained with an average particle size of 9 μm and a yield of 7.2 g (95%).

実施例4 スチレンラテックス粒径120nm 、固形分濃度30
%)15ydにカーボンブラック1gを超音波分散器で
分散する。該分散体をポリオキシエチレンソルビタンモ
ノオレート0.1g、ソルビタントリオレート0.5g
を溶解したヘキサン45m1にホモジナイザーを用いて
分散しく8000rpm、 20秒)W (S)/O型
乳濁液を調製する。これを攪拌器のついた300 ml
の丸底フラスコに取り、攪拌しなから/Owt%の硫酸
アルミニウム水溶液30−を室温で約5分かけて滴下す
る。そのまま15〜30分室温で攪拌を続ける。
Example 4 Styrene latex particle size 120 nm, solid content concentration 30
%) Disperse 1 g of carbon black in 15 yards using an ultrasonic disperser. The dispersion was mixed with 0.1 g of polyoxyethylene sorbitan monooleate and 0.5 g of sorbitan triolate.
(8000 rpm, 20 seconds) to prepare a W (S)/O type emulsion. Add this to 300 ml with a stirrer
% aluminum sulfate aqueous solution was added dropwise over about 5 minutes at room temperature while stirring. Continue stirring at room temperature for 15 to 30 minutes.

得られたカプセル粒子スラリーにメタノールを20−加
えて吸引濾過でカプセル粒子を濾別し、乾燥する。
Twenty minutes of methanol is added to the obtained capsule particle slurry, and the capsule particles are separated by suction filtration and dried.

黒色のスチレンカプセル粒子が得られ、その平均粒径は
22μmで得量は4.9g(89%)であった。
Black styrene capsule particles were obtained with an average particle size of 22 μm and a yield of 4.9 g (89%).

実施例5 コロイダルシリカ(SiO□、スノーテックス0、粒径
/O〜20nm、固形分濃度20%)7.5yd、スチ
レンラテックス(自社製、35nm、/O%)7.5m
lGmポリオキシエチレンソルビタンモノオレート20
mgを溶解した大豆油1gをホモジナイザーで分散させ
(9000rpm、 20秒)0/W型乳濁液(−灰分
散体)を調製する。該−灰分散体をポリオキシエチレン
ソルビタンモノステアレート0.1g、ソルビタントリ
オレート0.5gを溶解したヘキサン45rILIにホ
モジナイザーで分散(7000rpm、 20秒)O/
W/O型乳濁液を調製する(二次分散体)。該二次分散
体を撹拌器のついた300−の丸底フラスコに取り、攪
拌しなから/Owt%の硫酸アルミニウム水溶液30m
1を約5分かけて滴下する。そのまま15〜30分室温
で攪拌を続ける。得られたカプセル粒子スラリーにメタ
ノールを20m1加えて吸引濾過でカプセル粒子を濾別
し、乾燥する。大豆油を包含したスチレン/シリカの複
合カプセル膜のカプセル粒子が得られ、その平均粒子径
は26μmで、得量は2.6g(80%)であった。
Example 5 Colloidal silica (SiO□, Snowtex 0, particle size /O~20nm, solid content concentration 20%) 7.5yd, styrene latex (manufactured in-house, 35nm, /O%) 7.5m
lGm polyoxyethylene sorbitan monooleate 20
Disperse 1 g of soybean oil with a homogenizer (9000 rpm, 20 seconds) to prepare an 0/W emulsion (-ash dispersion). The -ash dispersion was dispersed in hexane 45rILI in which 0.1 g of polyoxyethylene sorbitan monostearate and 0.5 g of sorbitan triolate were dissolved using a homogenizer (7000 rpm, 20 seconds) O/
Prepare a W/O emulsion (secondary dispersion). The secondary dispersion was placed in a 300-mm round bottom flask equipped with a stirrer, and without stirring, 30 ml of an Owt% aluminum sulfate aqueous solution was added.
Add 1 dropwise over about 5 minutes. Continue stirring at room temperature for 15 to 30 minutes. 20 ml of methanol is added to the obtained capsule particle slurry, and the capsule particles are separated by suction filtration and dried. Capsule particles of a styrene/silica composite capsule membrane containing soybean oil were obtained, with an average particle diameter of 26 μm and a yield of 2.6 g (80%).

実施例6 ジルコニアゾル(NZS −30A 、粒径95nm、
固形分濃度35%)lOm/、アルミナゾル(コロイダ
ルアルミナ−/O0、粒径420nm 、固形分濃度1
5%) 6 m(!にイソシュリン1.0gを溶解させ
コロイド微粒子との混合溶液にする。該混合溶液を大豆
レシチン0.1g、ポリオキシエチレンソルビタンモノ
パルミテート0.5gを溶解した塩化メチレン60m1
にホモジナイザーを用いて分散しく9000rpm、 
30秒)W/O型乳濁液を調製する。該乳濁液を撹拌器
のついた300 mlの丸底フラスコに取り、攪拌しな
から/Owt%の硫酸ナトリウム水溶液30m1を約5
分かけて室温で滴下する。そのまま15〜30分室温で
攪拌を続ける。
Example 6 Zirconia sol (NZS-30A, particle size 95 nm,
solid content concentration 35%) lOm/, alumina sol (colloidal alumina/O0, particle size 420 nm, solid content concentration 1)
5%) Dissolve 1.0 g of isothurin in 6 m (!) to make a mixed solution with colloidal particles. Add the mixed solution to 60 ml of methylene chloride in which 0.1 g of soybean lecithin and 0.5 g of polyoxyethylene sorbitan monopalmitate are dissolved.
Disperse at 9000 rpm using a homogenizer,
30 seconds) Prepare a W/O emulsion. The emulsion was placed in a 300 ml round bottom flask equipped with a stirrer, and without stirring, 30 ml of an Owt% aqueous sodium sulfate solution was added to about 5 ml of aqueous solution of sodium sulfate.
Add dropwise over several minutes at room temperature. Continue stirring at room temperature for 15 to 30 minutes.

得られたカプセル粒子スラリーにメタノールを20−加
えて吸引濾過でカプセル粒子を濾別する。ここで得られ
たカプセル粒子のケーキを水でよく洗浄し、凍結乾燥す
る。インシュリンを包含する微粒子か得られ、その平均
粒子径は15μmで、得量は4.9g(90%)であっ
た。
Twenty minutes of methanol is added to the obtained capsule particle slurry, and the capsule particles are separated by suction filtration. The cake of capsule particles obtained here is thoroughly washed with water and freeze-dried. Fine particles containing insulin were obtained, the average particle size of which was 15 μm, and the yield was 4.9 g (90%).

実施例7 コロイダルシリカ(SiO2、スノーテックス0、粒径
lO〜20nm、固形分濃度20%)30−にポリオキ
シエチレンソルビタントリオレート0.3gを溶解した
ダイアジノン(殺虫剤)3mlを分散しO/W型乳濁液
を調製する(−灰分散体)。更に、ソルビタントリオレ
ート0.3g、ポリオキシエチレンソルビタンモノオレ
ート2.0gを溶解したクロロホルム90m1に上記の
一次分散体をホモジナイザーを用いて分散し、(700
0rpm、 30秒)0/W/O型乳濁液を調製する(
二次分散体)。これを攪拌器のついた500 mlの丸
底フラスコに取り、攪拌しなから/Owt%の塩化カル
シウム水溶液50m1を約5分かけて室温で滴下する。
Example 7 3 ml of diazinon (insecticide) in which 0.3 g of polyoxyethylene sorbitan triolate was dissolved in colloidal silica (SiO2, Snowtex 0, particle size lO ~ 20 nm, solid content concentration 20%) was dispersed in O/ A W-type emulsion is prepared (-ash dispersion). Furthermore, using a homogenizer, the above primary dispersion was dispersed in 90 ml of chloroform in which 0.3 g of sorbitan triolate and 2.0 g of polyoxyethylene sorbitan monooleate were dissolved.
0 rpm, 30 seconds) Prepare a 0/W/O type emulsion (
secondary dispersion). This was placed in a 500 ml round bottom flask equipped with a stirrer, and while stirring, 50 ml of an Owt% aqueous calcium chloride solution was added dropwise at room temperature over about 5 minutes.

そのまま15〜30分室温で攪拌を続ける。得られたカ
プセル粒子スラリーにメタノールを20mj加えて吸引
濾過てカプセル粒子を濾別し、乾燥する。ダイアジノン
を内包したカプセル粒子か得られその平均粒径は18μ
mで、得量は8 g(88゜9%)であった。
Continue stirring at room temperature for 15 to 30 minutes. 20 mj of methanol is added to the obtained capsule particle slurry and filtered by suction to separate the capsule particles, followed by drying. Capsule particles containing diazinon were obtained, and the average particle size was 18μ.
The yield was 8 g (88°9%).

実施例8 コロイダルシリカ(SiO□、スノーテックス01粒径
lO〜20nm、固形分濃度20%)16mj’に染料
(赤色/O6号) 50mgを溶解させたものをソルビ
タントリオレート0.2g、ポリオキシエチレンソルビ
タンモノオレート2.0gを溶解したクロロホルム48
イにホモジナイザーを用いて分散しく 9000rpm
、 30秒)W/O型乳濁液を調製する。これを攪拌器
のついた300−の丸底フラスコに取り、攪拌しなから
5.4wt%の塩化アンモニウム水溶液24m1を約5
分かけて室温で滴下する。そのまま30〜60分室温で
攪拌を続ける。得られたカプセル粒子のスラリーにメタ
ノールを20mj7加えて吸引濾過でカプセル粒子を濾
別し、乾燥する。外観か赤色の粒子が得られた。
Example 8 50 mg of dye (red/No. 6) was dissolved in 16 mj' of colloidal silica (SiO□, Snowtex 01 particle size 1O ~ 20 nm, solid content concentration 20%), and 0.2 g of sorbitan triolate and polyoxy Chloroform 48 in which 2.0 g of ethylene sorbitan monooleate was dissolved
Disperse using a homogenizer at 9000 rpm.
, 30 seconds) Prepare a W/O emulsion. Transfer this to a 300-mm round bottom flask equipped with a stirrer, and add 24 ml of a 5.4 wt% ammonium chloride aqueous solution to about 5 mL without stirring.
Add dropwise over several minutes at room temperature. Continue stirring at room temperature for 30 to 60 minutes. 20mj7 of methanol is added to the obtained slurry of capsule particles, and the capsule particles are separated by suction filtration and dried. Particles with a red appearance were obtained.

平均粒径は12μmで、得量は3 g(90%)であっ
た。
The average particle size was 12 μm and the yield was 3 g (90%).

実施例9 スチレンラテックス(粒径120nm 、固形分濃度3
0%)20−に水性顔料(H)ミクロン−K、青色、固
形分濃度20%)5gを分散する。該分散体をポリオキ
シエチレンソルビタンモノオレート0.1g、ソルビタ
ントリオレート0.5gを溶解したヘキサン45−にホ
モジナイザーを用いて分散しく8000rpm、 30
秒)W (S)/O型乳濁液を調製する。これを攪拌器
のついた300rnlの丸底フラスコに取り、攪拌しな
がら0.5wt%のキトサン水溶液30m1を室温で約
5分かけて滴下する。そのまま15〜30分室温で攪拌
を続ける。得られたカプセル粒子スラリーにメタノール
を20m1加えて吸引濾過でカプセル粒子を濾別し、乾
燥する。青色のスチレンカプセル粒子か得られ、その平
均粒径は22μmで、得量は6g(85,7%)であっ
た。
Example 9 Styrene latex (particle size 120 nm, solid content concentration 3
Disperse 5 g of an aqueous pigment (H) Micron-K, blue, solid content concentration 20%) in 0%) 20-. The dispersion was dispersed in hexane 45 in which 0.1 g of polyoxyethylene sorbitan monooleate and 0.5 g of sorbitan triolate were dissolved using a homogenizer at 8000 rpm.
Sec) Prepare a W (S)/O type emulsion. This was placed in a 300 rnl round bottom flask equipped with a stirrer, and while stirring, 30 ml of a 0.5 wt % chitosan aqueous solution was added dropwise at room temperature over about 5 minutes. Continue stirring at room temperature for 15 to 30 minutes. 20 ml of methanol is added to the obtained capsule particle slurry, and the capsule particles are separated by suction filtration and dried. Blue styrene capsule particles were obtained with an average particle size of 22 μm and a yield of 6 g (85.7%).

〔発明の効果〕〔Effect of the invention〕

本発明のマイクロカプセルは以上のように穏和な条件、
及び、容易な操作で製造することかでき、また、化学的
に活性な原料を使用しないため、化学的及び/または物
理的に不安定な芯物質でもカプセル化できる。使用目的
に応じてカプセル膜を無機質、有機質、無機/有機複合
体というように自由に選択できる。
The microcapsules of the present invention can be prepared under mild conditions as described above.
Furthermore, since it can be produced with easy operations and does not use chemically active raw materials, even chemically and/or physically unstable core substances can be encapsulated. Depending on the purpose of use, the capsule membrane can be freely selected from inorganic, organic, and inorganic/organic composites.

特許出願人  日本化薬株式会社Patent applicant: Nippon Kayaku Co., Ltd.

Claims (1)

【特許請求の範囲】 1、コロイド状微粒子を電解質を用いて凝集させて得ら
れたカプセル膜で芯物質を包含したマイクロカプセル。 2、水を分散媒とするコロイド状微粒子の分散体(ヒド
ロゾル)に芯物質を加え、これを油性媒体中に分散させ
、乳濁液となし、該乳濁液中のコロイド状微粒子を、電
解質を用いて凝集させることを特徴とするマイクロカプ
セルの製法。 3、乳濁液が、水を分散媒とするコロイド状微粒子の分
散体(ヒドロゾル)に水溶性芯物質を加え、これを油性
媒体中に分散させ、W/O型乳濁液となしたものである
請求項2に記載の方法。 4、乳濁液が、水を分散媒とするコロイド状微粒子の分
散体(ヒドロゾル)に油溶性芯物質を分散しO/W型乳
濁液とし、これを更に油性媒体中に分散させ、O/W/
O型乳濁液となしたものである請求項2に記載の方法。 5、乳濁液が、水を分散媒とするコロイド状微粒子の分
散体(ヒドロゾル)に水不溶性粉末状芯物質を分散し、
これを油性媒体中に分散させ、W(S)/O型乳濁液と
なしたものである請求項2に記載の方法。
[Claims] 1. Microcapsules containing a core substance in a capsule membrane obtained by agglomerating colloidal fine particles using an electrolyte. 2. Add a core substance to a dispersion (hydrosol) of colloidal fine particles using water as a dispersion medium, disperse this in an oily medium to form an emulsion, and transfer the colloidal fine particles in the emulsion to an electrolyte. A method for producing microcapsules characterized by aggregation using. 3. The emulsion is made by adding a water-soluble core substance to a dispersion (hydrosol) of colloidal particles using water as a dispersion medium, and dispersing this in an oily medium to form a W/O emulsion. The method according to claim 2. 4. The emulsion is made by dispersing an oil-soluble core substance in a dispersion (hydrosol) of colloidal particles using water as a dispersion medium to obtain an O/W type emulsion, which is further dispersed in an oily medium, /W/
3. The method according to claim 2, wherein the method is an O-type emulsion. 5. The emulsion is made by dispersing a water-insoluble powdery core substance in a dispersion (hydrosol) of colloidal fine particles using water as a dispersion medium,
3. The method according to claim 2, wherein this is dispersed in an oily medium to form a W(S)/O type emulsion.
JP13268590A 1990-05-24 1990-05-24 Manufacturing method of microcapsules Expired - Fee Related JP2905261B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP13268590A JP2905261B2 (en) 1990-05-24 1990-05-24 Manufacturing method of microcapsules
PCT/JP1991/000659 WO1991017822A1 (en) 1990-05-24 1991-05-17 Microcapsule and method of making the same
DE69114674T DE69114674T2 (en) 1990-05-24 1991-05-17 METHOD FOR PRODUCING MICROCAPSULES.
EP91909095A EP0484546B1 (en) 1990-05-24 1991-05-17 Method of making microcapsules
KR1019920700055A KR100187515B1 (en) 1990-05-24 1991-05-17 Microcapsule and method of making the same
US08/120,654 US5470512A (en) 1990-05-24 1993-09-13 Process for producing microcapsules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13268590A JP2905261B2 (en) 1990-05-24 1990-05-24 Manufacturing method of microcapsules

Publications (2)

Publication Number Publication Date
JPH0427426A true JPH0427426A (en) 1992-01-30
JP2905261B2 JP2905261B2 (en) 1999-06-14

Family

ID=15087131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13268590A Expired - Fee Related JP2905261B2 (en) 1990-05-24 1990-05-24 Manufacturing method of microcapsules

Country Status (1)

Country Link
JP (1) JP2905261B2 (en)

Also Published As

Publication number Publication date
JP2905261B2 (en) 1999-06-14

Similar Documents

Publication Publication Date Title
US20180360031A1 (en) Microencapsulation
KR101398247B1 (en) Method for production of a mini suspoemulsion or suspension of sub-micron core/shell particles
US5889088A (en) Composite particle aqueous suspension and process for producing same
RU2286845C2 (en) Method of producing coated heart-shaped particles
EP1387867B1 (en) Colourants encapsulated in a polymer matrix
JPH0230736B2 (en)
JPS5814253B2 (en) Bisyou capsule no Seizouhouhou
AU2002316861A1 (en) Colourants encapsulated in a polymer matrix
US5470512A (en) Process for producing microcapsules
KR910009151A (en) Pest Control Composition
US3994827A (en) Micro-encapsulating method
US6153657A (en) Process for producing a solvent-less O/W type emulsion
JPH05138009A (en) Production of spherical inorganic hollow particles
KR100187515B1 (en) Microcapsule and method of making the same
JPS6186941A (en) Preparation of oil-containing microcapsule
JPH0427426A (en) Microcapsule and production thereof
JPH04210228A (en) Microcapsule
JPH057766A (en) Preparation of microcapsule
US20240100212A1 (en) Reversibly protected colorants and methods of use
JPH0427425A (en) Microbead and its production
JPH01180243A (en) Production of microcapsule, and microcapsule containing organic and inorganic powder
JP3749563B2 (en) Method for producing microcapsules
JPH0360730A (en) Suspensible microcapsule formulation
JPH04313341A (en) Production of colored microcapsule
JP3204523B2 (en) Manufacturing method of microcapsules

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees