JPH04273399A - Method and device for fire discrimination - Google Patents

Method and device for fire discrimination

Info

Publication number
JPH04273399A
JPH04273399A JP3053632A JP5363291A JPH04273399A JP H04273399 A JPH04273399 A JP H04273399A JP 3053632 A JP3053632 A JP 3053632A JP 5363291 A JP5363291 A JP 5363291A JP H04273399 A JPH04273399 A JP H04273399A
Authority
JP
Japan
Prior art keywords
air
fire
gas
discriminating
infrared rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3053632A
Other languages
Japanese (ja)
Other versions
JP3020628B2 (en
Inventor
Hiromi Miyashita
洋巳 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nohmi Bosai Ltd
Original Assignee
Nohmi Bosai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nohmi Bosai Ltd filed Critical Nohmi Bosai Ltd
Priority to JP5363291A priority Critical patent/JP3020628B2/en
Publication of JPH04273399A publication Critical patent/JPH04273399A/en
Application granted granted Critical
Publication of JP3020628B2 publication Critical patent/JP3020628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Fire-Detection Mechanisms (AREA)

Abstract

PURPOSE:To permit early and correct fire detection and securely detect the generation of noxious gas due to a fire by discriminating the existance from the absence of gas due to the fire by means of an absorption spectrum of infrared rays. CONSTITUTION:A compensation cell 7 is microscopically connected to an air introducing pipe for in a supervised area. Therefore, the air in the compensation cell 7 is sufficiently delayed as against the environmental change in the supervised area in comparison with the air in a measuring cell 5. The air in the measuring cell 5 and the compensation cell 7 is irradiated with infrared rays from a light source 6 via a reflection mirror. Two light beams that pass through the cells 5 and 7 are alternately intercepted by a sector mirror 8 and, after passing through a slit 9, are turned into spectrums by a prism 10. Then, they pass through a slit 11 and are condensed by a detector 12. The detector 12 outputs the difference between the intensity of the light beam passing through the compensation cell 7 and that passing through the measuring cell 5 to a signal processing part (not shown in the figure). The signal processing part discriminates the existance from the absence of absorption at a specified level to see whether a specific gas is generated or not.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、火災判別方法及び装置
に関し、特に、空気中のガスの存在を検出することによ
り火災発生を判別する火災判別方法及び装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fire detection method and device, and more particularly to a fire detection method and device for determining the occurrence of a fire by detecting the presence of gas in the air.

【0002】0002

【従来の技術及び課題】従来、火災を検知する方法とし
て、監視区域の熱及び煙を監視し、所定の閾値または所
定の上昇率を越えたときに火災と判別するものが一般的
である。それに加え、熱と煙を組み合わせ、あるいは検
出値の経時変化を考慮するものなど、早期に及び正確に
火災を判別する方法が検討されている。
2. Description of the Related Art Conventionally, a common method for detecting a fire is to monitor heat and smoke in a monitoring area, and determine a fire when the temperature exceeds a predetermined threshold or a predetermined rate of increase. In addition, methods for early and accurate fire detection are being considered, such as methods that combine heat and smoke or consider changes in detected values over time.

【0003】近年、火災が起こる場合に初期に放出され
るものとして、燃焼ガス、すなわち一酸化炭素やシアン
化水素、その他の臭気に関心が寄せられている。そして
、それら放出ガスによる半導体素子の抵抗値の変化によ
り、火災を検知する方法が検討されつつある。しかし、
半導体素子により臭気等を検出するためには、その他の
ガス、例えばアルコールや芳香の検出とを区別する必要
があり、臭気の電気的反応性により充分な選択性を得る
ことは困難である。火災の事故は、毒性ガスの中毒によ
るものが多く、そのようなガスの発生の存否を判別する
ことも重要である。
[0003] In recent years, attention has been paid to combustion gases, ie, carbon monoxide, hydrogen cyanide, and other odors, which are initially released when a fire occurs. A method of detecting a fire based on a change in the resistance value of a semiconductor element due to these emitted gases is being considered. but,
In order to detect odors and the like using semiconductor devices, it is necessary to distinguish between the detection of other gases, such as alcohol and aromas, and it is difficult to obtain sufficient selectivity due to the electrical reactivity of odors. Many fire accidents are caused by poisoning by toxic gases, and it is also important to determine whether such gases are generated.

【0004】0004

【課題を解決するための手段】従って、本発明によれば
上記課題を解決するため、監視区域の空気に赤外線を照
射し、空気中にガスが存在すると分子の振動のうち双極
子モーメントの変化を起こす振動に起因する吸収を示す
ので、そのスペクトルから火災によるガスの存在を検知
し、また、ガスの毒性を判別するようにしている。
[Means for Solving the Problems] Therefore, according to the present invention, in order to solve the above problems, the air in a monitoring area is irradiated with infrared rays, and when a gas is present in the air, the dipole moment of the vibration of molecules changes. The presence of gas caused by fire can be detected from its spectrum, and the toxicity of the gas can also be determined.

【0005】[0005]

【作用】気体中に赤外線を照射すると赤外線の吸収が起
こるが、該赤外線の吸収は、分子の振動に基づくもので
あり、分子内のあらゆる原子の微小変位に関係するから
、すべての化合物は各々固有の吸収形状を示し、これを
用いて化合物の存在の判別を行うことができる。さらに
原子団特有の吸収もあり、分子に関係なく毒性の官能基
の判別、検出も行える。従って、空気中のガスに赤外線
を照射し、その吸収スペクトルを判別すれば、火災によ
るガスの発生量や質を確実に判別することができる。
[Action] When infrared rays are irradiated into a gas, absorption of infrared rays occurs. This absorption of infrared rays is based on molecular vibrations and is related to minute displacements of all atoms within the molecule, so all compounds It exhibits a unique absorption shape, which can be used to determine the presence of a compound. Furthermore, there is absorption unique to atomic groups, and toxic functional groups can be identified and detected regardless of the molecule. Therefore, by irradiating gas in the air with infrared rays and determining its absorption spectrum, it is possible to reliably determine the amount and quality of gas generated by a fire.

【0006】[0006]

【実施例】以下、本発明の一実施例を図に基づいて説明
する。図1は、本発明の全体構成を示す概略図であり、
1は検出部、2は監視区域の空気の導入管、3は排気管
、4はマイクロプロセッサ等により構成されている信号
処理部である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing the overall configuration of the present invention,
Reference numeral 1 denotes a detection section, 2 an air inlet pipe for the monitoring area, 3 an exhaust pipe, and 4 a signal processing section composed of a microprocessor and the like.

【0007】また、図2は、図1における検出部1の内
部構成を示す図であり、図2において、5は、図1に示
した導入管2及び排気管3に接続される測定セル、7は
、同じく導入管2及び排気管3に接続される補償セルで
ある。測定セル5には導入管2を介して監視区域の空気
が障害なく通過されるが、補償セル7は、導入管2に微
小に通じているだけで監視区域に火災が発生しても直ぐ
にはガスが流入して来ないように構成されている。6は
、測定セル5及び補償セル7に赤外線を照射するための
光源、8は、測定セル5及び補償セル7を通過した赤外
線を交互に遮断して通すセクタ鏡、9はスリット、10
は、測定セル5及び補償セル7を通過した赤外線を分光
するためのプリズム、11はスリット、12は検出器で
ある。
Further, FIG. 2 is a diagram showing the internal configuration of the detection section 1 in FIG. 1, and in FIG. 7 is a compensation cell that is also connected to the inlet pipe 2 and the exhaust pipe 3. Air from the monitoring area passes through the measurement cell 5 through the introduction pipe 2 without any obstruction, but the compensation cell 7 has only a small connection to the introduction pipe 2, so even if a fire breaks out in the monitoring area, it will not be immediately affected. It is configured to prevent gas from flowing in. 6 is a light source for irradiating the measurement cell 5 and the compensation cell 7 with infrared rays; 8 is a sector mirror that alternately blocks and passes the infrared rays that have passed through the measurement cell 5 and the compensation cell 7; 9 is a slit; 10
1 is a prism for separating infrared rays that have passed through the measurement cell 5 and the compensation cell 7; 11 is a slit; and 12 is a detector.

【0008】以上の構成において、導入管2を介して検
出部1の測定セル5に送られてきた監視区域の空気は排
気管3を介して排気され、このように常に新しい監視区
域内の空気を取り込んでいるが、補償セル7は導入管2
に微小に通じているだけであるので、補償セル7内の空
気は、測定セル5内の空気に比較して監視区域の環境変
化に対して充分に遅れている。測定セル5及び補償セル
7内の空気には、光源6からの赤外線が反射鏡を介して
照射され、照射されてそれぞれのセルを通過した2つの
光はセクタ鏡8により交互に遮断され、反射鏡によって
スリット9を経てプリズムで分光され、再びスリット1
1を経て検出器12に集光される。
In the above configuration, the air in the monitoring area that has been sent to the measurement cell 5 of the detection unit 1 through the inlet pipe 2 is exhausted through the exhaust pipe 3, and in this way, new air in the monitoring area is always added. However, compensation cell 7 is taking in inlet pipe 2.
Since the air in the compensation cell 7 is only slightly connected to the air in the measurement cell 5, the air in the compensation cell 7 lags sufficiently behind the environmental changes in the monitored area compared to the air in the measurement cell 5. The air inside the measurement cell 5 and the compensation cell 7 is irradiated with infrared rays from the light source 6 via a reflecting mirror, and the two rays of light that have been irradiated and passed through each cell are alternately blocked by the sector mirror 8 and reflected. The mirror passes through slit 9, the light is separated by the prism, and then the light passes through slit 1 again.
1 and is focused on a detector 12.

【0009】通常、光源6には炭化ケイ素棒やネルンス
ト灯が用いられ、検出器12には熱電対やボロメータが
用いられている。プリズム10の分光範囲は通常 40
00 cm−1まで行えれば充分であるが、火災検出の
みを目的とするならば、さらに特定範囲に絞っても充分
である。
Usually, a silicon carbide rod or a Nernst lamp is used as the light source 6, and a thermocouple or a bolometer is used as the detector 12. The spectral range of prism 10 is usually 40
It is sufficient if the detection can be performed up to 0.00 cm-1, but if the purpose is only to detect fire, it is sufficient to further narrow down the range to a specific range.

【0010】検出器12は、補償セル7と測定セル5の
通過光の強度差を、図1に示した信号処理部4に出力し
、該信号処理部4では、検出部1からの信号の比較処理
を行う。もし監視区域における空気に変化が無ければ、
すなわち長時間同じ空気の状態にあれば、補償セル7と
測定セル5との間には強度差は無く、これは何等異常が
無いことを示す。
The detector 12 outputs the intensity difference between the light passing through the compensation cell 7 and the measurement cell 5 to the signal processing section 4 shown in FIG. Perform comparison processing. If there is no change in the air in the monitored area,
That is, if the air is in the same state for a long time, there is no difference in intensity between the compensation cell 7 and the measurement cell 5, which indicates that there is no abnormality.

【0011】もし強度差があれば、これは、空気の変化
分すなわち混入もしくは侵入してきたガス成分に基づく
ものであり、従って、該強度差において特定波長での所
定レベルの吸収があるか否かを判定することにより、特
定のガスが発生したか否かを知ることができる。
[0011] If there is an intensity difference, this is based on the change in the air, that is, the gas component that has been mixed in or invaded, and therefore, it is important to know whether there is a predetermined level of absorption at a specific wavelength in the intensity difference. By determining this, it is possible to know whether a specific gas has been generated or not.

【0012】ここで、火災時に発生するガスとその赤外
吸収波長について述べると、火災時に発生されるガスは
、燃焼物の組成と燃えている条件により異なり、種々の
ガスが発生する。一般的傾向としてCO、CO2 は必
ず発生し、熱分解や燃焼により材料の化学組成によるガ
スを放出する。例えば、塩化ビニルでは、フォスゲン、
塩素、HCl、ベンゼンやメタン等の炭化水素を放出す
ることが検出されており、アクリロニトリルでは、HC
N、メタン等を放出し、ウレタンフォームでは、HCN
、エチレン等を放出することが検出されていて、CO、
CO2 以外には簡単な炭化水素、NH3、HCN、ア
ルコール、アルデヒド、ニトリル等が主に発生している
。そして、ヘモグロビンとの結合による化学的窒息性ガ
スとしては、CO、HCNが、また、目や呼吸器への刺
激性ガスとしては、HCl、NH3、フォスゲン、NO
2 等が知られている。
[0012] Here, we will discuss the gases generated during a fire and their infrared absorption wavelengths.The gases generated during a fire vary depending on the composition of the combustion material and the burning conditions, and various gases are generated. As a general trend, CO and CO2 are always generated, and gases are released depending on the chemical composition of the material through thermal decomposition and combustion. For example, in vinyl chloride, phosgene,
It has been detected that hydrocarbons such as chlorine, HCl, benzene and methane are released, and acrylonitrile releases HC
Releases N, methane, etc., and in urethane foam, HCN
, ethylene, etc. have been detected, and CO,
Other than CO2, simple hydrocarbons such as NH3, HCN, alcohols, aldehydes, and nitriles are mainly generated. Chemical asphyxiating gases due to their combination with hemoglobin include CO and HCN, and gases irritating to the eyes and respiratory tract include HCl, NH3, phosgene, and NO.
2nd grade is known.

【0013】火災が起こると空気中に火災によるガスが
増加してくるので、赤外線の吸収も増加してくる。例え
ばCOは、2143cm−1 に三重結合による吸収を
示し、フォスゲンは、1828cm−1 にC=O結合
の伸縮振動による吸収がある。その他の主なものを示す
と、750■700cm−1 にモノクロルのC−C1
伸縮振動、2250cm−1 付近にニトリルのC≡N
伸縮振動、1350cm−1 付近にスルフォン酸のS
=O伸縮振動、3300cm−1 付近に大きく水のH
−OH伸縮振動、1250 cm−1 付近にN→O伸
縮振動がある。
[0013] When a fire occurs, the gas from the fire increases in the air, so the absorption of infrared rays also increases. For example, CO exhibits absorption at 2143 cm-1 due to a triple bond, and phosgene exhibits absorption at 1828 cm-1 due to stretching vibrations of C=O bonds. Other main factors include monochloric C-C1 at 750 x 700 cm-1.
Stretching vibration, C≡N of nitrile near 2250cm-1
Stretching vibration, S of sulfonic acid near 1350 cm-1
=O stretching vibration, large H of water near 3300cm-1
-OH stretching vibration and N→O stretching vibration near 1250 cm-1.

【0014】従って、目的の赤外線吸収に基づいて火災
を判別することができるし、また、該赤外線吸収と上記
した種々の赤外線吸収との組み合わせに基づいて、火災
やその危険性をも判別することができる。どのガスを検
出するか、もしくはどの波長判別を行うかは、上記赤外
線吸収態様に基づいて、設置環境ごとに決定するのが望
ましい。
[0014] Therefore, it is possible to discriminate a fire based on the target infrared absorption, and it is also possible to discriminate fire and its danger based on the combination of the infrared absorption and the various infrared absorptions described above. Can be done. It is desirable to determine which gas to detect or which wavelength to perform for each installation environment based on the above-mentioned infrared absorption mode.

【0015】このように信号処理部4には、波長判別を
行うべき特定波長があらかじめ記憶設定されており、比
較処理の結果、補償セル7と測定セル5との通過光の強
度差中に、該記憶設定されている特定波長での所定レベ
ルの吸収が有れば、火災が発生したものと判定すると共
にその火災発生に伴う危険性をも判定してその旨を表す
信号を出力し、該信号に基づいて、図示しない火災警報
ブザーを鳴動させたり、毒性ガスの発生度合いを算出し
て表示したり等の必要な火災動作を行わしめる。毒性ガ
スの発生度合いを知ることができれば、燃えているもの
を経験的に推定することも可能である。
[0015] In this way, the signal processing unit 4 is preliminarily stored with specific wavelengths to be subjected to wavelength discrimination, and as a result of the comparison process, the difference in the intensity of the transmitted light between the compensation cell 7 and the measurement cell 5, If there is a predetermined level of absorption at the specific wavelength stored in the memory, it is determined that a fire has occurred, and the danger associated with the occurrence of the fire is also determined, and a signal indicating this is output. Based on the signal, necessary fire operations are performed, such as sounding a fire alarm buzzer (not shown) and calculating and displaying the degree of toxic gas generation. If we can know the degree of toxic gas generation, we can empirically estimate what is burning.

【0016】なお、上記実施例では、測定セル5と補償
セル7とを設け、両者へ照射された通過光の強度差を取
るようにしたものを示したが、測定セル5の通過光を表
す信号を記憶させておき、記憶されている所定時間前と
なる前回の通過光信号と今回の通過光信号とを比較して
強度差が有るか否かを判定し、強度差がある場合には、
前述と同様に、該強度差において特定波長での所定レベ
ルの吸収が有るか否かを判定するようにしても良い。こ
のようにすれば、補償セル7は不要となる。
In the above embodiment, the measurement cell 5 and the compensation cell 7 are provided to take the difference in the intensity of the light passing through the two, but the light passing through the measurement cell 5 is The signal is stored in memory, and the previous passing optical signal stored a predetermined time ago is compared with the current passing optical signal to determine whether there is an intensity difference, and if there is an intensity difference, ,
Similarly to the above, it may be determined based on the intensity difference whether or not there is a predetermined level of absorption at a specific wavelength. In this way, the compensation cell 7 becomes unnecessary.

【0017】また、検出部1において、赤外線吸収の測
定を常時行うのではなく、例えば金属酸化物を利用した
半導体式ガス・センサ等を別に設け、該半導体式ガス・
センサにより或る程度のガス発生量が検知されたときに
初めて、赤外線の吸収測定を開始するようにすることも
できる。
In addition, in the detecting section 1, instead of constantly measuring infrared absorption, a semiconductor type gas sensor using a metal oxide or the like is separately provided, and the semiconductor type gas sensor or the like is installed separately.
It is also possible to start infrared absorption measurement only when a certain amount of gas generation is detected by the sensor.

【0018】さらに、上記実施例では、監視区域の空気
を導入管2により検出部1の測定セル5まで導入するよ
うにしたサンプリング方式を示したが、該検出部を開放
式にして監視区域の天井面等に直接設置し、監視区域の
空気に直接赤外線を照射するようにしても良い。このよ
うにすれば、導入管2や排気管3が不要となる。
Furthermore, in the above embodiment, a sampling method was shown in which the air in the monitoring area was introduced to the measurement cell 5 of the detection unit 1 through the introduction pipe 2, but the detection unit was made open to allow air in the monitoring area to be introduced into the measurement cell 5 of the detection unit 1. It may be installed directly on the ceiling or the like to directly irradiate the air in the monitoring area with infrared rays. In this way, the introduction pipe 2 and the exhaust pipe 3 become unnecessary.

【0019】なお、本発明により得られる特定波長にお
ける赤外線吸収レベルの値を、マイクロプロセッサを用
いたニューラルネットやファジー関数に波長別に入力し
て処理させるようにすることもできる。このようなニュ
ーラルネットの詳細は、例えば本件出願人による特開平
2−105299号公報に示されており、また、ファジ
ー関数の詳細は、例えば同じく本件出願人による特開平
2−195495号公報に示されている。ニューラルネ
ットやファジー関数を利用するようにすれば、簡便で合
理的かつ一層きめ細かな処理を行うことが可能となる。
It is also possible to input the infrared absorption level values at specific wavelengths obtained by the present invention into a neural network or fuzzy function using a microprocessor for each wavelength and process the values. Details of such a neural network are shown in, for example, Japanese Patent Application Laid-Open No. 2-105299 by the applicant, and details of fuzzy functions are shown in, for example, Japanese Patent Application Laid-Open No. 2-195495, also by the applicant. has been done. By using neural networks and fuzzy functions, it becomes possible to perform simple, rational, and even more detailed processing.

【0020】[0020]

【発明の効果】以上、本発明によれば、監視区域の空気
に赤外線を照射し、該赤外線の吸収スペクトルから空気
中のガスの存否を検出するようにしたので、火災初期に
放出されるガスを的確に検出することができ、これによ
り早期かつ正確な火災検出を可能とし、また、火災によ
る毒性ガスの発生をも確実に検出することができるとい
う効果がある。
As described above, according to the present invention, the air in the monitoring area is irradiated with infrared rays, and the presence or absence of gas in the air is detected from the absorption spectrum of the infrared rays. This has the effect of enabling early and accurate fire detection, and also reliably detecting the generation of toxic gases due to fire.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による火災判別装置を示す概略構成図で
ある。
FIG. 1 is a schematic configuration diagram showing a fire discrimination device according to the present invention.

【図2】図1における検出部1の内部構成を示す図であ
る。
FIG. 2 is a diagram showing the internal configuration of the detection section 1 in FIG. 1.

【符号の説明】[Explanation of symbols]

1    検出部 4    信号処理部 5    測定セル 6    光源 7    補償セル 8    セクター鏡 10    プリズム 12    検出器 1 Detection part 4 Signal processing section 5 Measurement cell 6 Light source 7 Compensation cell 8 Sector mirror 10 Prism 12 Detector

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  監視区域の空気に赤外線を照射し、空
気中にガスが存在すると分子の振動のうち双極子モーメ
ントの変化を起こす振動に起因する吸収を示すので、そ
のスペクトルから火災によるガスの存在を検知すること
を特徴とする火災判別方法。
Claim 1: The air in the monitoring area is irradiated with infrared rays, and when gas is present in the air, absorption is caused by vibrations that change the dipole moment of molecules. A fire discrimination method characterized by detecting the presence of a fire.
【請求項2】  監視区域の空気に赤外線を照射し、空
気中にガスが存在すると分子の振動のうち双極子モーメ
ントの変化を起こす振動に起因する吸収を示すので、そ
のスペクトルから火災によるガスの毒性を判別すること
を特徴とする火災判別方法。
Claim 2: When the air in the monitoring area is irradiated with infrared rays, when gas is present in the air, absorption is caused by vibrations that change the dipole moment of molecules. A fire discrimination method characterized by determining toxicity.
【請求項3】  監視区域の空気に赤外線を照射する発
光手段と、該空気を通過した光を分光する分光手段と、
該分光された光の強度を波長別に検出する検出手段と、
該検出手段の情報から火災によるガスを判別する判別手
段と、を有することを特徴とする火災判別装置。
3. A light emitting means for irradiating infrared rays onto the air in the monitoring area, and a spectroscopic means for separating the light that has passed through the air.
Detection means for detecting the intensity of the separated light by wavelength;
A fire discriminating device comprising: discriminating means for discriminating gas caused by a fire from information of the detecting means.
【請求項4】  監視区域の空気に赤外線を照射する発
光手段と、該空気を通過した光を分光する分光手段と、
該分光された光の強度を波長別に検出する検出手段と、
該検出手段の情報から火災によるガスを判別する判別手
段と、前記監視区域の空気中に存在するガス量を監視し
、該ガス量が所定量に達したとき、前記発光手段、前記
分光手段、前記検出手段及び前記判別手段を起動させる
起動手段と、を備えたことを特徴とする火災判別装置。
4. A light emitting means for irradiating infrared rays onto the air in a monitoring area, and a spectroscopic means for separating light that has passed through the air,
Detection means for detecting the intensity of the separated light by wavelength;
a discriminating means for discriminating gas caused by a fire from information of the detecting means; a discriminating means for monitoring the amount of gas present in the air in the monitoring area, and when the amount of gas reaches a predetermined amount, the light emitting means, the spectroscopic means; A fire discriminating device comprising: a starting means for starting the detecting means and the discriminating means.
【請求項5】  前記判別手段には、毒性ガスの発生度
合いを算出する毒性算出手段を有することを特徴とする
請求項3または4の火災判別装置。
5. The fire discriminating device according to claim 3, wherein the discriminating means includes toxicity calculating means for calculating the degree of generation of toxic gas.
JP5363291A 1991-02-27 1991-02-27 Fire discrimination method and device Expired - Fee Related JP3020628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5363291A JP3020628B2 (en) 1991-02-27 1991-02-27 Fire discrimination method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5363291A JP3020628B2 (en) 1991-02-27 1991-02-27 Fire discrimination method and device

Publications (2)

Publication Number Publication Date
JPH04273399A true JPH04273399A (en) 1992-09-29
JP3020628B2 JP3020628B2 (en) 2000-03-15

Family

ID=12948279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5363291A Expired - Fee Related JP3020628B2 (en) 1991-02-27 1991-02-27 Fire discrimination method and device

Country Status (1)

Country Link
JP (1) JP3020628B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004064714A (en) * 2002-07-31 2004-02-26 Advance Design Corp Flame monitoring system
CN108732130A (en) * 2018-03-27 2018-11-02 李贤哲 Increase the gas-detecting device of the direct absorption spectrometry of light path using polarizer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101469071B1 (en) * 2013-04-26 2014-12-11 한국건설기술연구원 Apparatus for Detecting and Alarming Toxic Gas Using IR Spectrometer and Method for Detecting and Alarming Toxic Gas Using the Same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370061U (en) * 1986-10-27 1988-05-11
JPS6474696A (en) * 1987-09-17 1989-03-20 Nippon Mining Co Method and device for fire alarm

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370061U (en) * 1986-10-27 1988-05-11
JPS6474696A (en) * 1987-09-17 1989-03-20 Nippon Mining Co Method and device for fire alarm

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004064714A (en) * 2002-07-31 2004-02-26 Advance Design Corp Flame monitoring system
CN108732130A (en) * 2018-03-27 2018-11-02 李贤哲 Increase the gas-detecting device of the direct absorption spectrometry of light path using polarizer

Also Published As

Publication number Publication date
JP3020628B2 (en) 2000-03-15

Similar Documents

Publication Publication Date Title
US5767776A (en) Fire detector
AU2016200388B2 (en) Particle detector with dust rejection
US5966077A (en) Fire detector
JP4767404B2 (en) Fire alarm equipment
US6166647A (en) Fire detector
EP0584389B1 (en) Method and apparatus for detecting hydrocarbon vapours in a monitored area
US6107925A (en) Method for dynamically adjusting criteria for detecting fire through smoke concentration
JP4926769B2 (en) Method of determining gas concentration with erroneous detection judgment, program and device
Rose-Pehrsson et al. Multi-criteria fire detection systems using a probabilistic neural network
NZ237465A (en) Fire detector samples co 2 in chamber having aperture covered by silicon
JP2004528564A (en) Automatic calibration mode for carbon dioxide sensor
KR940020040A (en) How to characterize the radical formation process
JP2007024891A (en) Method of measuring presence and concentration of object to be measured, and gas sensor assembly
JP7103419B2 (en) Receiver, fire detection system and fire detection method
JP2012189550A (en) Gas concentration measuring device
US5896088A (en) Incipient fire detection system
EP1973085B1 (en) A method for detecting a fire condition in a monitored region
KR102114557B1 (en) A NDIR analyzer using Two Functional Channels
JPH04273399A (en) Method and device for fire discrimination
Gottwald et al. Single-port optical access for spectroscopic measurements in industrial flue gas ducts
JP4996381B2 (en) Fire alarm
RU2256228C2 (en) Early fire detection method
Hakkarainen et al. Smoke gas analysis by Fourier transform infrared spectroscopy
JPH0452891B2 (en)
Kohl et al. Multisensor system for partial pressure ratios of gas species

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees