JPH0427411A - Method and device for supplying bactericidal gas having a high humidity - Google Patents

Method and device for supplying bactericidal gas having a high humidity

Info

Publication number
JPH0427411A
JPH0427411A JP2131711A JP13171190A JPH0427411A JP H0427411 A JPH0427411 A JP H0427411A JP 2131711 A JP2131711 A JP 2131711A JP 13171190 A JP13171190 A JP 13171190A JP H0427411 A JPH0427411 A JP H0427411A
Authority
JP
Japan
Prior art keywords
gas
membrane
hydrophobic polymer
polymer membrane
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2131711A
Other languages
Japanese (ja)
Other versions
JPH0734846B2 (en
Inventor
Yoshichika Shibata
柴田 喜愛
Keiichiro Watanabe
恵市郎 渡辺
Hidetoshi Taketomi
武冨 英俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Pall Corp
Original Assignee
JGC Corp
Pall Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp, Pall Corp filed Critical JGC Corp
Priority to JP2131711A priority Critical patent/JPH0734846B2/en
Publication of JPH0427411A publication Critical patent/JPH0427411A/en
Publication of JPH0734846B2 publication Critical patent/JPH0734846B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To carry out fermentation and cultivation in a bio-plant for a long time by performing a filtration to remove germ by allowing a highly humid gas to pass through a germ removing filter having a hydrophobic polymer membrane as its filter medium while continuously removing, from the membrane surface, water drain generating on the surface of the primary side of the hydrophobic polymer membrane. CONSTITUTION: A gas source (1), a gas-liquid contact apparatus (2) and a germ removing filter apparatus (3B) having a hydrophobic polymer membrane as its filter medium are so arranged that a gas from the gas source passes through the germ removing filter apparatus after increasing its humidity by contact with water in the gas-liquid contact apparatus. In the germ removing filter apparatus, water drain generated on the surface of the primary side of the hydrophobic polymer membrane is removed immediately flowing down without staying on the membrane surface.

Description

【発明の詳細な説明】 【産業上の利用分野】 本発明は、濾過除菌したガスを供給するに当って、その
湿度を高く保ったまま供給するとともに、操作に必要な
エネルギーを低減した方法および装置に関する。 [従来の技術] たとえば好気的発酵や培養を行なう場合、タンクに吹き
込む空気は、雑菌の混入を避けるため除菌をする必要が
ある。 この目的には、多くメンブレンタイプの除菌フ
ィルターが使用されている。 ところが、除菌フィルターを構成するメンブレンは、た
とえばフッ素樹脂のような疎水性材料からできているた
め、通常はガスに含まれている水分がそこで凝縮し、躾
の表面が濡れてくることが避けられない。 この水ドレ
ンはガスの通過抵抗を著しく高め、逐には水プラグ(閉
塞)に至る。 これを避けるため、疎水性高分子膜を用いた除菌フィル
ターを使用するときは、除菌フィルターに通す前にガス
をいったん除湿して、膜表面における水ドレンの発生が
実用上問題にならないようにしてから、膜を通過させ°
るはかなかった。 第2図は、従来の除菌ガス供給装置
のフローチャートであって、ガス源(1)からのガスが
ドレントラップ(4)をへてホールドタンク(5)に貯
えられたのち、プレフィルタ−(6)を通って冷凍除湿
II(Ref、)および吸着脱水塔(Abs、 ) テ
除湿ののち、疎水性高分子膜製の除菌フィルター(3A
)を通る。 一方、上記のように除湿した除菌空気をタンクへ吹き込
み続けると、タンク内液面が次第に低下するという問題
がある。 これは、前記した理由で除菌空気が乾燥して
いるからにほかならない。 吹き込む空気がタンク内の水分を奪わないようにするに
は、相当の湿度を与えてやればよいわけであるが、除菌
空気に対し滅菌条件を保ったまま再び水分を加えること
は容易ではない。 また、前記した空気の除湿は、第2図に冷凍除湿機を挙
げたように、一般に冷却による露点低下−水分凝縮除去
−再加熱の段階を踏み、ざらに高度の除湿を行なう場合
はこれに活性アルミナの吸着脱水を併用したりするが、
いずれにしても運転に多大のエネルギーを消費するもの
であって、この点は改善が望まれていた。 [発明が解決しようとする課題] 本発明の目的は、除菌空気を代表とする除菌ガスを供給
するに当って、ガスを高湿度のまま除菌処理して除菌侵
の加湿の必要なく高湿度の除菌ガスを得ることを可能に
し、とくにバイオプラントの通気システムに役立てると
ともに、除菌ガス供給に不可避であった除湿装置および
除湿操作を不要にし、プラントコスト、エネルギーコス
トを低減した技術を提供することにある。 [課題を解決するための手段] 本発明の高湿度の除菌ガスを供給する方法は、高湿度の
ガスを疎水性高分子膜を濾材とする除菌フィルターを通
過させて濾過除菌を行ない、疎水性高分子膜の一次側表
面に生じる水ドレンを膜表面から連続的に除去すること
によって膜の水プラグを防止しつつガスの通過を続ける
ことからなる。 必要により、疎水性高分子膜を通過させるに先立って、
ガス流を水に接触させてその湿度を高める工程を加える
。 上記の方法とくに後者を実施するための本発明の装置は
、第1図に示すように、ガス源(1)、気液接触装置(
2)および疎水性高分子膜を濾材とする除菌フィルター
装@(3B)を、ガス源からのガスが気液接触装置で水
と接触してその湿度を高めたのち除菌フィルター装置を
通過するように配置してなり、除菌フィルター装置は疎
水性高分子膜の一次側表面に生成した水ドレンが膜表面
にn留することなく直ちに流下して除去される構造をも
つ。 第1図において、ガス源(1)はたとえばニアコンプレ
ッサーであり、ここで与えた圧力が、空気を流通させる
駆動源となっている。 駆動力としては、流通経路にブ
ロアーを用いたり、ボンベのガス圧を利用したりしても
よいことはもちろんである。 符号(4)〜(6)は第
2図と同じであり、(7)は水ドレンを受は容れるタン
クであって、レベルセンサー(8)で水位を検出して所
定のレベルに達したとき電磁弁(9)を開いて排水する
構造になっている。 本発明における除菌フィルターの膜素材としては、疎水
性をもつものであれば何でもよく、たとえばテフロン、
ポリスルホン、ポリプロピレン、ポリビニリデンフルオ
ライドなどの高分子膜が使用できる。 膜の形状は、プ
リーツ型、ディスク型などが好都合である。 膜の除菌
性能は、目的とする除菌の程度に応じて適宜選択すれば
よく、通常は1012セル/CIi、1010セル/r
i、106セル/cdなどの除菌性能をもったものを使
用する。 (作 用] 高湿度のガスを疎水性高分子膜を通過させるときに含有
水の凝縮が起ることは不可避であるため、従来は、この
水の蓄積が通過抵抗の増大をもたらし、水プラグに至る
として、この不都合を避けるには疎水性高分子膜を通過
させるに先立ってガスを除湿するほかないと一般に考え
られ、かつ実際のプラントもそのように設計し建設され
て来た。 また、疎水性高分子膜の使用方法として、このような水
の存在する条件下で除菌性能が維持できるかどうかも不
明であり、この点からも、膜表面における水の存在は、
疎水性高分子膜を使用する者にとって心配であった。 こうした事情は、いわゆるバイオハザードを避けるため
、病原菌などを取扱う装置からの排ガスを除菌する場合
にも同じであって、たとえば特開昭63−32476号
に開示の「気体除菌装置」は、除菌すべき高湿気体を加
熱して相対湿度を低下させたのち、耐熱性の除菌フィル
ターを通すという手法を採用している。 発明者らは、上記のような従来の問題に挑戦し、高湿度
のガスをそのまま除菌フィルターで濾過除菌して供給す
ることができれば、除菌ガスを吹き込んだタンクの水位
低下が避けられるうえ、ガスの除湿のための設備とエネ
ルギーが不要になると考え実験を行なった。 その結果
、除菌フィルターである疎水性高分子膜に生成する水ド
レンは、はとんど膜の一次側表面に存在し、これを自由
に流下させ連続的に排出してやれば、膜表面に蓄積して
通過抵抗を高めたり水プラグ現象を起こしたりはしない
ことを見出すとともに、水の存在下であっても除菌性能
が維持できることを確認した。 [実施例] ポリテトラフルオロエチレン製の疎水性多孔膜rMcY
4463FRPJ  (公称孔径0.2t1m。 日本ボール製)を使用して、濾過面積2300cdの除
菌フィルターを製作した。 フィルターのハウジング−次側に水を注入して1.5〜
4.OK’j/ctiの範囲(IIの耐圧は4.2Kg
/ C11)で0.5に’jlctAきざみの圧力を加
えて観察したところ、二次側への水のリークは認められ
ず、また膜に付着する最大水分量は、圧力の高低にかか
わらずほぼ一定(38d)であった。 この結果から、
水は膜内部へは入り込まず、表面付近に付着しているも
のと判断された。 次に、膜に最大量の水を付着させた状態で相対湿度が1
0%以下の乾燥空気と100%の飽和水分含有空気とを
通過させ、膜に付着した水の挙動をしらべた。 このと
き、膜の表面から水が自由に流下できるようにし、流下
した水は直ちに排水した。 第3図に示す結果が得られ
、乾燥空気を通過させた場合だけでなく、高湿度の空気
を通した場合でも膜の付着水は次第に除去されて行くこ
とがわかった。 膜に到達する空気が飽和量以上の水分を含んでいる場合
を考慮して、湿度100%の空気を通過させながら、そ
の空気の中に一時的に水分を注入してみた。 この水分
はミストの状態で運ばれ、膜の表面で水ドレンとなる。  第4図のデータが得られ、膜を通過するときの圧力損
失(Δp)は−時的に起る水プラグにより上昇するが、
すぐ回復してもとに戻ること、および長時間の運転によ
りΔpの増大はないことがわかった。 以上の結果から、疎水性高分子膜に対して高湿度(飽和
またはそれに近い水分を含有し、時には飽和量を超える
水分を含む)空気を通過させても、膜の表面で生成する
水ドレンを連続的に排出できる条件下に置けば、水プラ
グにわずられされず、ガスを連続的に処理できることが
わかった。 このような疎水性高分子膜の使用方法がフィルターの除
菌性能に悪影響を及ぼさないかどうか確認するため、容
量31の発酵槽でE、Qoliの培養を行なって、そこ
に吹き込んだ空気の排気を上記の除菌フィルター膜(濾
過面積12007)に通しくほぼ飽和湿度のガスが出て
行くと考えられる。)、菌の捕集効率をしらべるバクテ
リアチャレンジ試験を行なった。 第5図の結果が得られた。 時間の経過とともにフィル
ター差圧が上昇したが、これはドレン除去の手段をとる
ことによって、実用上制限のない時間連続運転できるレ
ベルに抑えられるはずである。 いずれにせよ、100
時間の実験時間中、菌の捕集効率は100%に維持され
ていた。 [発明の効果] 本発明の方法および装置を使用すれば、高湿度の除菌ガ
スが除湿の設備および工程を要することなく、従って著
しく低減されたコストで供給できる。 従ってこの技術は、好気的発酵や培養を行なうタンクへ
の空気吹き込みに適用するとき、タンク内液面の低下を
ひきおこすことなく(あるいは再び雑菌の混入する危険
を冒して再度の加湿をする必要なり)、バイオプラント
において発酵や培養を長時間実施でき、その意義が大き
い。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a method for supplying filtered and sterilized gas while keeping its humidity high and reducing the energy required for operation. and regarding equipment. [Prior Art] For example, when performing aerobic fermentation or culture, the air blown into a tank must be sterilized to avoid contamination with bacteria. Membrane type sterilization filters are often used for this purpose. However, the membrane that makes up the sterilization filter is made of a hydrophobic material, such as fluororesin, which prevents the moisture contained in the gas from condensing there and making the surface of the sterilizer wet. I can't. This water drain significantly increases the gas passage resistance and eventually leads to water plugging (blockage). To avoid this, when using a sterilization filter that uses a hydrophobic polymer membrane, the gas should be dehumidified before passing through the sterilization filter, so that water drainage on the membrane surface does not become a practical problem. and then pass through the membrane
It was fleeting. FIG. 2 is a flowchart of a conventional sterilizing gas supply device, in which gas from a gas source (1) passes through a drain trap (4) and is stored in a hold tank (5), then a pre-filter ( After dehumidification through the freezing dehumidification II (Ref, ) and adsorption dehydration tower (Abs, ) (6), a sterilization filter (3A
). On the other hand, if the dehumidified and sterilized air is continuously blown into the tank as described above, there is a problem in that the liquid level in the tank gradually decreases. This is simply because the sterilized air is dry for the reason mentioned above. In order to prevent the air being blown into the tank from taking away the moisture in the tank, it is sufficient to provide a certain amount of humidity, but it is not easy to add moisture to the sterilized air while maintaining sterile conditions. . In addition, the dehumidification of the air described above generally involves the steps of lowering the dew point by cooling, removing moisture condensation, and reheating, as shown in Figure 2 using a refrigerated dehumidifier. Although adsorption and dehydration of activated alumina is also used,
In any case, a large amount of energy is consumed for operation, and improvement in this point has been desired. [Problems to be Solved by the Invention] An object of the present invention is to eliminate the need for humidification for sterilization by treating the gas with high humidity when supplying sterilization gas, typically sterilized air. This makes it possible to obtain high-humidity sterilizing gas without any strain, making it particularly useful for ventilation systems in bioplants.It also eliminates the need for dehumidifiers and dehumidifying operations that were unavoidable for supplying sterilizing gas, reducing plant costs and energy costs. The goal is to provide technology. [Means for Solving the Problems] The method of supplying a high-humidity sterilization gas of the present invention involves filtering and sterilizing the high-humidity gas by passing it through a sterilization filter using a hydrophobic polymer membrane as a filtering material. , consists of continuously removing water drainage generated on the primary surface of the hydrophobic polymer membrane from the membrane surface to prevent water plugs in the membrane while allowing gas to continue to pass through. If necessary, before passing through a hydrophobic polymer membrane,
Adding a step of contacting the gas stream with water to increase its humidity. The apparatus of the present invention for carrying out the above method, especially the latter, comprises a gas source (1), a gas-liquid contact device (
2) and a sterilizing filter device @ (3B) that uses a hydrophobic polymer membrane as a filtering material, the gas from the gas source comes into contact with water in a gas-liquid contact device to increase its humidity, and then passes through the sterilizing filter device. The sterilizing filter device has a structure in which water drainage generated on the primary surface of the hydrophobic polymer membrane immediately flows down and is removed without remaining on the membrane surface. In FIG. 1, the gas source (1) is, for example, a near compressor, and the pressure applied here serves as a driving source for circulating air. Of course, as the driving force, a blower may be used in the distribution path, or the gas pressure of a cylinder may be used. Symbols (4) to (6) are the same as in Figure 2, and (7) is a tank that receives water drain, and when the water level is detected by the level sensor (8) and reaches a predetermined level. The structure is such that water is drained by opening a solenoid valve (9). The membrane material of the sterilization filter in the present invention may be any hydrophobic material, such as Teflon,
Polymer membranes such as polysulfone, polypropylene, and polyvinylidene fluoride can be used. The shape of the membrane is conveniently pleated, disk-shaped, or the like. The sterilization performance of the membrane may be selected appropriately depending on the desired degree of sterilization, and is usually 1012 cells/CIi or 1010 cells/r.
Use one with sterilization performance, such as i, 106 cells/cd. (Function) When high-humidity gas is passed through a hydrophobic polymer membrane, condensation of the water contained therein is unavoidable. It is generally believed that the only way to avoid this inconvenience is to dehumidify the gas before passing it through the hydrophobic polymer membrane, and actual plants have been designed and constructed in this way. Regarding the usage of hydrophobic polymer membranes, it is unclear whether the sterilization performance can be maintained under such conditions where water is present, and from this point of view, the presence of water on the membrane surface is
This was a concern for those using hydrophobic polymer membranes. These circumstances are the same when sterilizing exhaust gas from equipment that handles pathogenic bacteria in order to avoid so-called biohazards. The method used is to heat the high-humidity gas to be sterilized to lower its relative humidity, and then pass it through a heat-resistant sterilization filter. The inventors took on the challenge of the conventional problems described above, and found that if high-humidity gas could be filtered and sterilized using a sterilization filter before being supplied, it would be possible to avoid a drop in the water level in the tank into which the sterilization gas was blown. Moreover, we conducted an experiment thinking that the equipment and energy for gas dehumidification would be unnecessary. As a result, water drainage generated on the hydrophobic polymer membrane that is a sterilization filter is mostly present on the primary surface of the membrane, and if it is allowed to flow freely and drained continuously, it will accumulate on the membrane surface. They found that this method does not increase passage resistance or cause the water plug phenomenon, and also confirmed that sterilization performance can be maintained even in the presence of water. [Example] Hydrophobic porous membrane rMcY made of polytetrafluoroethylene
A sterilizing filter with a filtration area of 2300 cd was manufactured using 4463FRPJ (nominal pore size 0.2 t1 m, manufactured by Nippon Ball). Filter housing - Inject water into the next side to 1.5~
4. OK'j/cti range (II's withstand pressure is 4.2Kg
/C11), applying pressure in increments of 0.5 to It was constant (38d). from this result,
It was determined that water did not enter the membrane, but rather adhered to the surface. Next, with the maximum amount of water attached to the membrane, the relative humidity is reduced to 1.
Dry air of 0% or less and air containing 100% saturated moisture were passed through the membrane, and the behavior of water adhering to the membrane was examined. At this time, water was allowed to freely flow down from the surface of the membrane, and the water that flowed down was immediately drained. The results shown in FIG. 3 were obtained, and it was found that water adhering to the membrane was gradually removed not only when dry air was passed through it, but also when highly humid air was passed through it. Considering the case where the air that reaches the membrane contains more than the saturation amount of moisture, we temporarily injected moisture into the air while passing air with 100% humidity. This water is transported in the form of mist and becomes a water drain on the surface of the membrane. The data shown in Figure 4 are obtained, and the pressure drop (Δp) when passing through the membrane increases due to the occasional water plug;
It was found that the condition recovered quickly and returned to its original state, and that Δp did not increase even after long-term operation. From the above results, even if high-humidity air (containing moisture at or near saturation, and sometimes containing moisture exceeding saturation) is passed through a hydrophobic polymer membrane, water drainage generated on the surface of the membrane is suppressed. It was found that if the gas is placed under conditions that allow continuous discharge, the gas can be processed continuously without being affected by water plugs. In order to confirm whether this method of using a hydrophobic polymer membrane did not have a negative effect on the sterilization performance of the filter, we cultured E and Qoli in a fermenter with a capacity of 31 cm, and the air blown there was exhausted. It is considered that the gas with almost saturated humidity that passes through the above-mentioned sterilization filter membrane (filtration area 12007) exits. ), a bacterial challenge test was conducted to examine the bacteria collection efficiency. The results shown in Figure 5 were obtained. Although the filter differential pressure increased over time, by taking measures to remove condensate, this should be suppressed to a level that allows continuous operation for an unlimited period of time in practical terms. In any case, 100
Bacterial collection efficiency was maintained at 100% during the experimental period of hours. [Effects of the Invention] By using the method and apparatus of the present invention, highly humid sterilizing gas can be supplied without requiring dehumidification equipment and processes, and therefore at significantly reduced cost. Therefore, when this technology is applied to air blowing into a tank for aerobic fermentation or culture, it is possible to do so without causing a drop in the liquid level in the tank (or risking the risk of re-humidifying the tank). ), fermentation and cultivation can be carried out for long periods of time in bioplants, which is of great significance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の高湿度の除菌ガスを供給する装置の
構成例を示すフローチャートである。 第2図は、従来の除菌ガスを供給する装置の構成例を示
すフローチャートである。 第3図ないし第5図は本発明の実験例のデータをグラフ
にしたものであって、第3図は除菌フィルター用の疎水
性高分子膜に付着した水分が通気によって除去されて行
く状況を示し、第4図は連続操業時の膜の通過抵抗(圧
力損失)の経時変化を示し、第5図はバクテリアチャレ
ンジ試験の結果を示す。 第5図において、上段は除菌
フィルターの一次側空気の菌濃度、中断はフィルター前
後の差圧、そして下段は菌捕集効率の、経時変化をあら
れしている。 1・・・ガス源 2・・・気液接触装置 3A、3B・・・除菌フィルター装置 4・・・ドレントラップ 5・・・ホールドタンク 6・・・プレフィルタ− 7・・・水ドレンタンク 8・・・レベルセンサー 9・・・電磁弁 いずれも 特許出願人  日 揮 株 式 会 社同    ボー
ル コーポレーション
FIG. 1 is a flowchart showing an example of the configuration of an apparatus for supplying high-humidity sterilizing gas according to the present invention. FIG. 2 is a flowchart showing an example of the configuration of a conventional device for supplying sterilizing gas. Figures 3 to 5 are graphs of data from experimental examples of the present invention, and Figure 3 shows a situation in which water attached to a hydrophobic polymer membrane for a sterilization filter is removed by ventilation. Figure 4 shows the change over time in membrane passage resistance (pressure loss) during continuous operation, and Figure 5 shows the results of the bacterial challenge test. In FIG. 5, the upper row shows the bacteria concentration in the air on the primary side of the sterilizing filter, the interruption shows the differential pressure before and after the filter, and the lower row shows the change over time in the bacteria collection efficiency. 1... Gas source 2... Gas-liquid contact device 3A, 3B... Sterilization filter device 4... Drain trap 5... Hold tank 6... Pre-filter 7... Water drain tank 8...Level sensor 9...Solenoid valve Patent applicant: JGC Corporation Ball Corporation

Claims (5)

【特許請求の範囲】[Claims] (1)高湿度のガスを疎水性高分子膜を濾材とする除菌
フィルターを通過させて濾過除菌を行ない、疎水性高分
子膜の一次側表面に生じる水ドレンを膜表面から連続的
に除去することによって膜の水プラグを防止しつつガス
の通過を続けることからなる高湿度の除菌ガスを供給す
る方法。
(1) Highly humid gas is filtered and sterilized by passing through a sterilization filter using a hydrophobic polymer membrane as a filter medium, and water drainage generated on the primary surface of the hydrophobic polymer membrane is continuously removed from the membrane surface. A method of supplying a highly humid sterilizing gas consisting of continuing the passage of the gas while preventing water plugs in the membrane by removal.
(2)疎水性高分子膜を通過させるに先立って、ガス流
を水に接触させてその湿度を高める工程を加えた請求項
1の方法。
2. The method of claim 1, further comprising the step of contacting the gas stream with water to increase its humidity prior to passing through the hydrophobic polymer membrane.
(3)疎水性高分子膜を通過するガス流の相対度が70
〜100%であり、濾過除菌後のガス流の相対湿度が実
質上それと同じである請求項1の方法。
(3) The relative degree of gas flow passing through the hydrophobic polymer membrane is 70
100% and the relative humidity of the gas stream after sterilization is substantially the same.
(4)疎水性高分子膜を通過するガス流が過飽和水分を
含有し、濾過除菌後のガス流がほぼ飽和水分を含有する
請求項1の方法。
4. The method of claim 1, wherein the gas stream passing through the hydrophobic polymeric membrane contains supersaturated moisture, and the gas stream after filtering and sterilization contains approximately saturated moisture.
(5)ガス源、気液接触装置および疎水性高分子膜を濾
材とする除菌フィルター装置を、ガス源からのガスが気
液接触装置で水と接触してその湿度を高めたのち除菌フ
ィルター装置を通過するように配置してなり、除菌フィ
ルター装置は疎水性高分子膜の一次側表面に生成した水
ドレンが膜表面に滞留することなく直ちに流下して除去
される構造をもつ高湿度の除菌ガスを供給する装置。
(5) A gas source, a gas-liquid contact device, and a sterilization filter device that uses a hydrophobic polymer membrane as a filter are sterilized after the gas from the gas source comes into contact with water in the gas-liquid contact device to increase its humidity. The sterilization filter device is a high-density filter that has a structure in which water drainage generated on the primary surface of a hydrophobic polymer membrane immediately flows down and is removed without remaining on the membrane surface. A device that supplies humid sterilizing gas.
JP2131711A 1990-05-22 1990-05-22 Method and apparatus for supplying high humidity sanitized gas Expired - Lifetime JPH0734846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2131711A JPH0734846B2 (en) 1990-05-22 1990-05-22 Method and apparatus for supplying high humidity sanitized gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2131711A JPH0734846B2 (en) 1990-05-22 1990-05-22 Method and apparatus for supplying high humidity sanitized gas

Publications (2)

Publication Number Publication Date
JPH0427411A true JPH0427411A (en) 1992-01-30
JPH0734846B2 JPH0734846B2 (en) 1995-04-19

Family

ID=15064413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2131711A Expired - Lifetime JPH0734846B2 (en) 1990-05-22 1990-05-22 Method and apparatus for supplying high humidity sanitized gas

Country Status (1)

Country Link
JP (1) JPH0734846B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227514A (en) * 1994-02-18 1995-08-29 Fukuhara:Kk Sterilizing device in air compressor
WO2004017965A1 (en) * 2002-08-23 2004-03-04 Ionix Pharmaceuticals Limited 1,3-thiazolin-4-ones as therapeutic compounds in the treatment of pain

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136416A (en) * 1984-12-07 1986-06-24 Kuraray Co Ltd High degree purification of steam

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136416A (en) * 1984-12-07 1986-06-24 Kuraray Co Ltd High degree purification of steam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227514A (en) * 1994-02-18 1995-08-29 Fukuhara:Kk Sterilizing device in air compressor
WO2004017965A1 (en) * 2002-08-23 2004-03-04 Ionix Pharmaceuticals Limited 1,3-thiazolin-4-ones as therapeutic compounds in the treatment of pain

Also Published As

Publication number Publication date
JPH0734846B2 (en) 1995-04-19

Similar Documents

Publication Publication Date Title
US5861303A (en) Biofiltration apparatus and method with chemical pre-treatment of contaminated air
JP2004533916A (en) Biofilter system for removing volatile organic compounds equipped with an inlet load equalizing device
US11400412B2 (en) Rotating spray device for water distribution on media bed of a biofilter
CN114857730A (en) Air humidification and/or purification
CN201482418U (en) Biofiltration deodorization device
JP2527916B2 (en) Biological filter
JPH06510481A (en) Method and apparatus for regulating the humidity of a gas stream and simultaneously purifying the gas stream of undesirable acidic or alkaline gases
JPH07227514A (en) Sterilizing device in air compressor
TWI225425B (en) System and process for treating waste gas employing bio-treatment technology
JPH0427411A (en) Method and device for supplying bactericidal gas having a high humidity
Hartmans et al. Membrane bioreactor with porous hydrophobic membranes for waste-gas treatment
JP2013111546A (en) Dehumidifier
KR100406495B1 (en) Hydrogen sulfide and VOCs remove system using Fe-EDTA and Biofilter
CN204619736U (en) A kind of biological deodorizing device being suitable for high dust-laden foul gas
JPH0713418U (en) Membrane air dryer controller and sterilizer in compressor
WO2018133632A1 (en) Microecological air purifier
JP3929719B2 (en) Deodorizing apparatus and deodorizing method
CN111108381A (en) Carbon dioxide and/or hydrogen sulfide detection system and method and application thereof
CN108775667B (en) Fresh air purification process
CN210492414U (en) Nitrogen gas is transferred and is stored up grain device
JPH0533823U (en) Bacteria removal device in air compressor
Sironi et al. Performance comparison between peat and wood chips as biofiltrating media in NH3 abatement
Bruno et al. Fermentation air filtration upgrading by use of membrane cartridge filters
EP3072576B1 (en) A vertical biofilter-adsorber
KR200474631Y1 (en) Complex treating system of contaminated soil