JPH04273953A - Liquiefied refrigerating apparatus - Google Patents

Liquiefied refrigerating apparatus

Info

Publication number
JPH04273953A
JPH04273953A JP3034204A JP3420491A JPH04273953A JP H04273953 A JPH04273953 A JP H04273953A JP 3034204 A JP3034204 A JP 3034204A JP 3420491 A JP3420491 A JP 3420491A JP H04273953 A JPH04273953 A JP H04273953A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
heat exchangers
gas
liquefaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3034204A
Other languages
Japanese (ja)
Inventor
Sadao Sato
定男 佐藤
Shinichi Kataoka
片岡 晋一
Yoshihiro Nakayama
善裕 仲山
Iwao Kawashima
河島 巌
Hideki Ebisu
戎 秀樹
Eigo Tada
多田 栄吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKO TECHNO KK
Kobe Steel Ltd
Original Assignee
SHINKO TECHNO KK
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKO TECHNO KK, Kobe Steel Ltd filed Critical SHINKO TECHNO KK
Priority to JP3034204A priority Critical patent/JPH04273953A/en
Publication of JPH04273953A publication Critical patent/JPH04273953A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/0007Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0224Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an internal quasi-closed refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0236Heat exchange integration providing refrigeration for different processes treating not the same feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0269Arrangement of liquefaction units or equipments fulfilling the same process step, e.g. multiple "trains" concept
    • F25J1/0271Inter-connecting multiple cold equipments within or downstream of the cold box
    • F25J1/0272Multiple identical heat exchangers in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • F25J2270/06Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops

Abstract

PURPOSE:To permit load proportion R/L to be selected widely, while maintaining the total amount of liquefaction and cooling loads and the operational efficiency at a high level. CONSTITUTION:Liquefied refrigerating apparatus which comprises a plurality of intermediate heat exchangers HEX3-HEX5, each composed of two heat exchangers HEX3a and HEX3b almost equal to each other in heat transfer area; and a low temperature heat exchanger HEX1 composed of a primary heat exchanger HEX1a and more than one secondary heat exchangers HEX1b and HEX1c, whereby the heat-exchanging action is made switchable between the intermediate heat exchangers and the low temperature heat exchanger in use.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ヘリウム、水素等のガ
スを液化・冷凍するための装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for liquefying and freezing gases such as helium and hydrogen.

【0002】0002

【従来の技術】従来、ヘリウム等のガスを冷却してその
一部を液化し、残部を冷凍に寄与させる装置が提供され
るに至っている(特開平2−183788号公報等)。
2. Description of the Related Art Conventionally, devices have been provided that cool a gas such as helium, liquefy a part of it, and use the remaining part for freezing (Japanese Patent Laid-Open No. 2-183788, etc.).

【0003】図6にその装置の一例を示す。図において
、Cは圧縮機、HEX1〜HEX6は直列に接続された
6段の熱交換器であり、上記圧縮機Cで圧縮された常温
高圧のガスは、各熱交換器HEX6〜HEX1における
熱交換で冷却され、JT弁(ジュール・トムソン弁)1
0へ送られる。このJT弁10で上記ガスは膨張して一
部が液化、抽出され、残部は、冷凍に寄与した後に低圧
ガスとして各熱交換器HEX1〜HEX6を通って圧縮
機Cに返還される。
FIG. 6 shows an example of such a device. In the figure, C is a compressor, HEX1 to HEX6 are six stages of heat exchangers connected in series, and the room temperature and high pressure gas compressed by the compressor C is heat exchanged in each heat exchanger HEX6 to HEX1. JT valve (Joule-Thomson valve) 1
Sent to 0. The JT valve 10 expands the gas, and a portion of the gas is liquefied and extracted, and the remainder is returned to the compressor C as a low-pressure gas after contributing to refrigeration through the heat exchangers HEX1 to HEX6.

【0004】さらに、高圧ラインと低圧ラインとは通路
20でバイパスされ、このバイパス通路20にタービン
供給弁18及び寒冷発生用の膨張タービンT1,T2が
直列に配されており、上記タービン供給弁18の開度に
よって寒冷の発生量が変化するようになっている。
Further, the high pressure line and the low pressure line are bypassed by a passage 20, and a turbine supply valve 18 and expansion turbines T1 and T2 for generating cold are arranged in series in this bypass passage 20. The amount of cold generated changes depending on the degree of opening.

【0005】一般に、このようなヘリウム等の液化冷凍
装置では、冷凍負荷R(単位は例えばkW)及び液化負
荷L(単位は例えば102l(リットル)/h)の割合
R/Lの計画点(設計点)として、その使用頻度が最も
高い値が選ばれ、この値R/Lを最も高い熱力学的仕事
効率(カルノー効率)で得られるように、ガスの圧力、
温度、流量、タービン諸元、さらには各熱交換器HEX
1〜HEX6の実質伝熱面積等が選定される。
Generally, in such a helium liquefaction refrigeration system, the planning point (design The value that is used most frequently is selected as the point), and the gas pressure,
Temperature, flow rate, turbine specifications, and each heat exchanger HEX
1 to HEX6 are selected.

【0006】具体的に、熱交換器の高圧側の温度レベル
(入口温度と出口温度の平均値)をt1、同熱交換器の
高圧側と低圧側の温度差(例えば図6における熱交換器
HEX6では高圧側の温度t1と低圧側の温度t2との
温度差t1−t2)をΔtとすると、上記温度レベルt
1に応じて次の表1に示されるような温度差Δtが得ら
れるように各諸元を設定することにより、理論上最も効
率よく液化冷凍を行うことができることが従来知られて
いる(低温工学ハンドブック( VEREIN DEU
TSCHERINGENIEURE 著、内田老鶴圃新
社発行)第20頁参照)。
Specifically, the temperature level (average value of inlet temperature and outlet temperature) on the high pressure side of the heat exchanger is t1, and the temperature difference between the high pressure side and the low pressure side of the heat exchanger (for example, the temperature level of the heat exchanger in FIG. In HEX6, if the temperature difference t1-t2) between the temperature t1 on the high pressure side and the temperature t2 on the low pressure side is Δt, then the above temperature level t
It is conventionally known that liquefaction freezing can theoretically be performed most efficiently by setting each specification so as to obtain a temperature difference Δt as shown in Table 1 below (low temperature Engineering Handbook (VEREIN DEU)
(Author: TSCHERINGENIEURE, Published by Uchida Rokakupa Shinsha), see page 20).

【0007】[0007]

【表1】[Table 1]

【0008】従って、実際の装置の設計にあたっては、
所望の負荷割合R/Lで運転する場合に各熱交換器にお
ける温度差が上記表1の値に該当するように、各熱交換
器の実質伝熱面積等の各諸元が設定される。
[0008] Therefore, when designing an actual device,
Each specification such as the substantial heat transfer area of each heat exchanger is set so that the temperature difference in each heat exchanger corresponds to the value in Table 1 above when operating at a desired load ratio R/L.

【0009】[0009]

【発明が解決しようとする課題】上記のように設計され
た装置においては、上記計画点での負荷割合R/Lで運
転することにより、効率よく液化及び冷凍を行うことが
できるが、それ以外の負荷割合R/Lを得ようとする場
合、すなわち負荷割合R/Lを変更したい場合には、図
6に示されるJT弁10やタービン供給弁18の絞り調
節によって運転状態を変更する必要がある。ところが、
このような操作は、循環ヘリウムの質量流量やタービン
による寒冷発生量を変更することにほかならず、このよ
うな変更が大きく行われるほど、各熱交換器における実
際の温度差Δtが上記表1に示される値から外れ、その
分だけ効率は大きく低下することとなる。
[Problem to be Solved by the Invention] In the device designed as described above, liquefaction and freezing can be performed efficiently by operating at the load ratio R/L at the planning point, but other than that. When trying to obtain a load ratio R/L of be. However,
Such operations are nothing but changes in the mass flow rate of circulating helium and the amount of cooling produced by the turbine, and the more such changes are made, the greater the actual temperature difference Δt in each heat exchanger will be as shown in Table 1 above. If the value deviates from the indicated value, the efficiency will decrease significantly.

【0010】さらに、上記装置では次のような問題点が
ある。同装置において、最適負荷割合R/Lを比較的小
さな値(例えば図7における点G1)に設定したとする
と、この点から例えばJT弁10を絞ることにより、熱
交換器の温度差Δt1の増加にともなって、負荷割合R
/Lが0である(すなわち冷凍負荷Rが0である)点G
2まで移行することができるが、逆に、上記最適点G1
から負荷割合R/Lを下げようとしてJT弁10を開く
と、例えば熱交換器HEX1における温度差Δtが0、
あるいは逆転して負となり(すなわち低圧側の温度t2
が高圧側の温度t1よりも低くなり)、装置内において
大きな温度振動が生じて安定した運転ができなくなって
しまう不都合が生じる。すなわち、この装置では、上記
点G1に設計点をおくと、JT弁10等を操作しても負
荷割合R/Lが無限大(すなわち液化負荷Lが0)の方
向へ移行することはできず、運転可能な負荷割合R/L
が極めて狭い範囲に限定される欠点がある。
Furthermore, the above device has the following problems. In the same device, if the optimum load ratio R/L is set to a relatively small value (for example, point G1 in FIG. 7), by throttling the JT valve 10 from this point, the temperature difference Δt1 of the heat exchanger increases. Accordingly, the load ratio R
Point G where /L is 0 (that is, refrigeration load R is 0)
2, but conversely, the above optimal point G1
When the JT valve 10 is opened to lower the load ratio R/L, for example, the temperature difference Δt in the heat exchanger HEX1 is 0,
Or it reverses and becomes negative (i.e. the temperature t2 on the low pressure side
becomes lower than the temperature t1 on the high-pressure side), and large temperature fluctuations occur within the device, resulting in the inconvenience that stable operation is no longer possible. That is, in this device, if the design point is set at the above point G1, the load ratio R/L cannot shift toward infinity (that is, the liquefaction load L is 0) even if the JT valve 10 etc. is operated. , operable load ratio R/L
has the disadvantage that it is limited to an extremely narrow range.

【0011】これに対し、同図点H1のように、液化負
荷Lが0の点に最適点を予め設定しておけば、絞り弁1
0の調節等によって、R/Lが無限大である点H1から
R/Lが0である点H2まで運転状態を変えることがで
きる。しかし、このように点H1に最適点を選んだ場合
には、図7から明らかなように、上記点G1に最適点を
選んだ場合に比べて冷凍負荷R及び液化負荷Lの総量R
+Lが著しく削減される不都合がある。
On the other hand, if the optimum point is set in advance at the point where the liquefaction load L is 0, as shown at point H1 in the figure, then the throttle valve 1
By adjusting 0, etc., the operating state can be changed from point H1 where R/L is infinite to point H2 where R/L is 0. However, when the optimum point is selected as point H1 in this way, as is clear from FIG.
There is a disadvantage that +L is significantly reduced.

【0012】本発明は、このような事情に鑑み、液化負
荷L及び冷凍負荷Rの総量R+Lおよび運転効率を高く
維持しながら、負荷割合R/Lを幅広く選択することが
できる液化冷凍装置を提供することを目的とする。
In view of these circumstances, the present invention provides a liquefaction refrigeration system that allows the load ratio R/L to be selected from a wide range while maintaining the total amount R+L of the liquefaction load L and the refrigeration load R and the operating efficiency at a high level. The purpose is to

【0013】[0013]

【課題を解決するための手段】本発明は、処理対象ガス
を圧縮する圧縮手段と、直列に配された複数の熱交換器
と、これらの熱交換器を通過した高圧のガスを膨張させ
てその少なくとも一部を液化させる膨張液化手段と、高
圧側のガスの一部を膨張させて寒冷を発生させ、低圧側
へ送り込む膨張タービンとを備え、上記圧縮手段で圧縮
された高圧のガスを上記複数の熱交換器における熱交換
で冷却し、上記膨張液化手段による膨張で所望の割合の
ガスを液化し、残りのガスを冷凍に寄与させ、低圧状態
で上記熱交換器に通して上記圧縮手段へ返還するように
構成された液化冷凍装置において、上記熱交換器群の中
で、温度レベルが窒素の沸点以下でかつ最も窒素の沸点
に近い膨張タービンを挾む3つの中間熱交換器を、互い
に並列に配され、かつ互いに略等しい実質伝熱面積をも
つ2つの熱交換器で構成するとともに、上記膨張液化手
段に最も近い低温熱交換器を、基本熱交換器と、この基
本熱交換器と並列に配され、同基本熱交換器の0.5〜
1.0倍の実質伝熱面積を有する1以上の副熱交換器と
で構成し、上記中間熱交換器及び低温熱交換器において
使用される熱交換器を切替る切替手段を備えたものであ
る(請求項1)。ここで、「膨張タービンを挾む3つの
中間熱交換器」とは、当該膨張タービンの入口側に最も
近い熱交換器と、当該膨張タービンの出口側に最も近い
熱交換器と、これら2つの熱交換器に挾まれる熱交換器
とを意味する。
[Means for Solving the Problems] The present invention includes a compression means for compressing a gas to be treated, a plurality of heat exchangers arranged in series, and a compressor for expanding the high-pressure gas that has passed through these heat exchangers. An expansion liquefaction means for liquefying at least a part of the gas, and an expansion turbine for expanding a part of the gas on the high-pressure side to generate refrigeration and sending it to the low-pressure side, the high-pressure gas compressed by the compression means The gas is cooled by heat exchange in a plurality of heat exchangers, a desired proportion of the gas is liquefied by expansion by the expansion and liquefaction means, the remaining gas is contributed to refrigeration, and is passed through the heat exchanger in a low pressure state to liquefy the gas by the compression means. In the liquefaction refrigeration system configured to return to Consisting of two heat exchangers arranged in parallel with each other and having substantially equal heat transfer areas, the low-temperature heat exchanger closest to the expansion and liquefaction means is a basic heat exchanger, and this basic heat exchanger 0.5~ of the same basic heat exchanger.
It is composed of one or more sub-heat exchangers having a substantial heat transfer area of 1.0 times, and is equipped with a switching means for switching the heat exchanger used in the intermediate heat exchanger and the low-temperature heat exchanger. Yes (Claim 1). Here, "three intermediate heat exchangers sandwiching the expansion turbine" refers to the heat exchanger closest to the inlet side of the expansion turbine, the heat exchanger closest to the outlet side of the expansion turbine, and the heat exchanger closest to the outlet side of the expansion turbine. A heat exchanger sandwiched between heat exchangers.

【0014】また、高圧ライン中に第2の膨張タービン
が設けられている装置の場合には、この第2の膨張ター
ビンを挾む2つの熱交換器を低温熱交換器とし、この低
温熱交換器を、基本熱交換器と、この基本熱交換器と並
列に配され、同基本熱交換器の0.5〜1.0倍の実質
伝熱面積を有する1以上の副熱交換器とで構成すればよ
い(請求項2)。
Further, in the case of an apparatus in which a second expansion turbine is provided in the high pressure line, the two heat exchangers sandwiching the second expansion turbine are used as low temperature heat exchangers, and the low temperature heat exchanger is used as a low temperature heat exchanger. The heat exchanger is composed of a basic heat exchanger and one or more auxiliary heat exchangers arranged in parallel with this basic heat exchanger and having an effective heat transfer area of 0.5 to 1.0 times that of the basic heat exchanger. (Claim 2).

【0015】さらに、上記各装置において、上記中間熱
交換器や低温熱交換器を、これらを構成する熱交換器同
士で熱伝導が行われるように構成することにより、より
好ましいものとなる(請求項3,4)。
[0015] Furthermore, in each of the above devices, the intermediate heat exchanger and the low-temperature heat exchanger are configured so that heat conduction occurs between the heat exchangers constituting these devices, which makes it more preferable (as claimed in the claims). Items 3 and 4).

【0016】[0016]

【作用】上記請求項1及び2記載の装置によれば、中間
熱交換器及び低温熱交換器において、所望の負荷割合R
/Lで運転するのに最適な実質伝熱面積が得られるよう
に使用熱交換器の切替を行うことにより、様々な負荷割
合R/Lで安定した液化及び冷凍を実行することができ
る。なお、その原理及び具体的な運転切替については後
の実施例の項で詳述する。
[Operation] According to the apparatus according to the above claims 1 and 2, in the intermediate heat exchanger and the low temperature heat exchanger, the desired load ratio R
By switching the heat exchanger used so as to obtain the optimum effective heat transfer area for operation at R/L, stable liquefaction and freezing can be performed at various load ratios R/L. The principle and specific operation switching will be explained in detail later in the section of Examples.

【0017】さらに、請求項3記載の装置によれば、一
方の熱交換器を用いて運転している場合でも、この熱交
換器からの伝熱により、運転されていない他方の熱交換
器も冷却されているので、この状態から上記他方の熱交
換器を用いる状態に切替ても、熱的ショックはほとんど
生じない。これは、請求項4記載の装置においても同様
である。
Furthermore, according to the apparatus according to claim 3, even when one heat exchanger is used for operation, heat transfer from this heat exchanger also causes the other heat exchanger that is not in operation to be heated. Since it is cooled, almost no thermal shock occurs even when switching from this state to a state where the other heat exchanger is used. This also applies to the device according to claim 4.

【0018】[0018]

【実施例】図1は、本発明の第1実施例における2ター
ビンサイクル方式のヘリウム液化冷凍装置のフロー図で
ある。なお、装置全体は図略の保冷箱に収容されている
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a flowchart of a two-turbine cycle type helium liquefaction refrigeration system according to a first embodiment of the present invention. Note that the entire device is housed in a cold box (not shown).

【0019】この装置は、圧縮機(圧縮手段)C、直列
に配された計6段の熱交換器群HEX1〜HEX6、J
T弁(液化膨張手段)10、及び互いに直列に配された
2つの寒冷発生用膨張タービンT1,T2を備えている
。さらに、その特徴として、上記熱交換器群の中で、J
T弁10から数えて2段目及び6段目に該当する熱交換
器HEX2,HEX6は、従来と同様に単一の熱交換器
HEX2,HEX6で構成されているのに対し、3〜5
段目の熱交換器(本発明では中間熱交換器に該当)HE
X3〜HEX5は、互いに等しい実質伝熱面積をもつ2
つの熱交換器(HEX3a,HEX3b)、(HEX4
a,HEX4b)、(HEX5a,HEX5b)によっ
てそれぞれ構成されている。また、JT弁10に最も近
い1段目の熱交換器(本発明では低温熱交換器に該当)
HEX1は、基本熱交換器HEX1aと、この基本熱交
換器HEX1aに比してそれぞれ1.0倍および0.5
倍の実質伝熱面積をもつ副熱交換器HEX1b,HEX
1cとで構成されている。
This device includes a compressor (compression means) C, a total of six stages of heat exchanger groups HEX1 to HEX6, and J arranged in series.
It includes a T valve (liquefaction expansion means) 10 and two cold generation expansion turbines T1 and T2 arranged in series with each other. Furthermore, as a feature, among the above heat exchanger group, J
The heat exchangers HEX2 and HEX6 corresponding to the second stage and the sixth stage counting from the T-valve 10 are composed of a single heat exchanger HEX2 and HEX6 as in the past, but 3 to 5
Stage heat exchanger (corresponds to intermediate heat exchanger in the present invention) HE
X3 to HEX5 are 2 with mutually equal substantial heat transfer areas.
2 heat exchangers (HEX3a, HEX3b), (HEX4
a, HEX4b) and (HEX5a, HEX5b), respectively. Also, the first stage heat exchanger closest to the JT valve 10 (corresponds to a low temperature heat exchanger in the present invention)
HEX1 is 1.0 times and 0.5 times larger than the basic heat exchanger HEX1a and this basic heat exchanger HEX1a, respectively.
Sub-heat exchanger HEX1b, HEX with twice the actual heat transfer area
1c.

【0020】なお、ここでいう「熱交換器の実質伝熱面
積」は、総括熱伝達係数Uと熱交換器の総伝熱面積Aと
の積UAで表される。また、各熱交換器の実質伝熱面積
の具体的な設定要領については後に詳述する。
[0020] The "substantive heat transfer area of the heat exchanger" herein is expressed by the product UA of the overall heat transfer coefficient U and the total heat transfer area A of the heat exchanger. Moreover, the specific setting procedure of the substantial heat transfer area of each heat exchanger will be explained in detail later.

【0021】2つ以上に分割された熱交換器HEX1,
HEX3,HEX4,HEX5においては、分割された
熱交換器同士(例えば熱交換器HEX5同士)が完全に
独立していてもよいが、例えば図3に示される熱交換器
HEX5のように、両熱交換器HEX5a,HEX5b
を一体に成形するとともに、両熱交換器HEX5a,H
EX5bの間に金属製隔壁等からなる熱伝導部5cを設
け、各熱交換器HEX5a,HEX5bでそれぞれ個別
に熱交換が行われるようにしながら、かつ両熱交換器H
EX5a,HEX5bの間で熱伝導が行われるような構
造にすれば、後述のようにより優れた効果が得られる。
[0021] Heat exchanger HEX1 divided into two or more parts,
In HEX3, HEX4, and HEX5, the divided heat exchangers (for example, heat exchangers HEX5) may be completely independent, but, for example, as in the heat exchanger HEX5 shown in FIG. Exchanger HEX5a, HEX5b
are integrally molded, and both heat exchangers HEX5a and H
A heat conductive part 5c made of a metal partition wall or the like is provided between EX5b so that heat exchange is performed individually in each heat exchanger HEX5a and HEX5b, and both heat exchangers H
If the structure is such that heat conduction occurs between EX5a and HEX5b, better effects can be obtained as described later.

【0022】このような装置において、圧縮機Cで圧縮
された高圧ヘリウムガスは、液体窒素が導入される予冷
用の6段目熱交換器HEX6を通過した後、切替弁(通
路切替手段)16が開いた状態で通路12と通路14と
に分流し、一方は熱交換器HEX5a,HEX4a,H
EX3aを通過し、他方は熱交換器HEX5b,HEX
4b,HEX3bを通過する。これに対し、切替弁16
が閉じた状態では、全てのガスが一方の熱交換器HEX
5a,HEX4a,HEX3aのみを通過する。
In such an apparatus, the high-pressure helium gas compressed by the compressor C passes through the sixth stage heat exchanger HEX6 for pre-cooling into which liquid nitrogen is introduced, and then passes through the switching valve (passage switching means) 16. is opened, the flow is divided into passage 12 and passage 14, and one is connected to heat exchangers HEX5a, HEX4a, H
EX3a, and the other is heat exchanger HEX5b, HEX
Pass through 4b and HEX3b. On the other hand, the switching valve 16
When the HEX is closed, all the gas flows through one heat exchanger HEX.
5a, HEX4a, and HEX3a only.

【0023】さらに、各通路12,14を流れるガスの
一部はバイパス通路20に入り、この通路20に設けら
れた膨張タービンT1,T2を通って後述の低圧ライン
側に送られ、これにより、必要な寒冷が発生する。この
寒冷発生量の変更、すなわちタービン流量の変更はター
ビン供給弁18の開度調節により行われる。
Furthermore, a portion of the gas flowing through each passage 12, 14 enters the bypass passage 20, passes through expansion turbines T1, T2 provided in this passage 20, and is sent to the low pressure line side, which will be described later. The necessary chilling occurs. This change in the amount of cold generation, that is, the change in the turbine flow rate, is performed by adjusting the opening degree of the turbine supply valve 18.

【0024】上記通路12,14内を流れる残りのガス
は、互いに合流した後に2段目熱交換器HEX2を通過
し、さらに通路22a,22b,22cを通じて1段目
熱交換器(本発明にいう低温熱交換器に対応)HEX1
に導入される。
The remaining gas flowing through the passages 12 and 14 joins with each other, passes through the second stage heat exchanger HEX2, and then passes through the passages 22a, 22b, and 22c to the first stage heat exchanger (referred to in the present invention). Compatible with low temperature heat exchanger) HEX1
will be introduced in

【0025】この1段目熱交換器HEX1を通過したガ
スは、これまで記した熱交換器群における熱交換により
低温状態となっているが、この状態でJT弁10に導入
され、ここで膨張して一部が液化、抽出されるとともに
、残部が通路24を通って冷凍に寄与し、通路26a,
26b,26cを通じて上記1段目熱交換器に逆送され
る。
The gas that has passed through the first stage heat exchanger HEX1 is in a low temperature state due to the heat exchange in the heat exchanger group described above, and in this state is introduced into the JT valve 10, where it is expanded. A part of the liquid is liquefied and extracted, and the remaining part passes through the passage 24 and contributes to freezing, and the remaining part passes through the passage 26a,
It is sent back to the first stage heat exchanger through 26b and 26c.

【0026】ここで、上記のように各熱交換器HEX1
a〜1cを通る高圧側通路22a〜22c及び低圧側通
路26a〜26cには、それぞれ切替弁(通路切替手段
)28〜33が設けられており、これらの開閉により、
1段目熱交換器HEX1において使用される熱交換器が
切り替えられるようになっている。
Here, as described above, each heat exchanger HEX1
The high pressure side passages 22a to 22c and the low pressure side passages 26a to 26c passing through a to 1c are provided with switching valves (passage switching means) 28 to 33, respectively, and by opening and closing these,
The heat exchanger used in the first stage heat exchanger HEX1 can be switched.

【0027】この1段目熱交換器HEX1から導出され
た低圧のガスは、2段目熱交換器HEX2を通過した後
、切替弁(通路切替手段)38が開いている状態で通路
35,36に分流し、一方の熱交換器群HEX3a,H
EX4a,HEX5aあるいは他方の熱交換器群HEX
3b,HEX4b,HEX5bを通過した後に前記圧縮
機Cに戻される。これに対し、切替弁38が閉じている
状態では全てのガスが通路35のみを通って、すなわち
一方の熱交換器群HEX3a,HEX4a,HEX5a
のみを通って圧縮機Cに戻される。
After passing through the second stage heat exchanger HEX2, the low pressure gas led out from the first stage heat exchanger HEX1 passes through the passages 35 and 36 with the switching valve (passage switching means) 38 open. One heat exchanger group HEX3a, H
EX4a, HEX5a or the other heat exchanger group HEX
After passing through HEX 3b, HEX 4b, and HEX 5b, it is returned to the compressor C. On the other hand, when the switching valve 38 is closed, all the gas passes only through the passage 35, that is, one heat exchanger group HEX3a, HEX4a, HEX5a
is returned to the compressor C through the

【0028】以上を要約すれば、この装置では、6段の
熱交換器において、温度レベルが77℃以下でかつ最も
77℃に近い膨張タービンT1を挾む3段の熱交換器(
本発明にいう中間熱交換器)、換言すれば、上記膨張タ
ービンT1の入口側に最も近い熱交換器HEX5と、上
記膨張タービンT1の出口側に最も近い熱交換器HEX
3と、両熱交換器HEX5,3に挾まれる熱交換器HE
X4とが互いに実質伝熱面積の等しい2つの熱交換器で
構成されるとともに、JT弁10に最も近い1段目熱交
換器(本発明にいう低温熱交換器)HEX1が基本熱交
換器HEX1a及び副熱交換器HEX1b,1cからな
る3つの熱交換器群で構成され、かつ、切替弁16,3
8および切替弁28〜33の開閉により、上記中間熱交
換器HEX3〜HEX5及び低温熱交換器HEX1にお
いて使用される熱交換器の変更を行うことができるよう
になっている。
To summarize the above, in this device, among the six stages of heat exchangers, a three stage heat exchanger (with a temperature level below 77°C and sandwiching the expansion turbine T1 closest to 77°C) is used.
In other words, the heat exchanger HEX5 closest to the inlet side of the expansion turbine T1 and the heat exchanger HEX5 closest to the outlet side of the expansion turbine T1
3, and the heat exchanger HE sandwiched between both heat exchangers HEX5 and 3.
The first stage heat exchanger (low temperature heat exchanger according to the present invention) HEX1, which is closest to the JT valve 10, is the basic heat exchanger HEX1a. and auxiliary heat exchangers HEX1b, 1c, and switching valves 16, 3.
By opening and closing the switching valves 8 and 28 to 33, the heat exchangers used in the intermediate heat exchangers HEX3 to HEX5 and the low temperature heat exchanger HEX1 can be changed.

【0029】次に、この装置を用いて高効率で液化冷凍
を行う方法及びその根本となる原理を説明する。
Next, a method of performing liquefaction freezing with high efficiency using this apparatus and its fundamental principle will be explained.

【0030】図2は、同図に示される点E−2を最適点
(すなわち運転に最も適した点)に選んでこの点で熱交
換器温度差Δt23,Δt45,Δt1819を最適な
値に設定し、かつこの点から温度差Δt23のみを拡大
したときの負荷L,Rおよびカルノー効率ηの推移を実
線EL1で示し、かつ、上記点E−2から温度差Δt1
819のみを拡大したときの負荷L,Rおよびカルノー
効率ηの推移を破線EL2で示したものである。
In FIG. 2, point E-2 shown in the figure is selected as the optimal point (that is, the most suitable point for operation), and the heat exchanger temperature differences Δt23, Δt45, Δt1819 are set to optimal values at this point. The solid line EL1 shows the changes in loads L, R and Carnot efficiency η when only the temperature difference Δt23 is expanded from this point, and the temperature difference Δt1 from the above point E-2 is
The broken line EL2 shows the changes in the loads L and R and the Carnot efficiency η when only 819 is expanded.

【0031】なお、ここでΔt23とは図1における点
P2とP3との温度差、Δt45とは図1における点P
4とP5との温度差、Δt1819とは図1における点
P18とP19との温度差をそれぞれ意味する。
Note that Δt23 is the temperature difference between points P2 and P3 in FIG. 1, and Δt45 is the temperature difference between points P2 and P3 in FIG.
The temperature difference between points P18 and P5 and Δt1819 mean the temperature difference between points P18 and P19 in FIG. 1, respectively.

【0032】上記図2に示されるように、上記点E−2
を最適点に選んで装置を設計し、かつ、この装置におい
て上記点E−2から温度差Δt23,Δt1819のみ
をそれぞれ個別に拡大することができれば、安定かつ比
較的高効率の運転を確保しながら、負荷割合R/Lを0
から∞までの極めて広い範囲で選択できることになる。
As shown in FIG. 2, the point E-2
If a device is designed by selecting the optimum point, and if only the temperature differences Δt23 and Δt1819 can be individually expanded from the above point E-2 in this device, stable and relatively highly efficient operation can be ensured. , load ratio R/L is 0
This means that you can choose from an extremely wide range from ∞ to ∞.

【0033】次に示す表2は、上記各点E−1,E−2
,E−3,E−4において上記各熱交換器温度差Δtで
液化および冷凍を行うのに適した熱交換器の実質伝熱面
積を算出した結果を点E−2との比で表したものである
。なお、同表においてUAiはi段目の熱交換器HEX
iの最適実質伝熱面積を意味し、ηは熱力学的仕事効率
(カルノー効率)を意味する。
Table 2 below shows the above points E-1 and E-2.
, E-3, E-4, the results of calculating the effective heat transfer area of the heat exchanger suitable for performing liquefaction and freezing with the temperature difference Δt of each heat exchanger above are expressed as a ratio with point E-2. It is something. In addition, in the same table, UAi is the i-th heat exchanger HEX.
i means the optimal real heat transfer area, and η means the thermodynamic work efficiency (Carnot efficiency).

【0034】[0034]

【表2】[Table 2]

【0035】この表に示されるように、2段目の熱交換
器HEX2については、負荷割合R/Lにかかわらずど
の点においてもほぼ同じ実質伝熱面積で良好な運転を行
うことができる。これに対し、前記膨張タービンT1を
挾む3つの熱交換器HEX3〜HEX5については、最
適点E−2における最適実質伝熱面積と比べて、点E−
3,E−4における最適実質伝熱面積は約半分となって
いる。また、1段目熱交換器(低温熱交換器)HEX1
については、最適点E−2における最適実質伝熱面積と
比べ、その他の点E−1,E−3,E−4における最適
実質伝熱面積はそれぞれ、約0.5倍、約1.5倍、約
2.5倍となっている。
As shown in this table, the second stage heat exchanger HEX2 can be operated satisfactorily with substantially the same heat transfer area at any point, regardless of the load ratio R/L. On the other hand, for the three heat exchangers HEX3 to HEX5 that sandwich the expansion turbine T1, the optimum effective heat transfer area at point E-2 is smaller than that at point E-2.
3. The optimum effective heat transfer area in E-4 is about half. In addition, the first stage heat exchanger (low temperature heat exchanger) HEX1
Regarding, compared to the optimal effective heat transfer area at the optimal point E-2, the optimal effective heat transfer areas at other points E-1, E-3, and E-4 are about 0.5 times and about 1.5 times, respectively. It is approximately 2.5 times as large.

【0036】以上をまとめると、最適点E−2を基準に
した場合、点E−1においては1段目熱交換器HEX1
の実質伝熱面積を略半分にし、点E−3においては1段
目熱交換器HEX1の実質伝熱面積を略1.5倍にする
とともに3〜5段目熱交換器HEX3〜HEX5の実質
伝熱面積を略0.5倍にし、点E−4においては1段目
熱交換器の実質伝熱面積HEX1を略2.5倍にすると
ともに3〜5段目熱交換器HEX3〜HEX5の実質伝
熱面積を略0.5倍にすることにより、R/Lが0〜∞
の広い領域で安定かつ高効率の運転を実行できることに
なる。なお、予冷用の6段目熱交換器HEX6も、最適
点E−2に比べて点E−3,E−4における最適実質伝
熱面積は減少しているが、この6段目熱交換器HEX6
における温度レベルは導入液体窒素量の調節によって変
更可能であるので、特に伝熱面積を変化させる必要はな
い。
To summarize the above, when the optimum point E-2 is used as a reference, at the point E-1, the first stage heat exchanger HEX1
At point E-3, the effective heat transfer area of the first stage heat exchanger HEX1 is approximately 1.5 times as large as that of the third to fifth stage heat exchangers HEX3 to HEX5. The heat transfer area is increased by approximately 0.5 times, and at point E-4, the effective heat transfer area HEX1 of the first stage heat exchanger is increased approximately 2.5 times, and the heat transfer area of the third to fifth stage heat exchangers HEX3 to HEX5 is By increasing the actual heat transfer area by approximately 0.5 times, R/L can be increased from 0 to ∞
This means that stable and highly efficient operation can be performed over a wide range of areas. Note that the optimum effective heat transfer area of the sixth stage heat exchanger HEX6 for pre-cooling is also reduced at points E-3 and E-4 compared to the optimum point E-2; HEX6
Since the temperature level at can be changed by adjusting the amount of liquid nitrogen introduced, there is no need to particularly change the heat transfer area.

【0037】以上説明した結果を考慮すると、前記図1
に示した装置では、次のような伝熱面積の設定および通
路切替を行うことにより、各点E−1〜E−4で良好な
運転を実現することができることになる。
Considering the results explained above, FIG.
In the apparatus shown in , it is possible to realize good operation at each point E-1 to E-4 by setting the heat transfer area and switching the passages as described below.

【0038】■  設計を行うにあたっては、3〜5段
目熱交換器HEX3〜HEX5を構成する各熱交換器H
EX3a〜HEX5aおよびHEX3b〜HEX5bの
実質伝熱面積を、それぞれ、上記最適点E−2における
3〜5段目熱交換器HEX3〜HEX5の最適実質伝熱
面積の半分に設定する。さらに、1段目熱交換器HEX
1を構成する基本熱交換器HEX1aおよび一方の副熱
交換器1bの実質伝熱面積を、上記最適点E−2におけ
る1段目熱交換器HEX1の最適実質伝熱面積と等しく
設定し、かつ、他方の副熱交換器1cの実質伝熱面積を
、上記基本熱交換器HEX1aの最適実質伝熱面積の半
分の面積に設定する。また、2,6段目熱交換器HEX
2,6の実質伝熱面積については、従来と同様に最適点
E−2における最適実質伝熱面積と等しく設定する。
[0038] When designing, each heat exchanger H constituting the 3rd to 5th stage heat exchangers HEX3 to HEX5
The substantial heat transfer areas of EX3a to HEX5a and HEX3b to HEX5b are each set to half the optimum substantial heat transfer areas of the third to fifth stage heat exchangers HEX3 to HEX5 at the optimum point E-2. Furthermore, the first stage heat exchanger HEX
The substantial heat transfer area of the basic heat exchanger HEX1a and one of the auxiliary heat exchangers 1b constituting 1 is set equal to the optimum substantial heat transfer area of the first stage heat exchanger HEX1 at the optimum point E-2, and , the substantial heat transfer area of the other sub-heat exchanger 1c is set to half the optimum substantial heat transfer area of the basic heat exchanger HEX1a. In addition, the 2nd and 6th stage heat exchanger HEX
The effective heat transfer areas 2 and 6 are set equal to the optimum effective heat transfer area at the optimum point E-2, as in the conventional case.

【0039】■  このような設計が行われた装置にお
いて、最適点E−2で運転を行う場合には、切替弁28
,29および切替弁16,38を開くとともに切替弁3
0〜33を閉じることより、3〜5段目熱交換器HEX
3〜HEX5では熱交換器HEX3a,HEX4a,H
EX5aおよび熱交換器HEX3b,HEX4b,HE
X5bの双方を用い、1段目熱交換器HEX1では基本
熱交換器HEX1aのみを用いた運転を行うようにする
■ In a device designed as described above, when operating at the optimum point E-2, the switching valve 28
, 29 and the switching valves 16, 38 are opened, and the switching valve 3 is opened.
By closing 0 to 33, the 3rd to 5th stage heat exchanger HEX
3 to HEX5, heat exchangers HEX3a, HEX4a, H
EX5a and heat exchanger HEX3b, HEX4b, HE
The first stage heat exchanger HEX1 is operated using only the basic heat exchanger HEX1a.

【0040】■  点E−1で運転を行う場合には、切
替弁32,33および切替弁16,38を開くとともに
切替弁28,29,32,33を閉じることにより、3
〜5段目熱交換器HEX3〜HEX5では熱交換器HE
X3a,HEX4a,HEX5aおよび熱交換器HEX
3b,HEX4b,HEX5bの双方を用い、1段目熱
交換器HEX1では基本熱交換器HEX1aのみを用い
た運転を行うようにする。これにより、1段目熱交換器
HEX1の実質伝熱面積は上記点E−2における実質伝
熱面積の半分となる。
■ When operating at point E-1, the switching valves 32, 33 and 16, 38 are opened, and the switching valves 28, 29, 32, 33 are closed.
~In the 5th stage heat exchanger HEX3~HEX5, the heat exchanger HE
X3a, HEX4a, HEX5a and heat exchanger HEX
3b, HEX4b, and HEX5b, and the first stage heat exchanger HEX1 is operated using only the basic heat exchanger HEX1a. As a result, the substantial heat transfer area of the first stage heat exchanger HEX1 becomes half of the substantial heat transfer area at the point E-2.

【0041】■  点E−3で運転を行う場合には、切
替弁28.29,32,33を開くとともに切替弁30
,31および切替弁16,38を閉じることにより、3
〜5段目熱交換器では熱交換器HEX3a,HEX4a
,HEX5aのみを用い、1段目熱交換器HEX1では
基本熱交換器HEX1aおよび副熱交換器HEX1cを
用いた運転を行う。これにより、3〜5段目熱交換器H
EX3〜HEX5の実質伝熱面積は上記点E−2におけ
る実質伝熱面積の半分となり、1段目熱交換器HEX1
の実質伝熱面積は上記点E−2における実質伝熱面積の
1.5倍となる。
■ When operating at point E-3, open the switching valves 28, 29, 32, and 33, and open the switching valve 30.
, 31 and the switching valves 16, 38.
~In the 5th stage heat exchanger, heat exchangers HEX3a and HEX4a
, HEX5a only, and the first stage heat exchanger HEX1 is operated using the basic heat exchanger HEX1a and the auxiliary heat exchanger HEX1c. As a result, the 3rd to 5th stage heat exchanger H
The actual heat transfer area of EX3 to HEX5 is half of the actual heat transfer area at the above point E-2, and the first stage heat exchanger HEX1
The substantial heat transfer area is 1.5 times the substantial heat transfer area at the above point E-2.

【0042】■  点E−4で運転を行う場合には、切
替弁28〜33を全て開くとともに切替弁16,38を
閉じ、3〜5段目熱交換器では熱交換器3a,4a,5
aのみを用い、1段目熱交換器では全ての熱交換器、す
なわち基本熱交換器1aおよび副熱交換器HEX1b,
1cを用いた運転を行う。これにより、3〜5段目熱交
換器HEX3〜HEX5の実質伝熱面積は上記点E−2
における実質伝熱面積の半分となり、1段目熱交換器H
EX1の実質伝熱面積は上記点E−2における実質伝熱
面積の2.5倍となる。
■ When operating at point E-4, all switching valves 28 to 33 are opened and switching valves 16 and 38 are closed, and in the third to fifth stage heat exchangers, heat exchangers 3a, 4a, and 5 are closed.
In the first stage heat exchanger, all the heat exchangers, i.e., the basic heat exchanger 1a and the auxiliary heat exchanger HEX1b, are used.
Perform operation using 1c. As a result, the actual heat transfer area of the third to fifth stage heat exchangers HEX3 to HEX5 is the point E-2 above.
is half of the actual heat transfer area in the first stage heat exchanger H.
The substantial heat transfer area of EX1 is 2.5 times the substantial heat transfer area at the above point E-2.

【0043】以上の■〜■の操作を実行することにより
、各点E−1〜E−4においてその点に適した実質伝熱
面積でもって良好な運転を実現することができる。より
具体的に、例えば上記最適点E−2から点E−3に運転
状態を移行したい場合には、上記■の操作を行って安全
側(すなわち熱交換器温度差Δt1819が拡大する側
)に熱交換器の実質伝熱面積を変更し、その後、JT弁
10の開度を上げるといった調節を行って運転状態を変
更すればよい。ここで、従来装置のように伝熱面積が不
変のままJT弁10を開いて負荷割合R/Lを上げよう
とすると、熱交換器温度差Δt23が0あるいは逆転し
て運転状態が不安定となる不都合が生じるが、本発明装
置のように予め伝熱面積を安全な側に変更しておくこと
により、安定性および高効率性を保持しながら負荷割合
R/Lを変更することが可能となる。
By carrying out the above operations (1) to (2), it is possible to realize good operation at each point E-1 to E-4 with a substantial heat transfer area suitable for that point. More specifically, for example, if you want to shift the operating state from the above optimum point E-2 to point E-3, perform the operation ① above to move to the safe side (that is, the side where the heat exchanger temperature difference Δt1819 increases). The operating state may be changed by changing the actual heat transfer area of the heat exchanger and then making adjustments such as increasing the opening degree of the JT valve 10. Here, if an attempt is made to open the JT valve 10 and increase the load ratio R/L while the heat transfer area remains unchanged as in the conventional device, the heat exchanger temperature difference Δt23 will be 0 or reversed and the operating state will become unstable. However, by changing the heat transfer area to a safe side in advance as in the device of the present invention, it is possible to change the load ratio R/L while maintaining stability and high efficiency. Become.

【0044】なお、上記最適点E−2から点E−1へ移
行する場合には、上記■の操作を行って1段目熱交換器
HEX1の実質伝熱面積を半分にしなくても、JT弁1
0の絞り操作を行うだけで移行は可能であるが、上記の
ように実質伝熱面積を半分にすれば、それだけ実質伝熱
面積が最適値に近づくので、ヘリウムの液化効率はより
向上することとなる。
In addition, when moving from the optimum point E-2 to the point E-1, even if the actual heat transfer area of the first stage heat exchanger HEX1 is not halved by performing the operation (2) above, the JT Valve 1
Although it is possible to make the transition by simply performing a throttle operation of 0, if the effective heat transfer area is halved as described above, the effective heat transfer area will approach the optimum value, and the helium liquefaction efficiency will be further improved. becomes.

【0045】比較例として、図2に、負荷割合R/Lが
無限大(すなわち液化負荷Lが0)であるような点F−
1を最適点として設定し、この最適点F−1から熱交換
器温度差Δt23のみを拡大させてR/Lが0の点F−
3へ移行したときの軌跡を実線FLで示すとともに、次
の表3に、両点F−1,F−3における各熱交換器の最
適実質伝熱面積を示す。
As a comparative example, FIG. 2 shows a point F- where the load ratio R/L is infinite (that is, the liquefaction load L is 0).
1 is set as the optimal point, and from this optimal point F-1, only the heat exchanger temperature difference Δt23 is expanded to reach a point F- where R/L is 0.
3 is shown by the solid line FL, and Table 3 below shows the optimum substantial heat transfer area of each heat exchanger at both points F-1 and F-3.

【0046】[0046]

【表3】[Table 3]

【0047】なお、表3において括弧が付されていない
実質伝熱面積および圧縮機動力の値は前記最適点E−2
における値との比の値であり、括弧が付されている値は
点F−1における値との比の値である。
[0047] In Table 3, the values of the actual heat transfer area and compressor power that are not in parentheses are at the optimum point E-2.
The value in parentheses is the ratio to the value at point F-1.

【0048】図2における実線FLと実線EL1および
破線EL2とを参照して明らかなように、本発明装置に
よれば最適点を様々な点においても負荷割合R/Lを約
0から∞まで移行させることができるが、冷凍負荷Rお
よび液化負荷Lの総量R+Lを多く確保するためには、
最適点を負荷割合R/Lが1以下のなるべく小さな値(
例えばE−2)に設定することが望ましい。換言すれば
、上記最適点を負荷割合R/Lが∞の点に近付けるほど
、負荷総量R+Lについて従来装置との差は小さくなる
As is clear from the solid line FL, solid line EL1, and broken line EL2 in FIG. 2, according to the apparatus of the present invention, the load ratio R/L can be shifted from about 0 to ∞ even at various optimal points. However, in order to ensure a large total amount R+L of the refrigeration load R and liquefaction load L,
The optimum point is determined by setting the load ratio R/L to a value as small as possible below 1 (
For example, it is desirable to set it to E-2). In other words, the closer the optimum point is to the point where the load ratio R/L is ∞, the smaller the difference from the conventional device in the total load amount R+L becomes.

【0049】また、上記のような装置において、前記図
3に示したように、両熱交換器HEX5a,HEX5b
同士の間で熱伝導が行われるようにすれば、例えば一方
の熱交換器HEX5aのみで運転が行われている間、こ
の熱交換器HEX5aからの熱伝導で他方の熱交換器H
EX5bも冷却されることになるため、次に両熱交換器
HEX5a,HEX5bで運転する状態に切り替えた際
にも熱的ショックが生じにくく、円滑に運転状態切替を
行うことが可能になる。さらに、両熱交換器5a,5b
を一体化することにより、装置も小型化される利点があ
る。
In addition, in the above-mentioned apparatus, as shown in FIG. 3, both heat exchangers HEX5a and HEX5b
If heat conduction is performed between the two heat exchangers, for example, while only one heat exchanger HEX5a is operating, heat conduction from this heat exchanger HEX5a will cause the other heat exchanger H
Since EX5b is also cooled, thermal shock is less likely to occur even when switching to a state in which both heat exchangers HEX5a and HEX5b are operated next, making it possible to smoothly switch the operating state. Furthermore, both heat exchangers 5a and 5b
By integrating the two, there is an advantage that the device can also be made smaller.

【0050】次に、第2実施例を図4および図5に基づ
いて説明する。
Next, a second embodiment will be explained based on FIGS. 4 and 5.

【0051】ここでは、5タービンサイクルで熱交換器
が10段の液化冷凍装置について示している。
[0051] Here, a liquefaction refrigeration system with 5 turbine cycles and 10 stages of heat exchangers is shown.

【0052】図において、C1,C2は直列に配された
2段の圧縮機である。また、7〜10段目熱交換器HE
X7〜HEX10が予冷用熱交換器であり、これらには
予冷用液体窒素が通されるとともに、寒冷発生用膨張タ
ービンT3,T4が直列に配された通路40が通され、
この通路40にはタービン供給弁42が設けられている
In the figure, C1 and C2 are two-stage compressors arranged in series. In addition, the 7th to 10th stage heat exchanger HE
X7 to HEX10 are heat exchangers for pre-cooling, through which liquid nitrogen for pre-cooling is passed, and a passage 40 in which expansion turbines T3 and T4 for generating cold are arranged in series is passed,
A turbine supply valve 42 is provided in this passage 40 .

【0053】前記第1実施例装置と同じく、窒素の沸点
よりも低温でかつこの沸点に最も近い温度レベルをもつ
膨張タービンT1を挾む3つの熱交換器HEX4〜HE
X6は、それぞれ、互いに等しい実質伝熱面積をもつ熱
交換器HEX4a,HEX4b、熱交換器HEX5a,
HEX5b、熱交換器HEX6a,HEX6bで構成さ
れている。
As in the first embodiment, three heat exchangers HEX4 to HE sandwich an expansion turbine T1 having a temperature level lower than the boiling point of nitrogen and closest to this boiling point.
X6 are heat exchangers HEX4a, HEX4b, heat exchangers HEX5a, and HEX5a, which have substantially equal heat transfer areas, respectively.
It is composed of HEX5b and heat exchangers HEX6a and HEX6b.

【0054】一方、1段目熱交換器HEX1と2段目熱
交換器HEX2との間の部分における高圧ライン中には
、寒冷発生用膨張タービンT5が設けられており、この
膨張タービンT5をバイパスする通路52にタービン流
量調節弁54が設けられている。そして、この膨張ター
ビンT5を挾む2つの熱交換器HEX1,HEX2が、
それぞれ、基本熱交換器HEX1a,HEX2aおよび
副熱交換器HEX1b,HEX2bで構成されている。 また、上記2段目熱交換器HEX2の分割にともない、
この部分での高圧ラインおよび低圧ラインも、それぞれ
2つの通路44,46、通路56,58に分岐しており
、一方の熱交換器HEX2aに通路44,56が、他方
の熱交換器HEX2bに通路46,58がそれぞれ通っ
ている。また、各通路44,46,56,58には切替
弁48,50,60,62が設けられている。
On the other hand, an expansion turbine T5 for cold generation is provided in the high pressure line between the first stage heat exchanger HEX1 and the second stage heat exchanger HEX2, and this expansion turbine T5 is bypassed. A turbine flow rate control valve 54 is provided in the passage 52 where the turbine flow rate is controlled. Two heat exchangers HEX1 and HEX2 sandwich this expansion turbine T5,
Each is composed of basic heat exchangers HEX1a, HEX2a and auxiliary heat exchangers HEX1b, HEX2b. In addition, with the division of the second stage heat exchanger HEX2,
The high-pressure line and low-pressure line in this part also branch into two passages 44, 46 and 56, 58, respectively, with passages 44, 56 in one heat exchanger HEX2a and passages in the other heat exchanger HEX2b. 46 and 58 are passing through respectively. Further, each passage 44, 46, 56, 58 is provided with a switching valve 48, 50, 60, 62.

【0055】次に、この装置を高効率で運転する方法及
びその根本となる原理を説明する。
Next, a method for operating this device with high efficiency and its underlying principle will be explained.

【0056】図5は、同図に示される点D−2,B−1
,C−1をそれぞれ最適点としてこの点で熱交換器温度
差Δt23,Δt45,Δt1819を最適な値に設定
し、かつ各点から温度差Δt45のみを拡大したときの
負荷L,Rおよびカルノー効率ηの推移をそれぞれ実線
DL1,BL1,CL1で示し、かつ、上記各点から温
度差Δt1819のみを拡大したときの負荷L,Rおよ
びカルノー効率ηの推移をそれぞれ破線DL2,BL2
,CL2で示したものである。また、次に示す表4〜表
6は、上記図5に示された各点において上記各熱交換器
温度差Δtで液化および冷凍を行うのに適した熱交換器
の実質伝熱面積を算出した結果をそれぞれ、点D−2,
B−1,C−1との比で表したものである。
FIG. 5 shows points D-2 and B-1 shown in the figure.
, C-1 are respectively the optimal points, and the heat exchanger temperature differences Δt23, Δt45, Δt1819 are set to the optimal values at these points, and only the temperature difference Δt45 is expanded from each point.Load L, R and Carnot efficiency Changes in η are shown by solid lines DL1, BL1, and CL1, respectively, and changes in loads L and R and Carnot efficiency η when only the temperature difference Δt1819 is expanded from each point above are shown by broken lines DL2 and BL2, respectively.
, CL2. In addition, Tables 4 to 6 shown below calculate the actual heat transfer area of the heat exchanger suitable for performing liquefaction and freezing with the temperature difference Δt of each heat exchanger at each point shown in Figure 5 above. The results are shown as points D-2,
It is expressed as a ratio between B-1 and C-1.

【0057】[0057]

【表4】[Table 4]

【0058】[0058]

【表5】[Table 5]

【0059】[0059]

【表6】[Table 6]

【0060】なお、これらの表および図5において「T
3,T4停止」および「T5停止」とは、それぞれ、膨
張タービンT3,T4を停止した運転、膨張タービンT
5を停止した運転を意味する。
[0060] In these tables and FIG.
3, T4 stop" and "T5 stop" respectively mean an operation in which expansion turbines T3 and T4 are stopped, and an operation in which expansion turbine T4 is stopped.
5 is stopped.

【0061】これらの表に示されるように、7〜10段
目および3段目の熱交換器HEX2については、どの点
においてもほぼ同じ実質伝熱面積で良好な運転を行うこ
とができる。これに対し、前記実施例と同様、前記膨張
タービンT1を挾む3つの熱交換器(中間熱交換器)H
EX4〜HEX6については、最適点D−2,B−1,
C−1における最適実質伝熱面積と比べて、点D−3,
B−2,C−2における最適実質伝熱面積は約半分とな
っている。また、1,2段目熱交換器(低温熱交換器)
HEX1,HEX2については、最適点D−2,B−1
,C−1における最適実質伝熱面積と比べ、点D−1,
B−0,C−0における最適実質伝熱面積は約0.5倍
、点D−3,B−2,C−2における最適実質伝熱面積
は約1.5倍となっている。
As shown in these tables, the heat exchangers HEX2 in the 7th to 10th stages and the 3rd stage can be operated satisfactorily with substantially the same heat transfer area at all points. On the other hand, similarly to the embodiment, three heat exchangers (intermediate heat exchangers) H sandwiching the expansion turbine T1.
For EX4 to HEX6, the optimal points D-2, B-1,
Compared to the optimum effective heat transfer area at C-1, points D-3,
The optimum substantial heat transfer area in B-2 and C-2 is about half. In addition, 1st and 2nd stage heat exchangers (low temperature heat exchangers)
For HEX1 and HEX2, optimal points D-2 and B-1
, C-1, point D-1,
The optimum substantial heat transfer area at points B-0 and C-0 is approximately 0.5 times, and the optimum substantial heat transfer area at points D-3, B-2, and C-2 is approximately 1.5 times.

【0062】以上をまとめると、最適点D−2,B−1
,C−1をそれぞれ基準にした場合、各点D−1,B−
0,C−0においては1,2段目熱交換器HEX1,2
の実質伝熱面積を略半分にし、各点D−3,B−2,C
−2においては1段目熱交換器HEX1の実質伝熱面積
を略1.5倍にするとともに3〜5段目熱交換器HEX
3〜HEX5の実質伝熱面積を略0.5倍にすることに
より、R/Lが0〜∞の広い領域で安定かつ高効率の運
転を実行できることになる。
To summarize the above, optimal points D-2, B-1
, C-1 as a reference, each point D-1, B-
For 0, C-0, 1st and 2nd stage heat exchangers HEX1, 2
The effective heat transfer area of is approximately halved, and each point D-3, B-2, C
-2, the actual heat transfer area of the first stage heat exchanger HEX1 is approximately 1.5 times, and the third to fifth stage heat exchanger HEX1 is
By increasing the effective heat transfer area of 3 to HEX5 by approximately 0.5 times, stable and highly efficient operation can be performed in a wide range of R/L from 0 to ∞.

【0063】なお、上記図5には、比較例として、負荷
割合R/L=∞である点Aを最適点として運転状態を変
化させたときのR/Lおよびカルノー効率ηの推移を実
線ALで示し、表6には、上記点Aにおける最適実質伝
熱係数を示しておく。
As a comparative example, FIG. 5 shows the transition of R/L and Carnot efficiency η when the operating conditions are changed using point A, where the load ratio R/L=∞, is the optimum point. Table 6 shows the optimum effective heat transfer coefficient at the above point A.

【0064】以上説明した結果によれば、前記図4に示
した装置では、次のような伝熱面積の設定および通路切
替を行うことにより、各点で良好な運転を実現すること
ができる。
According to the results described above, in the apparatus shown in FIG. 4, good operation can be achieved in each respect by setting the heat transfer area and switching the passages as described below.

【0065】■  設計を行うにあたっては、4〜6段
目熱交換器HEX4〜HEX6を構成する各熱交換器H
EX4a〜HEX6aおよびHEX4b〜HEX6bの
実質伝熱面積を、それぞれ、各最適点D−2,B−1,
C−1における4〜6段目熱交換器HEX4〜HEX6
の最適実質伝熱面積の半分に設定するとともに、1,2
段目熱交換器HEX1,2を構成する基本熱交換器HE
X1a,HEX2aの実質伝熱面積を、上記各最適点に
おける1,2段目熱交換器HEX1,2の最適実質伝熱
面積の半分に設定し、かつ、副熱交換器HEX1b,H
EX2bの実質伝熱面積を、上記最適点における1,2
段目熱交換器HEX1,2の最適実質伝熱面積と等しく
設定する。また、他の熱交換器の実質伝熱面積について
は、従来と同様に各最適点における最適実質伝熱面積と
等しく設定する。
■ When designing, each heat exchanger H constituting the 4th to 6th stage heat exchangers HEX4 to HEX6
The effective heat transfer areas of EX4a to HEX6a and HEX4b to HEX6b are set at each optimum point D-2, B-1,
4th to 6th stage heat exchangers HEX4 to HEX6 in C-1
set to half of the optimum effective heat transfer area, and 1,2
Basic heat exchanger HE that constitutes stage heat exchangers HEX1 and 2
The effective heat transfer areas of X1a and HEX2a are set to half the optimum effective heat transfer areas of the first and second stage heat exchangers HEX1 and HEX2 at each of the above optimum points, and the sub heat exchangers HEX1b and H
The effective heat transfer area of EX2b is set to 1, 2 at the above optimum point.
It is set equal to the optimum effective heat transfer area of the stage heat exchangers HEX1 and HEX2. Further, the substantial heat transfer areas of the other heat exchangers are set equal to the optimum substantial heat transfer areas at each optimum point, as in the conventional case.

【0066】■  最適点D−2,B−1,C−1で運
転を行う場合には、切替弁28,29、切替弁16,3
8、および切替弁48,60を開くとともに、切替弁3
0〜33および切替弁50,62を閉じることにより、
4〜6段目熱交換器HEX4〜HEX6では熱交換器H
EX4a,HEX5a,HEX6aおよび熱交換器HE
X4b,HEX5b,HEX6bの双方を用い、1,2
段目熱交換器HEX1,2では基本熱交換器HEX1a
,HEX2aのみを用いた運転を行うようにする。
■ When operating at the optimum points D-2, B-1, C-1, the switching valves 28, 29 and the switching valves 16, 3
8, and the switching valves 48 and 60, and the switching valve 3
By closing 0 to 33 and the switching valves 50 and 62,
In the 4th to 6th stage heat exchangers HEX4 to HEX6, heat exchanger H
EX4a, HEX5a, HEX6a and heat exchanger HE
Using both X4b, HEX5b, HEX6b, 1,2
In the stage heat exchangers HEX1 and 2, the basic heat exchanger HEX1a
, so that operation is performed using only HEX2a.

【0067】■  点D−1,B−0,C−0で運転を
行う場合には、切替弁30,31、切替弁16,38、
および切替弁50,62を開くとともに切替弁28,2
9,32,33および切替弁48,60を閉じることに
より、4〜6段目熱交換器HEX4〜HEX6では熱交
換器HEX4a,HEX5a,HEX6aおよび熱交換
器HEX4b,HEX5b,HEX6bの双方を用い、
1,2段目熱交換器HEX1では副熱交換器HEX1b
,HEX2bのみを用いた運転を行う。これにより、1
,2段目熱交換器HEX1,2の実質伝熱面積は上記最
適点D−2,B−1,C−1における実質伝熱面積の半
分となる。
■ When operating at points D-1, B-0, C-0, switching valves 30, 31, switching valves 16, 38,
and the switching valves 50, 62 are opened and the switching valves 28, 2 are opened.
9, 32, 33 and switching valves 48, 60, the fourth to sixth stage heat exchangers HEX4 to HEX6 use both heat exchangers HEX4a, HEX5a, HEX6a and heat exchangers HEX4b, HEX5b, HEX6b,
In the 1st and 2nd stage heat exchanger HEX1, the auxiliary heat exchanger HEX1b
, perform operation using only HEX2b. This results in 1
, the substantial heat transfer area of the second-stage heat exchangers HEX1, HEX2 is half of the substantial heat transfer area at the optimum points D-2, B-1, C-1.

【0068】■  点D−3,B−2,C−2で運転を
行う場合には、切替弁28〜31、切替弁48,60、
および切替弁50,62を開くとともに切替弁16,3
8および切替弁32,33を閉じることにより、4〜6
段目熱交換器では熱交換器HEX4a,HEX5a,H
EX6aのみを用い、1,2段目熱交換器HEX1,H
EX2では基本熱交換器HEX1a,HEX2aおよび
副熱交換器HEX1b,2bの双方を用いた運転を行う
。 これにより、4〜6段目熱交換器HEX4〜HEX6の
実質伝熱面積は上記最適点D−2,B−1,C−1にお
ける実質伝熱面積の半分となり、1,2段目熱交換器H
EX1,HEX2の実質伝熱面積は上記最適点D−2,
B−1,C−1における実質伝熱面積の1.5倍となる
■ When operating at points D-3, B-2, and C-2, switching valves 28 to 31, switching valves 48, 60,
and the switching valves 50, 62 are opened and the switching valves 16, 3 are opened.
8 and switching valves 32 and 33, 4 to 6
In the stage heat exchanger, heat exchangers HEX4a, HEX5a, H
Using only EX6a, 1st and 2nd stage heat exchangers HEX1,H
In EX2, operation is performed using both the basic heat exchangers HEX1a and HEX2a and the auxiliary heat exchangers HEX1b and 2b. As a result, the effective heat transfer area of the 4th to 6th stage heat exchangers HEX4 to HEX6 becomes half of the effective heat transfer area at the above optimal points D-2, B-1, and C-1, and the 1st and 2nd stage heat exchangers Vessel H
The actual heat transfer area of EX1 and HEX2 is the optimum point D-2,
This is 1.5 times the substantial heat transfer area in B-1 and C-1.

【0069】以上の■〜■の操作を実行することにより
、各点においてその点に適した実質伝熱面積でもって良
好な運転を実現することができる。
By carrying out the above operations (1) to (2), it is possible to realize good operation at each point with a substantial heat transfer area suitable for that point.

【0070】なお、前記第1実施例では、1段目熱交換
器HEX1に、基本熱交換器HEX1aに比して実質伝
熱面積がそれぞれ1.0倍、0.5倍の2つの副熱交換
器HEX1b,HEX1cが設けられたものを示したが
、この1段目熱交換器HEX1における副熱交換器の個
数、およびその実質伝熱面積の基本熱交換器に対する比
は、冷凍負荷Rが0の運転状態で最適な実質伝熱面積を
考慮して適宜設定すればよい。例えば、最適点が前記図
2に示される点E−2よりも負荷割合R/Lの高い値に
設定したために、1段目熱交換器HEX1の実質伝熱面
積を上記最適点におけるそれの2.0倍にすることによ
り冷凍負荷が0の点(すなわちR/L=∞の点)に到達
できるような場合には、基本熱交換器と、これと略等し
い伝熱面積をもつ1個の副熱交換器とで1段目熱交換器
HEX1を構成するようにしてもよい。これは、前記第
2実施例で示した装置についても同様である。
[0070] In the first embodiment, the first stage heat exchanger HEX1 has two sub-heats whose effective heat transfer areas are 1.0 times and 0.5 times that of the basic heat exchanger HEX1a, respectively. Although the example in which exchangers HEX1b and HEX1c are provided is shown, the number of sub-heat exchangers in this first-stage heat exchanger HEX1 and the ratio of their actual heat transfer area to the basic heat exchanger are determined depending on the refrigeration load R. It may be set appropriately in consideration of the optimum substantial heat transfer area in the zero operating state. For example, since the optimum point is set to a higher value of the load ratio R/L than the point E-2 shown in FIG. If the refrigeration load can reach a point of 0 (that is, the point of R/L = ∞) by multiplying by .0, the basic heat exchanger and one unit with approximately the same heat transfer area The first stage heat exchanger HEX1 may be configured with a sub-heat exchanger. This also applies to the device shown in the second embodiment.

【0071】また、本発明における各熱交換器の実質伝
熱面積の設定は厳密に行われていなくてもよく、従来か
ら一般に上記実質伝熱面積の設定で存在する誤差と同程
度の誤差を含んでいてもよい。
Furthermore, the setting of the effective heat transfer area of each heat exchanger in the present invention does not have to be carried out strictly, and it is possible to have an error of the same degree as the error that generally exists in the setting of the above-mentioned effective heat transfer area. May contain.

【0072】また、本発明において液化冷凍の対象とな
るガスはヘリウムに限らず、その他、窒素よりも沸点の
低いガス、例えば水素やネオンの液化冷凍装置としても
上記と同様の効果を発揮することが可能である。
Furthermore, in the present invention, the gas to be liquefied and frozen is not limited to helium, but other gases having a boiling point lower than nitrogen, such as hydrogen or neon, can also be used in the liquefaction refrigeration device to achieve the same effect as described above. is possible.

【0073】以上の事由に基づき、本発明における熱交
換器の伝熱面積の設定をまとめると次のようになる。
Based on the above reasons, the setting of the heat transfer area of the heat exchanger in the present invention can be summarized as follows.

【0074】(1) 複数の膨張タービンのうち、温度
レベルが窒素の沸点よりも低くかつこの沸点に最も近い
膨張タービン(図例ではいずれもタービンT1)を挾む
3つの熱交換器(本発明でいう中間熱交換器)を2つに
分割し、分割された各々の熱交換器の実質伝熱面積を最
適点における最適実質伝熱面積の約半分に設定する。
(1) Among the plurality of expansion turbines, three heat exchangers (in accordance with the present invention The intermediate heat exchanger) is divided into two, and the substantial heat transfer area of each divided heat exchanger is set to approximately half the optimum substantial heat transfer area at the optimum point.

【0075】(2) 高圧ライン中に膨張タービンが設
けられていない場合(第1実施例で示した装置)には、
JT弁10に最も近い1段目熱交換器(本発明にいう低
温熱交換器)を、基本熱交換器および1以上の副熱交換
器とで構成し、基本熱交換器の実質伝熱面積を最適点に
おける最適実質伝熱面積に略等しく設定するとともに、
副熱交換器の実質伝熱面積を上記基本熱交換器の実質伝
熱面積の0.5倍〜1.0倍に設定する。
(2) When an expansion turbine is not provided in the high pressure line (device shown in the first embodiment),
The first stage heat exchanger (low-temperature heat exchanger according to the present invention) closest to the JT valve 10 is composed of a basic heat exchanger and one or more auxiliary heat exchangers, and the actual heat transfer area of the basic heat exchanger is is set approximately equal to the optimal effective heat transfer area at the optimal point, and
The substantial heat transfer area of the auxiliary heat exchanger is set to 0.5 to 1.0 times the substantial heat transfer area of the basic heat exchanger.

【0076】(3) 高圧ライン中に膨張タービンが設
けられている場合(第2実施例で示した装置)には、上
記膨張タービン(図例では膨張タービンT5)を挾む2
つの熱交換器(本発明にいう低温熱交換器)を、基本熱
交換器および1以上の副熱交換器とで構成し、基本熱交
換器の実質伝熱面積を最適点における最適実質伝熱面積
に略等しく設定するとともに、副熱交換器の実質伝熱面
積を上記基本熱交換器の実質伝熱面積の0.5倍〜1.
0倍に設定する。
(3) When an expansion turbine is provided in the high pressure line (the device shown in the second embodiment), two
One heat exchanger (low-temperature heat exchanger according to the present invention) is composed of a basic heat exchanger and one or more auxiliary heat exchangers, and the effective heat transfer area of the basic heat exchanger is optimized at the optimum point. The area is set approximately equal to the area, and the substantial heat transfer area of the sub-heat exchanger is set to be 0.5 to 1.5 times the substantial heat transfer area of the basic heat exchanger.
Set to 0x.

【0077】[0077]

【発明の効果】以上のように本発明は、3つの中間熱交
換器を互いに略等しい伝熱面積をもつ2つの熱交換器で
構成するとともに、低温熱交換器を基本熱交換器と1以
上の副熱交換器とで構成し、上記中間熱交換器及び低温
熱交換器において使用される熱交換器を切替えることに
より、上記各熱交換器の実質伝熱面積を変更できるよう
にしたものであるので、これらの実質伝熱面積を、所望
の負荷割合R/Lで運転するのに適した実質伝熱面積に
設定することにより、従来のようにJT弁の開度調節等
によってのみ運転状態の変更が行われる装置に比べ、運
転可能な負荷割合R/Lの範囲を大幅に拡大することが
でき、かつ、各点において安定した高効率の冷凍液化動
作および多くの液化・冷凍の負荷総量R+Lを確保する
ことができる効果がある。しかも、伝熱面積の変更を要
しない熱交換器については従来と同様に単一の熱交換器
を使用できるので、装置の大型化が防がれる。
Effects of the Invention As described above, the present invention consists of three intermediate heat exchangers consisting of two heat exchangers having substantially equal heat transfer areas, and a low-temperature heat exchanger that is connected to a basic heat exchanger and one or more heat exchangers. It consists of a sub-heat exchanger and a sub-heat exchanger, and by switching the heat exchanger used in the intermediate heat exchanger and the low-temperature heat exchanger, the actual heat transfer area of each heat exchanger can be changed. Therefore, by setting these effective heat transfer areas to an effective heat transfer area suitable for operation at the desired load ratio R/L, the operating state can be adjusted only by adjusting the opening of the JT valve as in the past. Compared to equipment that undergoes changes, the range of operable load ratios R/L can be greatly expanded, and stable and highly efficient refrigeration/liquefaction operation at each point and large total liquefaction/refrigeration loads can be achieved. This has the effect of ensuring R+L. Moreover, since a single heat exchanger that does not require a change in the heat transfer area can be used as in the conventional case, it is possible to prevent the device from increasing in size.

【0078】さらに、上記中間熱交換器や低温熱交換器
を、この熱交換器を構成する熱交換器同士で熱伝導が行
われるように構成することにより、一方の熱交換器を用
いて運転している場合でも、この熱交換器からの伝熱に
より、運転されていない他方の熱交換器を冷却しておく
ことができるので、使用熱交換器を切替える際の熱的シ
ョックを抑え、これにより、運転状態の切替を円滑化す
ることができる効果がある。
Furthermore, by configuring the intermediate heat exchanger and low-temperature heat exchanger so that heat conduction occurs between the heat exchangers constituting the heat exchanger, it is possible to operate using one of the heat exchangers. Even if the heat exchanger is in use, the heat transfer from this heat exchanger can keep the other heat exchanger that is not in operation cool, reducing the thermal shock when switching between heat exchangers. This has the effect of making it possible to smoothly switch the operating state.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1実施例におけるヘリウムの液化冷
凍装置のフロー図である。
FIG. 1 is a flow diagram of a helium liquefaction refrigeration apparatus in a first embodiment of the present invention.

【図2】上記装置における負荷割合R/Lの変更に伴う
カルノー効率および各熱交換器の温度差の推移を示すグ
ラフである。
FIG. 2 is a graph showing changes in Carnot efficiency and temperature difference between heat exchangers as the load ratio R/L changes in the above device.

【図3】上記装置に設けられた5段目熱交換器の伝熱構
造を示す説明図である。
FIG. 3 is an explanatory diagram showing a heat transfer structure of a fifth stage heat exchanger provided in the above device.

【図4】第2実施例におけるヘリウムの液化冷凍装置の
フロー図である。
FIG. 4 is a flow diagram of a helium liquefaction refrigeration apparatus in a second embodiment.

【図5】上記装置における負荷割合R/Lの変更に伴う
カルノー効率の推移を示すグラフである。
FIG. 5 is a graph showing changes in Carnot efficiency as the load ratio R/L changes in the above device.

【図6】従来のヘリウム液化装置の一例を示すフロー図
である。
FIG. 6 is a flow diagram showing an example of a conventional helium liquefaction device.

【図7】上記装置における負荷割合R/Lの限界を示す
グラフである。
FIG. 7 is a graph showing the limit of the load ratio R/L in the above device.

【符号の説明】[Explanation of symbols]

10  JT弁(膨張液化手段) 16,38  切替弁(切替手段) 28,29,30,31,32,33  切替弁(切替
手段) 48,50,60,62  切替弁(切替手段)C  
圧縮機(圧縮手段) HEX1〜HEX10  熱交換器 HEX1a,HEX2a  基本熱交換器HEX1b,
HEX1c,HEX2b  副熱交換器HEX3a,H
EX3b  3段目熱交換器を構成する熱交換器 HEX4a,HEX4b  4段目熱交換器を構成する
熱交換器 HEX5a,HEX5b  5段目熱交換器を構成する
熱交換器 HEX6a,HEX6b  6段目熱交換器を構成する
熱交換器 5c  熱伝導部 T1〜T5  膨張タービン
10 JT valve (expansion liquefaction means) 16, 38 switching valve (switching means) 28, 29, 30, 31, 32, 33 switching valve (switching means) 48, 50, 60, 62 switching valve (switching means) C
Compressor (compression means) HEX1 to HEX10 Heat exchanger HEX1a, HEX2a Basic heat exchanger HEX1b,
HEX1c, HEX2b Secondary heat exchanger HEX3a, H
EX3b Heat exchangers HEX4a, HEX4b forming the 3rd stage heat exchanger Heat exchangers HEX5a, HEX5b forming the 4th stage heat exchanger Heat exchangers HEX6a, HEX6b forming the 5th stage heat exchanger 6th stage heat Heat exchanger 5c constituting the exchanger Heat conduction parts T1 to T5 Expansion turbine

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  処理対象ガスを圧縮する圧縮手段と、
直列に配された複数の熱交換器と、これらの熱交換器を
通過した高圧のガスを膨張させてその少なくとも一部を
液化させる膨張液化手段と、高圧側のガスの一部を膨張
させて寒冷を発生させ、低圧側へ送り込む膨張タービン
とを備え、上記圧縮手段で圧縮された高圧のガスを上記
複数の熱交換器における熱交換で冷却し、上記膨張液化
手段による膨張で所望の割合のガスを液化し、残りのガ
スを冷凍に寄与させ、低圧状態で上記熱交換器に通して
上記圧縮手段へ返還するように構成された液化冷凍装置
において、上記熱交換器群の中で、温度レベルが窒素の
沸点以下でかつ最も窒素の沸点に近い膨張タービンを挾
む3つの中間熱交換器を、互いに並列に配され、かつ互
いに略等しい実質伝熱面積をもつ2つの熱交換器で構成
するとともに、上記膨張液化手段に最も近い低温熱交換
器を、基本熱交換器と、この基本熱交換器と並列に配さ
れ、同基本熱交換器の0.5〜1.0倍の実質伝熱面積
を有する1以上の副熱交換器とで構成し、上記中間熱交
換器及び低温熱交換器において使用される熱交換器を切
替る切替手段を備えたことを特徴とする液化冷凍装置。
Claim 1: Compression means for compressing a gas to be treated;
A plurality of heat exchangers arranged in series, an expansion liquefaction means that expands high pressure gas that has passed through these heat exchangers and liquefies at least a part of it, and expands a part of the gas on the high pressure side. and an expansion turbine that generates cold and sends it to the low-pressure side, the high-pressure gas compressed by the compression means is cooled by heat exchange in the plurality of heat exchangers, and is expanded to a desired proportion by the expansion and liquefaction means. In the liquefaction refrigeration apparatus configured to liquefy gas, make the remaining gas contribute to refrigeration, pass it through the heat exchanger in a low pressure state, and return it to the compression means, in the heat exchanger group, the temperature It consists of three intermediate heat exchangers sandwiching an expansion turbine whose level is below the boiling point of nitrogen and closest to the boiling point of nitrogen, and two heat exchangers that are arranged in parallel and have substantially equal heat transfer areas. At the same time, the low-temperature heat exchanger closest to the expansion liquefaction means is arranged in parallel with the basic heat exchanger, and has an effective transfer rate of 0.5 to 1.0 times that of the basic heat exchanger. A liquefaction refrigeration system comprising at least one sub-heat exchanger having a thermal area, and comprising a switching means for switching the heat exchanger used in the intermediate heat exchanger and the low-temperature heat exchanger.
【請求項2】  処理対象ガスを圧縮する圧縮手段と、
直列に配された複数の熱交換器と、これらの熱交換器を
通過した高圧の処理対象ガスを膨張させてその少なくと
も一部を液化させる膨張液化手段と、高圧ライン側のガ
スの一部を膨張させて寒冷を発生させ、低圧側へ送り込
む第1の膨張タービンと、高圧ライン中に設けられた第
2の膨張タービンとを備え、上記圧縮手段で圧縮された
高圧のガスを上記複数の熱交換器における熱交換で冷却
し、上記膨張手段による膨張で所望の割合のガスを液化
し、残りのガスを冷凍に寄与させ、低圧状態で上記熱交
換器に通して上記圧縮手段へ返還するように構成された
液化冷凍装置において、上記熱交換器群の中で、温度レ
ベルが窒素の沸点以下でかつ最も窒素の沸点に近い第1
の膨張タービンを挾む3つの中間熱交換器を、互いに並
列に配され、かつ互いに実質伝熱面積の略等しい2つの
熱交換器で構成するとともに、上記第2の膨張タービン
を挾む2つの低温熱交換器を、基本熱交換器と、この基
本熱交換器と並列に配され、同基本熱交換器の0.5〜
1.0倍の実質伝熱面積を有する1以上の副熱交換器と
で構成したことを特徴とする液化冷凍装置。
[Claim 2] Compression means for compressing a gas to be treated;
A plurality of heat exchangers arranged in series, an expansion liquefaction means that expands and liquefies at least a part of the high-pressure target gas that has passed through these heat exchangers, and a part of the gas on the high-pressure line side. A first expansion turbine that expands the gas to generate cold and sends it to the low-pressure side, and a second expansion turbine installed in the high-pressure line, converts the high-pressure gas compressed by the compression means into the plurality of heat sources. The gas is cooled by heat exchange in the exchanger, a desired proportion of the gas is liquefied by expansion by the expansion means, and the remaining gas is contributed to refrigeration, passed through the heat exchanger in a low pressure state, and returned to the compression means. In the liquefaction refrigeration system configured as above, among the heat exchanger group, the first
The three intermediate heat exchangers sandwiching the second expansion turbine are configured by two heat exchangers arranged in parallel with each other and having substantially equal heat transfer areas, and the two intermediate heat exchangers sandwiching the second expansion turbine. A low temperature heat exchanger is arranged in parallel with the basic heat exchanger and the basic heat exchanger.
A liquefaction refrigeration system comprising one or more sub-heat exchangers having a substantial heat transfer area of 1.0 times.
【請求項3】  請求項1又は2記載の液化冷凍装置に
おいて、上記中間熱交換器を、この中間熱交換器を構成
する2つの熱交換器同士で熱伝導が行われるように構成
したことを特徴とする液化冷凍装置。
3. The liquefaction refrigeration system according to claim 1 or 2, wherein the intermediate heat exchanger is configured such that heat conduction occurs between the two heat exchangers constituting the intermediate heat exchanger. Characteristic liquefaction refrigeration equipment.
【請求項4】  請求項1又は2記載の液化冷凍装置に
おいて、上記低温熱交換器を、この低温熱交換器を構成
する基本熱交換器と副熱交換器との間で熱伝導が行われ
るように構成したことを特徴とする液化冷凍装置。
4. The liquefaction refrigeration system according to claim 1 or 2, wherein the low-temperature heat exchanger is configured such that heat conduction is performed between a basic heat exchanger and an auxiliary heat exchanger constituting the low-temperature heat exchanger. A liquefaction refrigeration device characterized by being configured as follows.
JP3034204A 1991-02-28 1991-02-28 Liquiefied refrigerating apparatus Pending JPH04273953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3034204A JPH04273953A (en) 1991-02-28 1991-02-28 Liquiefied refrigerating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3034204A JPH04273953A (en) 1991-02-28 1991-02-28 Liquiefied refrigerating apparatus

Publications (1)

Publication Number Publication Date
JPH04273953A true JPH04273953A (en) 1992-09-30

Family

ID=12407632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3034204A Pending JPH04273953A (en) 1991-02-28 1991-02-28 Liquiefied refrigerating apparatus

Country Status (1)

Country Link
JP (1) JPH04273953A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016503876A (en) * 2012-12-18 2016-02-08 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Refrigeration and / or liquefaction apparatus and methods related thereto
JP2016504558A (en) * 2013-01-03 2016-02-12 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Refrigeration and / or liquefaction apparatus and methods corresponding thereto

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016503876A (en) * 2012-12-18 2016-02-08 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Refrigeration and / or liquefaction apparatus and methods related thereto
US10465981B2 (en) 2012-12-18 2019-11-05 L'Air Liquide Societe Anonyme pour l'Etude et l'Exoloitation des Procedes Georqes Claude Refrigeration and/or liquefaction device, and associated method
JP2016504558A (en) * 2013-01-03 2016-02-12 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Refrigeration and / or liquefaction apparatus and methods corresponding thereto
US10520225B2 (en) 2013-01-03 2019-12-31 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Refrigeration and/or liquefaction device using selective pre-cooling, and corresponding method

Similar Documents

Publication Publication Date Title
Nandi et al. Performance and optimization of hydrogen liquefaction cycles
US4161107A (en) Method of producing supercold temperature in cryogenic systems
WO2013135037A1 (en) Apparatus and method for liquefying natural gas by refrigerating single mixed working medium
Chang et al. Thermodynamic design of 10 kW Brayton cryocooler for HTS cable
Thomas et al. Exergy based analysis on different expander arrangements in helium liquefiers
KR101037226B1 (en) Natural gas liquefaction process
Brodal et al. Performance and design study of optimized LNG Mixed Fluid Cascade processes
JP2021169872A (en) Liquefied hydrogen production facility
KR100991859B1 (en) A fluid cooling system and a method for cooling a fluid using the same
Dhillon et al. Exergetic analysis of reverse Brayton cryocooler with different turbine arrangements for HTS power cables
RU2598471C2 (en) Cooling method and apparatus
JPH04273953A (en) Liquiefied refrigerating apparatus
CN115096013B (en) Device and method for realizing quick cooling of helium cryogenic refrigerator
Kundu et al. Evaluating performance of mixed mode multistage helium plants for design and off-design conditions by exergy analysis
Chang et al. Integrated design of cryogenic refrigerator and liquid-nitrogen circulation loop for HTS cable
US20190252096A1 (en) Superconductive cable cooling system having integration of liquid nitrogen circulation and refrigerator
CN211977383U (en) Helium liquefying and helium cold source supply device with different temperature grades
Hubbell et al. Thermodynamic optimization of helium liquefaction cycles
Syed et al. Second law analysis of hydrogen liquefiers operating on the modified Collins cycle
Quack Theory of cascade refrigeration
JP2945806B2 (en) Pre-cooling device for refrigeration load installed in liquefaction refrigeration system
Gong et al. Thermodynamic Analysis of a Mixed-Refrigerant Auto-Cascade JT Cryocooler with Distributed Heat Loads
CN117490469A (en) Enthalpy-reducing continuous throttling heat exchanger employing external cooling, liquefaction system and method
CN114923295B (en) Variable working condition adjusting method for two-stage series-connection intermediate heat exchange turbine expander
US20240102728A1 (en) Installation and process for production of a cryogenic fluid