JPH04273224A - Polarization inversion control method - Google Patents

Polarization inversion control method

Info

Publication number
JPH04273224A
JPH04273224A JP3034793A JP3479391A JPH04273224A JP H04273224 A JPH04273224 A JP H04273224A JP 3034793 A JP3034793 A JP 3034793A JP 3479391 A JP3479391 A JP 3479391A JP H04273224 A JPH04273224 A JP H04273224A
Authority
JP
Japan
Prior art keywords
polarization inversion
ferroelectric material
charged particles
polarization
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3034793A
Other languages
Japanese (ja)
Inventor
Kouichirou Kijima
公一朗 木島
Masahiro Yamada
正裕 山田
Ayumi Taguchi
歩 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP3034793A priority Critical patent/JPH04273224A/en
Publication of JPH04273224A publication Critical patent/JPH04273224A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • G02F1/3775Non-linear optics for second-harmonic generation in an optical waveguide structure with a periodic structure, e.g. domain inversion, for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3558Poled materials, e.g. with periodic poling; Fabrication of domain inverted structures, e.g. for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3548Quasi phase matching [QPM], e.g. using a periodic domain inverted structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To securely generate the polarization inversion of a fine pattern with good controllability by irradiating a ferroelectric material with charged particles to plural areas at intervals which are large enough to exert no mutual influence on each other. CONSTITUTION:The areas on the singly polarized ferroelectric material 1 are irradiated locally with the charged particles to form a polarization inversion structure 3. The areas are irradiate with the charged particles at the intervals LB where no mutual influence is exerted. Thus, interference between adjacent irradiated areas is evaded and polarization inversion 3A can be generated independently. After the areas are irradiated with the charged particles at said intervals LB where no mutual influence is exerted, accumulated charges on the ferroelectric material 1 are removed and other areas nearby the irradiated areas where an electric field is removed are irradiated with charged particles while the intervals LB are maintained to generate each polarization inversion 3A independently.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、例えば光第2高調波発
生素子(以下SHG素子という)等の光デバイス装置の
形成に適用して好適な分極反転制御方法に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarization inversion control method suitable for application to the formation of optical devices such as optical second harmonic generating elements (hereinafter referred to as SHG elements).

【0002】0002

【従来の技術】近年特にSHG素子等の光デバイス装置
において、その表面に周期ドメイン反転構造を形成して
光出力等の特性の向上をはかることが提案されている。
2. Description of the Related Art In recent years, it has been proposed to improve characteristics such as optical output by forming a periodic domain inversion structure on the surface of optical devices such as SHG elements.

【0003】例えばSHG素子は、周波数ωの光を導入
すると、2ωの周波数の第2高調波の光を発生するもの
で、このSHG素子によって単一波長光の波長範囲の拡
大化がはかられ、これに伴いレーザの利用範囲の拡大化
と各技術分野でのレーザ光利用の最適化をはかることが
できる。例えばレーザ光の短波長化によってレーザ光を
用いた光記録再生、光磁気記録再生等において、その記
録密度の向上をはかることができる。
For example, an SHG element generates second harmonic light of a frequency of 2ω when light of a frequency ω is introduced, and this SHG element can expand the wavelength range of single wavelength light. Accordingly, it is possible to expand the scope of use of lasers and optimize the use of laser light in each technical field. For example, by shortening the wavelength of laser light, it is possible to improve the recording density in optical recording and reproduction using laser light, magneto-optical recording and reproduction, and the like.

【0004】このようなSHG素子としては、例えばK
TPを用いたいわゆるバルク型のSHG素子や、より大
なる非線形光学定数を利用して位相整合を行う導波路型
のSHG素子、例えばLiNbO3 (LN)等の強誘
電体結晶の非線形光学材料より成る単結晶基板の上に線
形導波路を形成して、これに近赤外光の基本波を入力し
て第2高調波の例えば緑、青色光を放射モードとして基
板側からとりだすチェレンコフ放射型のSHG素子等が
ある。
[0004] As such an SHG element, for example, K
So-called bulk-type SHG elements using TP, waveguide-type SHG elements that perform phase matching using a larger nonlinear optical constant, and nonlinear optical materials such as ferroelectric crystals such as LiNbO3 (LN). Cerenkov radiation type SHG that forms a linear waveguide on a single crystal substrate, inputs the fundamental wave of near-infrared light, and extracts second harmonics, such as green and blue light, from the substrate side as a radiation mode. There are elements etc.

【0005】しかしながらバルク型SHG素子はその特
性上SHG変換効率が比較的低く、また廉価で高品質が
得られるLNを用いることができない。またチェレンコ
フ放射型SHG素子は、SHGビームの放射方向が基板
内方向であり、ビームスポット形状も例えば三日月状ス
ポットという特異な形状をなし、実際の使用においての
問題点が存在する。
However, the bulk type SHG element has relatively low SHG conversion efficiency due to its characteristics, and cannot use LN, which is inexpensive and provides high quality. Further, in the Cerenkov radiation type SHG element, the radiation direction of the SHG beam is in the direction into the substrate, and the beam spot has a unique shape, for example, a crescent-shaped spot, which poses problems in actual use.

【0006】変換効率の高いデバイス実現のためには、
基本波と第2高調波の位相伝搬速度を等しくしなくては
ならない。これを擬似的に行う方法として非線形光学定
数の+−を周期的に配列する方法が提案されている(J
.A.Armstrong,N.Bloemberge
n,他,Phys.Rev.,127,1918(19
62))。これを実現する方法として結晶(例えば結晶
軸)の方向を周期的に反転させる方法がある。具体的な
方法としては、例えば結晶を薄く切断して貼り合わせる
方法(岡田、滝沢、家入、NHK技術研究、29(1)
、24(1977)) や、また結晶引き上げ時に例え
ば印加する電流の極性を制御して周期的な分域(ドメイ
ン)を形成して周期ドメイン反転構造を形成する方法(
D.Feng,N.B.Ming,J.F.Hong,
他、Appl.Phys.Lett.37,607(1
980),K.Nassau,H.J.Levinst
ein,G.H.Loiacano Appl.Phy
s.Lett.6,228(1965),A.Feis
st,P.Koidl Appl.Phys.Lett
.47,1125(1985))がある。これらの方法
は結晶材料の全体に渡って周期構造を形成することを目
的としている。しかしながら上述した方法による場合は
大規模な装置が必要となるのみならず、ドメイン形成の
制御が難しいという問題点がある。
In order to realize a device with high conversion efficiency,
The phase propagation speeds of the fundamental wave and the second harmonic must be made equal. As a method to do this in a pseudo manner, a method has been proposed in which the nonlinear optical constants + and - are arranged periodically (J
.. A. Armstrong, N. Bloemberge
n, et al., Phys. Rev. , 127, 1918 (19
62)). One way to achieve this is to periodically reverse the direction of the crystal (for example, crystal axis). Specific methods include, for example, cutting crystals thinly and pasting them together (Okada, Takizawa, Ieiri, NHK Technical Research, 29 (1)
, 24 (1977)), and a method of forming a periodic domain inversion structure by controlling the polarity of the applied current during crystal pulling to form periodic domains (domains).
D. Feng, N. B. Ming, J. F. Hong,
et al., Appl. Phys. Lett. 37,607 (1
980), K. Nassau, H. J. Levinst
ein, G. H. Loiacano Appl. Phy
s. Lett. 6, 228 (1965), A. Feis
st,P. Koidl Appl. Phys. Lett
.. 47, 1125 (1985)). These methods aim to form a periodic structure throughout the crystalline material. However, the method described above not only requires a large-scale apparatus, but also has the problem that it is difficult to control domain formation.

【0007】これに対して結晶材料の表面近傍に上述の
周期ドメイン反転構造を形成する方法として、例えばT
iを結晶表面から拡散させる方法 (伊藤弘昌、張英海
、稲場文男、第49回応用物理学会講演会予稿集919
(1988))や、LiO2 を外拡散する方法(Jo
nas Webjoern,et al,IEEE P
HOTONICS TECHNOL. LETT.1,
1989,PP316−318)が提案されている。し
かしながらこれらの方法による場合、分極反転部分の屈
折率が変化したり、また分極反転形状の制御性が劣化す
る(F.Laurell et al,Integra
ted Photonics Research,Tu
12,1989)等の恐れがある。また、これらの方法
によってSHG素子を形成した場合、入力光の漏波や第
2高調波光の漏波、更に入力光と第2高調波光との結合
効率の低下を招来する等して、いわゆる光変換効率の低
下を招く恐れがある。
On the other hand, as a method for forming the above-mentioned periodic domain inversion structure near the surface of a crystal material, for example, T
A method for diffusing i from the crystal surface (Hiromasa Ito, Yinghai Zhang, Fumio Inaba, Proceedings of the 49th Japan Society of Applied Physics Conference 919)
(1988)) and the method of externally diffusing LiO2 (Jo
nas Webjoern, et al, IEEE P
HOTONICS TECHNOL. LETT. 1,
1989, PP316-318) has been proposed. However, when using these methods, the refractive index of the polarization inversion portion changes, and the controllability of the polarization inversion shape deteriorates (F. Laurel et al, Integra
ted Photonics Research, Tu
12, 1989), etc. In addition, when SHG elements are formed using these methods, leakage of input light, leakage of second harmonic light, and a decrease in coupling efficiency between input light and second harmonic light may occur, resulting in so-called optical This may lead to a decrease in conversion efficiency.

【0008】[0008]

【発明が解決しようとする課題】さらに本出願人は、先
に特願平1−8271号特許出願及び特願平1−184
362号特許出願において、強誘電体材料の非線形光学
材料に対するドメイン制御方法を提案した。この方法は
、シングルドメイン化された強誘電体材料を挟んでその
相対向する両主面に対向電極を配置または絶縁体を介し
て対向配置し、両電極間に直流電圧を印加することによ
って局部的に分極反転部を形成して周期ドメイン反転構
造を得るものである。
[Problems to be Solved by the Invention] Furthermore, the present applicant has previously filed Japanese Patent Application No. 1-8271 and Japanese Patent Application No. 1-184.
In the '362 patent application, we proposed a domain control method for nonlinear optical materials of ferroelectric materials. This method involves placing opposing electrodes on both opposing principal surfaces of a single-domain ferroelectric material, or placing them facing each other with an insulator interposed between them, and applying a DC voltage between the two electrodes. In this method, a periodic domain inversion structure is obtained by forming a polarization inversion part.

【0009】しかしながらこのような方法により形成し
た周期ドメイン反転構造は、図7A及びBに示すように
、分極反転3Aの幅wと厚さtとの比t/wが1以下で
あった。このため周期ドメイン反転構造13を微細にす
るとtの絶対値が小となってしまい、光導波路2の厚さ
より小となってしまう。即ち例えば分極反転3Aの小ピ
ッチ化に伴ってその幅wを約1.5μmとする場合、そ
の厚さtは約0.5μmとなってしまい、光導波路2の
厚さを約1.0μmとする場合、充分その光導波路部分
とそのエバネッセント領域に周期ドメイン反転構造13
が形成されないため、上述したような、非線形光学定数
の+−を周期的に配列することにより、基本波と第2高
調波の位相伝搬速度を等しくすることの効果が充分得ら
れず、SHG効率の向上を阻む一因となっている。
However, in the periodic domain inversion structure formed by such a method, as shown in FIGS. 7A and 7B, the ratio t/w of the width w to the thickness t of the domain inversion 3A was less than 1. Therefore, if the periodic domain inversion structure 13 is made fine, the absolute value of t becomes small, which is smaller than the thickness of the optical waveguide 2. That is, for example, if the width w of the polarization inversion 3A is made to be about 1.5 μm due to a small pitch, the thickness t will be about 0.5 μm, and the thickness of the optical waveguide 2 will be about 1.0 μm. In this case, the periodic domain inversion structure 13 is sufficiently formed in the optical waveguide portion and the evanescent region.
is not formed, the effect of equalizing the phase propagation speed of the fundamental wave and the second harmonic by periodically arranging the + and - of the nonlinear optical constants as described above cannot be obtained, and the SHG efficiency decreases. This is a factor that hinders the improvement of

【0010】このような方法に対して、電子線を非線形
光学材料に照射して、所要のパターンの周期ドメイン反
転構造を得る方法が提案されている(R.W.Keys
,A.Loni,B.J.Luff,P.D.Town
send, 他、Electronics Lette
rs 1st Feburuary 1990 Vol
.26 No.3) 。この方法による場合、図8に略
線的断面図を示すように、非線形光学材料にLN基板6
1の−c面61C上に、50nmの厚さにNiCr層6
2を被着し、更に、400nmの厚さにAu層を被着し
た後所要のパターンにパターニングし、このパターニン
グされたAu層63上から電子ビームを照射するもので
ある。この方法では、基板を約580℃に加熱し、基板
自体にそのc軸方向に10V/cmの電界をかけ、10
keVのエネルギーで、9mm2 に対して全ドーズ量
1017、即ち約1016mm−2の電子ビーム照射を
行うものである。
In contrast to such methods, a method has been proposed in which a nonlinear optical material is irradiated with an electron beam to obtain a periodic domain inversion structure with a desired pattern (R.W. Keys
,A. Loni, B. J. Luff, P. D. Town
send, others, Electronics Lette
rs 1st February 1990 Vol.
.. 26 No. 3). In this method, as shown in a schematic cross-sectional view in FIG.
1, a NiCr layer 6 with a thickness of 50 nm is formed on the −c plane 61C of
2, and then an Au layer with a thickness of 400 nm, which is then patterned into a desired pattern, and an electron beam is irradiated onto the patterned Au layer 63. In this method, the substrate is heated to approximately 580°C, an electric field of 10 V/cm is applied to the substrate itself in the direction of its c-axis, and
At an energy of keV, electron beam irradiation is performed with a total dose of 1017, ie, approximately 1016 mm-2, over 9 mm2.

【0011】しかしながらこのような方法による場合、
非線形光学材料の表面に、絶縁体或いは電極材料等の物
質を被着してパターニングした状態で、高温の熱処理及
び高温中での電圧印加を行うことにより、非線形光学材
料の表面が汚れる恐れがある。またこの場合、LN基板
から酸素分子の外拡散によって分極反転を形成するため
、Li外拡散法と同様に組成の変化により屈折率の変動
をもたらす恐れがあり、特性の変動を生ずる恐れがある
However, when using such a method,
There is a risk that the surface of the nonlinear optical material may become contaminated by performing high-temperature heat treatment or applying a voltage at high temperature after a substance such as an insulator or electrode material is coated and patterned on the surface of the nonlinear optical material. . Furthermore, in this case, since polarization inversion is formed by out-diffusion of oxygen molecules from the LN substrate, there is a risk that the refractive index will change due to a change in composition, similar to the Li out-diffusion method, which may cause a change in characteristics.

【0012】このような問題を解決するために、本出願
人は先に特願平3−26358号特許出願において、非
線形光学材料等の強誘電体結晶上に、荷電粒子を加速電
圧15kV以上、或いは電流密度1μA/mm2 とし
て照射し、この照射部において分極反転を形成する周期
ドメイン反転構造を有する光デバイス装置の製法を提案
した。この製法によれば、図9にその一例の略線的拡大
斜視図を示すように、LN単結晶等より成る強誘電体材
料1の一主面1C上から、荷電粒子例えば電子線bを所
要のパターン例えば平行帯状パターンとして照射し、強
誘電体材料1の主面1C上に平行帯状パターンの分極反
転3Aを形成してこれにより周期ドメイン反転構造13
を得ている。
In order to solve such problems, the present applicant previously applied for Japanese Patent Application No. 3-26358 by accelerating charged particles onto a ferroelectric crystal such as a nonlinear optical material at an accelerating voltage of 15 kV or more. Alternatively, we have proposed a method for manufacturing an optical device having a periodic domain inversion structure in which polarization is inverted in the irradiated area by irradiation at a current density of 1 μA/mm 2 . According to this manufacturing method, as shown in a schematic enlarged perspective view of an example thereof, charged particles, for example, electron beams b, are applied from above one principal surface 1C of a ferroelectric material 1 made of LN single crystal or the like. For example, a parallel strip pattern is irradiated to form a parallel strip pattern of polarization inversion 3A on the main surface 1C of the ferroelectric material 1, thereby forming a periodic domain inversion structure 13.
I am getting .

【0013】このような方法による場合は、電圧印加を
伴わず、また高温の加熱を必要としないため、強誘電体
材料1の表面汚染等による特性の低下や変動を回避する
ことができ、上述のLi外拡散法等と異なり、強誘電体
材料1の組成を変化させないため、屈折率の変化を伴う
ことなく分極反転3Aを形成することができるという利
点を有する。
[0013] In the case of using such a method, since no voltage is applied and high-temperature heating is not required, deterioration and fluctuation of characteristics due to surface contamination of the ferroelectric material 1 can be avoided, and the above-mentioned problems can be avoided. Unlike the Li out-diffusion method, etc., this method does not change the composition of the ferroelectric material 1, so it has the advantage that the polarization inversion 3A can be formed without changing the refractive index.

【0014】しかしながら、このような方法によって、
微細パターンの周期ドメイン反転構造を形成する場合、
隣り合う分極反転3Aが重なってしまう。例えば幅10
μmの分極反転3Aを形成する場合、各分極反転3Aの
間隔は7〜8μm程度となり、分極反転3Aの間隔従っ
てそのピッチを充分小さくすることができないという問
題があった。
However, by such a method,
When forming a periodic domain inversion structure with a fine pattern,
Adjacent polarization inversions 3A overlap. For example, width 10
When forming polarization inversions 3A of μm, the interval between each polarization inversion 3A is about 7 to 8 μm, and there is a problem in that the interval between the polarization inversions 3A, and thus the pitch thereof, cannot be made sufficiently small.

【0015】本発明が解決しようとする課題は、このよ
うな微細パターンの分極反転3Aを、確実に制御性よく
形成する分極反転制御方法を得ることである。
The problem to be solved by the present invention is to obtain a polarization inversion control method that reliably forms such a fine pattern of polarization inversion 3A with good controllability.

【0016】[0016]

【課題を解決するための手段】本発明による分極反転制
御方法の一例の一工程図を図1の略線的拡大斜視図に示
す。本発明は、単分域化された強誘電体材料1に、荷電
粒子をこの強誘電体材料1上の複数の領域に局部的に照
射して、分極反転構造3を形成するようにした分極反転
制御方法において、荷電粒子の照射を、互いに影響しな
い間隔LB を保持しながら複数の領域に照射する。
[Means for Solving the Problems] A process diagram of an example of the polarization inversion control method according to the present invention is shown in the schematic enlarged perspective view of FIG. The present invention provides polarization in which a plurality of regions on the ferroelectric material 1 are locally irradiated with charged particles to form a polarization inversion structure 3 in a single domain ferroelectric material 1. In the inversion control method, charged particles are irradiated onto a plurality of regions while maintaining an interval LB that does not affect each other.

【0017】他の本発明による分極反転制御方法の一例
の製造工程図を図3A〜Cに示す。本発明は、単分域化
された強誘電体材料1に、荷電粒子をこの強誘電体材料
1上の複数の領域に局部的に照射して、分極反転構造3
を形成するようにした分極反転制御方法において、図3
Aに示すように、荷電粒子を互いに影響しない間隔LB
 を保持しながら複数の領域に照射する工程と、図3B
に示すように、この強誘電体材料1上の電荷を除去する
工程と、図3Cに示すように、複数の照射領域に近接す
る他の複数の領域に、互いに影響しない間隔LB を保
持しながら荷電粒子を照射する工程とを有する。
Manufacturing process diagrams of another example of the polarization inversion control method according to the present invention are shown in FIGS. 3A to 3C. In the present invention, charged particles are locally irradiated onto a plurality of regions on the single-domain ferroelectric material 1 to form a polarization-inverted structure 3.
In the polarization inversion control method that forms the
As shown in A, the distance LB that does not affect the charged particles
The process of irradiating multiple areas while holding the
As shown in FIG. 3C, the process of removing the charge on the ferroelectric material 1, and the process of removing the charges on the ferroelectric material 1 while maintaining the distance LB between the other regions close to the plurality of irradiation regions so as not to affect each other, as shown in FIG. 3C. and a step of irradiating charged particles.

【0018】他の本発明による分極反転制御方法の一例
の製造工程図を図4A〜Cに示す。本発明は、単分域化
された強誘電体材料1に、荷電粒子を強誘電体材料1上
の複数の領域に局部的に照射して、分極反転構造3を形
成するようにした分極反転制御方法において、図4Aに
示すように荷電粒子を一旦照射した後、図4Bに示すよ
うにこの強誘電体材料1上の電荷を除去して、その後図
4Cに示すように順次隣り合う近接する領域上に荷電粒
子を照射して、分極反転構造3を得る。
Manufacturing process diagrams of another example of the polarization inversion control method according to the present invention are shown in FIGS. 4A to 4C. The present invention provides a polarization inversion method in which charged particles are locally irradiated onto a plurality of regions on the ferroelectric material 1 to form a polarization inversion structure 3 in a single domain ferroelectric material 1. In the control method, after the charged particles are once irradiated as shown in FIG. 4A, the charge on the ferroelectric material 1 is removed as shown in FIG. 4B, and then the adjacent adjacent particles are A polarization-inverted structure 3 is obtained by irradiating charged particles onto the region.

【0019】[0019]

【作用】上述したように、本発明分極反転制御方法によ
れば、荷電粒子を強誘電体材料1上の複数の領域に局部
的に照射して、分極反転構造3を形成する際に、荷電粒
子の照射を、互いに影響しない間隔LB を保持しなが
ら複数の領域に照射するものであるが、このようにする
ことによって、隣り合う分極反転3Aを互いに分離して
形成することができた。このことは、次の理由によるも
のと思われる。
[Operation] As described above, according to the polarization inversion control method of the present invention, when forming the polarization inversion structure 3 by locally irradiating charged particles onto a plurality of regions on the ferroelectric material 1, Particles are irradiated onto a plurality of regions while maintaining a distance LB that does not affect each other, and by doing so, it was possible to form adjacent polarization inversions 3A separated from each other. This seems to be due to the following reasons.

【0020】先ず、荷電粒子を強誘電体材料1に照射し
たときの分極反転態様について考察する。強誘電体材料
1の模式的な分極態様を示す断面図を図5A及びBに示
す。図5Aにおいて、9は強誘電体材料1内の各分極を
示し、これらの分極方向を矢印dで示す。強誘電体材料
1がLN単結晶の場合、各分極方向はc軸(Z軸)方向
に揃えられて成り、この主面1Cから、強誘電体材料1
内に向かう厚さ方向に分極が揃えられて成る場合を示す
。5は裏面1D上に全面的に被着されたAu等より成る
導電体である。
First, the polarization inversion mode when the ferroelectric material 1 is irradiated with charged particles will be considered. FIGS. 5A and 5B are cross-sectional views showing a schematic polarization mode of the ferroelectric material 1. FIG. In FIG. 5A, 9 indicates each polarization within the ferroelectric material 1, and the direction of these polarizations is indicated by an arrow d. When the ferroelectric material 1 is an LN single crystal, each polarization direction is aligned in the c-axis (Z-axis) direction, and the ferroelectric material 1
This shows the case where the polarization is aligned in the thickness direction toward the inside. Reference numeral 5 denotes a conductor made of Au or the like which is entirely deposited on the back surface 1D.

【0021】このような強誘電体材料1に対して主面1
C上から荷電粒子例えば電子線bを照射すると、この照
射部分において電子の一部が残留して強誘電体材料1の
表面上にこの蓄積電荷による−の電界Eが発生し、また
電子の一部が強誘電体材料1内に入り込んで矢印iで示
す電子流が生じる。従って、この部分において分極9の
+側が、電界Eまたは電子流iの通過する方向を向くよ
うに反転して、結果的に図5Bに示すように、分極反転
3Aが生じるものと思われる。
[0021] For such a ferroelectric material 1, the main surface 1
When a charged particle, for example, an electron beam b, is irradiated from above C, some of the electrons remain in the irradiated area, and a negative electric field E is generated by this accumulated charge on the surface of the ferroelectric material 1. portion enters the ferroelectric material 1 and an electron flow is generated as indicated by arrow i. Therefore, in this portion, the + side of the polarization 9 is reversed so as to face the direction in which the electric field E or the electron current i passes, and as a result, polarization reversal 3A appears as shown in FIG. 5B.

【0022】そしてこのとき、図6に強誘電体材料の分
極態様の断面図を示すように、荷電粒子を照射する領域
が近接している場合は、第1回目の照射による電界E1
 が消去されない状態で、第2回目の照射により電界E
2 が発生し、これら電界E1 及びE2 とが干渉し
て、これにより分極反転の生じる領域が実質的に重なっ
てしまい、目的とするパターンより大なる形状の分極反
転3Aが形成されることとなる。
At this time, as shown in the cross-sectional view of the polarization mode of the ferroelectric material in FIG.
is not erased, the electric field E is increased by the second irradiation.
2 is generated, these electric fields E1 and E2 interfere, and as a result, the regions where polarization inversion occurs substantially overlap, resulting in the formation of polarization inversion 3A with a larger shape than the intended pattern. .

【0023】従って本発明分極反転制御方法によれば、
荷電粒子の照射を、互いに影響しない間隔LB を保持
しながら複数の領域に照射するため、上述したような隣
り合う照射領域の電界が干渉することを回避することが
できて、確実に分極反転3Aを互いに独立して形成する
ことができる。
Therefore, according to the polarization inversion control method of the present invention,
Since charged particles are irradiated onto multiple regions while maintaining a distance LB that does not affect each other, it is possible to avoid interference between the electric fields of adjacent irradiation regions as described above, and ensure polarization inversion 3A. can be formed independently of each other.

【0024】他の本発明による分極反転制御方法では、
図3Aに示すように、荷電粒子を互いに影響しない間隔
LB を保持しながら複数の領域に照射した後、図3B
に示すように、この強誘電体材料1上の蓄積電荷を除去
して即ちこの荷電粒子による電界を除去した後、この電
界を除去した複数の照射領域に近接する他の複数の領域
に、互いに影響しない間隔LB を保持しながら荷電粒
子を照射するため、隣り合う照射領域の蓄積電荷による
電界が干渉することを回避することができて、各分極反
転3Aを互いに独立して形成することができる。
In another polarization inversion control method according to the present invention,
As shown in FIG. 3A, after irradiating charged particles to multiple regions while maintaining a distance LB that does not affect each other, as shown in FIG.
As shown in , after the accumulated charge on the ferroelectric material 1 is removed, that is, the electric field due to the charged particles is removed, other regions adjacent to the plurality of irradiation regions from which this electric field has been removed are exposed to each other. Since charged particles are irradiated while maintaining an unaffected interval LB, it is possible to avoid interference between electric fields due to accumulated charges in adjacent irradiation areas, and each polarization inversion 3A can be formed independently of each other. .

【0025】また他の本発明による分極反転制御方法に
よる場合は、図4Aに示すように強誘電体材料1に対し
て荷電粒子を一旦照射した後、図4Bに示すように強誘
電体材料1上の蓄積電荷を除去して、図4Cに示すよう
に順次隣り合う近接する領域上に荷電粒子を照射するた
め、その照射領域の間隔LS が比較的小であっても、
隣り合う照射領域の電界が干渉することを回避すること
ができて、各分極反転3Aを互いに独立して形成するこ
とができ、微細な間隔をもって配列した分極反転構造3
を得ることができる。
In the case of another polarization inversion control method according to the present invention, the ferroelectric material 1 is once irradiated with charged particles as shown in FIG. 4A, and then the ferroelectric material 1 is irradiated with charged particles as shown in FIG. 4B. In order to remove the accumulated charges above and sequentially irradiate charged particles onto adjacent regions as shown in FIG. 4C, even if the interval LS between the irradiation regions is relatively small,
It is possible to avoid interference between the electric fields of adjacent irradiation areas, and each polarization inversion structure 3A can be formed independently of each other, and the polarization inversion structures 3 are arranged at fine intervals.
can be obtained.

【0026】[0026]

【実施例】以下図1〜図4を参照して本発明分極反転制
御方法の各例を詳細に説明する。各例ともに、強誘電体
材料1として非線形光学材料のLN単結晶を用いて、そ
の厚さ方向にc軸(Z軸)を有し、主面1C側を−c面
とする。この強誘電体材料1は例えばそのキュリー温度
直下の例えば1200℃程度まで昇温してその厚さ方向
に外部直流電圧を全面的に印加することによって、全面
的にc軸の厚さ方向に揃えてシングルドメイン化されて
成り、この−c面1C上から荷電粒子を照射する例であ
る。またこの強誘電体材料1の裏面1D上には、全面的
にAu等より成る導電体5が蒸着、スパッタリング等に
より被着形成されて成る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Each example of the polarization inversion control method of the present invention will be described in detail below with reference to FIGS. 1 to 4. In each example, an LN single crystal of a nonlinear optical material is used as the ferroelectric material 1, and has a c-axis (Z-axis) in the thickness direction, and the main surface 1C side is the -c plane. This ferroelectric material 1 is heated to, for example, about 1200° C., just below its Curie temperature, and an external DC voltage is applied to the entire surface in the thickness direction, thereby aligning the entire surface in the thickness direction of the c-axis. This is an example in which charged particles are irradiated from above the -c plane 1C. Further, on the back surface 1D of the ferroelectric material 1, a conductor 5 made of Au or the like is entirely deposited by vapor deposition, sputtering, or the like.

【0027】実施例1 図1に示すように、強誘電体材料1の主面1C上に、例
えば平行帯状の直線パターンに軌跡を描くように、荷電
粒子例えば電子線bを走査照射する。この電子ビームb
は例えば15kVの加速電圧従って15keVのエネル
ギーで、電流密度を例えば1μA/mm2 として主面
1Cの上方から照射した。このとき、照射パターンの幅
wを10μm、この照射領域の間隔を8μm程度とした
。 このように照射領域の間隔LB を比較的大とすること
により、図2の略線的拡大断面図に示すように、電子線
bの照射による電界Eと、図示しないがこの照射領域直
下に導電体5に向かって流れる電流によって、矢印dで
示す分極方向とは逆向きの、矢印hで示す方向に分極を
有する分極反転3Aを互いに独立に形成することができ
る。従って、これら分極反転3Aがピッチ(L+w)を
もって周期的に配列された分極反転構造3を得ることが
できる。
Example 1 As shown in FIG. 1, charged particles, such as electron beams b, are scanned and irradiated onto the main surface 1C of the ferroelectric material 1 so as to draw loci in, for example, a linear pattern in the form of parallel bands. This electron beam b
is irradiated from above the principal surface 1C at an accelerating voltage of, for example, 15 kV, and hence an energy of 15 keV, and a current density of, for example, 1 μA/mm 2 . At this time, the width w of the irradiation pattern was 10 μm, and the interval between the irradiation areas was about 8 μm. By making the interval LB between the irradiation regions relatively large in this way, as shown in the schematic enlarged cross-sectional view of FIG. By the current flowing toward the body 5, polarization inversions 3A having polarization in the direction indicated by the arrow h, which is opposite to the polarization direction indicated by the arrow d, can be formed independently of each other. Therefore, it is possible to obtain a polarization inversion structure 3 in which these polarization inversions 3A are periodically arranged with a pitch (L+w).

【0028】実施例2 この例においては、他の本発明分極反転制御方法によっ
て分極反転構造3を得る場合で、先ず図3Aに示すよう
に、例えば平行帯状パターンの軌跡を描くように、荷電
粒子例えば電子線bを複数の領域に照射する。このとき
の照射条件は、上述した実施例1と同様に選定する。そ
してこの各領域の間隔LB を、互いに影響しない即ち
各照射領域における電界が干渉しないように選定して第
1の分極反転3Bを形成する。
Example 2 In this example, a polarization inversion structure 3 is obtained by another polarization inversion control method of the present invention. First, as shown in FIG. 3A, charged particles are For example, a plurality of regions are irradiated with the electron beam b. The irradiation conditions at this time are selected in the same manner as in Example 1 described above. The first polarization inversion 3B is formed by selecting the interval LB between these regions so that they do not influence each other, that is, so that the electric fields in each irradiation region do not interfere.

【0029】次に、強誘電体材料1を例えば真空中で1
時間の放置、又は大気中で短時間放置による自然放電、
或いは図3Bにおいて矢印aで示すように、例えばイオ
ン風を全面的に照射する等してこの強誘電体材料1上の
蓄積電荷を除去し、これによる電界を除去する。
Next, the ferroelectric material 1 is heated, for example, in a vacuum.
Natural discharge due to being left for a long time or being left in the atmosphere for a short time,
Alternatively, as shown by arrow a in FIG. 3B, the accumulated charge on the ferroelectric material 1 is removed by, for example, irradiating the entire surface with ion wind, and the electric field caused by this is removed.

【0030】そして図3Cに示すように、複数の照射領
域に近接する他の複数の領域に、互いに影響しない、即
ち各照射領域における電界が干渉しない間隔LB をも
って電子線bを、上述のパターンと同じ及び間隔LB 
をもって、図3Aに示す工程即ち第1回目の照射によっ
て形成された帯状パターンの各分極反転3B間に、これ
らと平行に照射して第2の分極反転3Cを形成する。こ
のとき第1及び第2の分極反転3B及び3Cが、等間隔
に配列されようになす。またこの照射条件は上述の実施
例1と同様に選定する。このようにして、それぞれ隣り
合う分極反転3Aの間隔LS が8μm程度以下とされ
た、微細ピッチの周期的な分極反転構造3を得ることが
できる。
Then, as shown in FIG. 3C, the electron beam b is applied to a plurality of other regions close to the plurality of irradiation regions at intervals LB that do not affect each other, that is, the electric fields in each irradiation region do not interfere with each other, in accordance with the above-mentioned pattern. Same and spacing LB
Then, in the step shown in FIG. 3A, that is, between each polarization inversion 3B of the strip pattern formed by the first irradiation, irradiation is performed in parallel to these to form a second polarization inversion 3C. At this time, the first and second polarization inversions 3B and 3C are arranged at equal intervals. Further, the irradiation conditions are selected in the same manner as in Example 1 described above. In this way, it is possible to obtain a periodic domain-inverted structure 3 with a fine pitch, in which the interval LS between adjacent domain-inverted structures 3A is approximately 8 μm or less.

【0031】実施例3 この例は、他の本発明分極反転制御方法による場合で、
先ず図4Aに示すように強誘電体材料1に対して例えば
平行帯状パターンをもって荷電粒子例えば電子線bを一
旦走査照射する。このときの照射条件は上述の実施例1
と同様に選定する。
Example 3 This example is a case using another polarization inversion control method of the present invention.
First, as shown in FIG. 4A, the ferroelectric material 1 is once scanned and irradiated with charged particles, such as an electron beam b, in a parallel strip pattern, for example. The irradiation conditions at this time were as described in Example 1 above.
Select in the same way.

【0032】次に、強誘電体材料1を例えば真空中で1
時間程度の放置、又は例えば大気中での短時間放置によ
る自然放電、或いは図4Bに示すように、例えばイオン
風aを照射する等の強制除去によって強誘電体材料1上
の蓄積電荷を除去する。
Next, the ferroelectric material 1 is heated, for example, in a vacuum.
The accumulated charge on the ferroelectric material 1 is removed by leaving it for about an hour, or by natural discharge by leaving it in the atmosphere for a short time, or by forced removal, such as by irradiating it with ion wind a, as shown in FIG. 4B. .

【0033】その後図4Cに示すように順次隣り合う近
接する領域上に荷電粒子を、例えばその照射領域の間隔
LS を最終的に得る所望の小なる間隔として、前回照
射したパターンと平行に帯状直線パターンとして走査照
射する。このように照射領域の間隔を充分小としても、
前回照射した領域の主面1C上の電荷を除去しているた
め、その後照射する領域の電界と、これと隣り合う前回
の照射領域上の電界が干渉することを回避することがで
きて、各分極反転3Aを互いに独立して形成することが
できる。これによって、微細な間隔LS をもって周期
的に配列した分極反転構造3を得ることができる。
Thereafter, as shown in FIG. 4C, charged particles are sequentially applied to adjacent areas, for example, by forming strip-shaped straight lines parallel to the previously irradiated pattern at a desired small interval to finally obtain the interval LS between the irradiated areas. Scan and irradiate as a pattern. Even if the interval between the irradiation areas is small enough in this way,
Since the electric charge on the main surface 1C of the previously irradiated area is removed, it is possible to avoid interference between the electric field of the subsequently irradiated area and the electric field on the adjacent previously irradiated area. The polarization inversions 3A can be formed independently of each other. This makes it possible to obtain polarization inversion structures 3 arranged periodically with fine intervals LS.

【0034】上述した実施例2及び3においては、その
分極反転3Aの幅wを10μm程度としても、その各分
極反転間の間隔LS を8μm以下の任意所望の小なる
間隔をもって形成することができる。また例えば分極反
転の幅を4μm、間隔LS を4μm程度として、より
微細な幅及びピッチをもって分極反転構造3を形成する
こともできる。
In the above-described embodiments 2 and 3, even if the width w of the polarization inversions 3A is about 10 μm, the interval LS between each polarization inversion can be formed to have any desired small interval of 8 μm or less. . Further, for example, the polarization inversion structure 3 can be formed with a finer width and pitch by setting the width of the polarization inversion to 4 μm and the interval LS to about 4 μm.

【0035】尚、上述した各例ともに、各分極反転をよ
り形状の制御性よく形成するためには、導電体5を接地
することが望ましい。
In each of the above-mentioned examples, it is desirable to ground the conductor 5 in order to form each polarization inversion with better shape controllability.

【0036】また、上述の各例においては、LN単結晶
より成る強誘電体材料1の厚さ方向に分極方向を有し、
この分極方向に沿う方向に荷電粒子を照射した場合につ
いて説明したが、その他例えば強誘電体材料の主面に沿
う面内方向に分極が揃えられた材料に対して、この分極
方向と直交する方向に荷電粒子を照射する場合において
も、本発明を適用することができる。
In each of the above examples, the polarization direction is in the thickness direction of the ferroelectric material 1 made of LN single crystal,
Although we have explained the case where charged particles are irradiated in a direction along this polarization direction, in other cases, for example, for a material whose polarization is aligned in the in-plane direction along the main surface of a ferroelectric material, it is possible to irradiate a charged particle in a direction perpendicular to this polarization direction. The present invention can also be applied to the case where charged particles are irradiated to the surface.

【0037】また更に、上述の各例においては、強誘電
体材料1の材料としてLN単結晶を用いた場合について
述べたが、その他上述のKTP等、種々の材料を用いる
ことができる。
Furthermore, in each of the above examples, a case has been described in which LN single crystal is used as the material of the ferroelectric material 1, but various other materials such as the above-mentioned KTP can be used.

【0038】また上述の各例では荷電粒子として電子線
bを照射したが、その他例えば強誘電体材料1としてL
N単結晶を用いる場合は、分極反転の+方向すなわち+
c面側からLi+ を照射する等、種々の荷電粒子を用
いることができる。
Further, in each of the above examples, the electron beam b was used as the charged particle, but in other cases, for example, L was used as the ferroelectric material 1.
When using an N single crystal, the + direction of polarization inversion, that is, +
Various charged particles can be used, such as irradiating Li+ from the c-plane side.

【0039】[0039]

【発明の効果】上述したように、本発明分極反転制御方
法によれば、強誘電体材料1に対して荷電粒子を照射し
て複数の分極反転3Aを形成する際に、それぞれ隣り合
う分極反転3Aを確実に、かつ微細な間隔をもって形成
することができ、これにより微細なピッチの周期的な分
極反転構造3を得ることができる。
As described above, according to the polarization inversion control method of the present invention, when forming a plurality of polarization inversions 3A by irradiating the ferroelectric material 1 with charged particles, each adjacent polarization inversion is 3A can be formed reliably and at fine intervals, thereby making it possible to obtain a periodic polarization inversion structure 3 with a fine pitch.

【0040】従って、例えば強誘電体材料1として非線
形光学材料を用いて、微細パターンの分極反転3Aを微
細なピッチで形成して周期的な分極反転構造3を形成し
、更に周知のプロトン交換法等により光導波路を形成す
ることによって、高光変換効率のSHG素子を得ること
ができる。
Therefore, for example, a nonlinear optical material is used as the ferroelectric material 1, a fine pattern of polarization inversions 3A is formed at a fine pitch to form a periodic polarization inversion structure 3, and the well-known proton exchange method is used. By forming an optical waveguide using the above method, an SHG element with high light conversion efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明分極反転制御方法の一例の一工程図であ
る。
FIG. 1 is a process diagram of an example of the polarization inversion control method of the present invention.

【図2】強誘電体材料の分極反転態様を示す模式的断面
図である。
FIG. 2 is a schematic cross-sectional view showing a polarization inversion mode of a ferroelectric material.

【図3】他の本発明分極反転制御方法の一例の製造工程
図である。
FIG. 3 is a manufacturing process diagram of another example of the polarization inversion control method of the present invention.

【図4】他の本発明分極反転制御方法の一例の製造工程
図である。
FIG. 4 is a manufacturing process diagram of another example of the polarization inversion control method of the present invention.

【図5】荷電粒子照射による強誘電体材料の分極反転態
様を示す模式的断面図である。
FIG. 5 is a schematic cross-sectional view showing a polarization reversal mode of a ferroelectric material by charged particle irradiation.

【図6】荷電粒子照射による強誘電体材料の分極反転態
様を示す模式的断面図である。
FIG. 6 is a schematic cross-sectional view showing a mode of polarization reversal of a ferroelectric material by charged particle irradiation.

【図7】従来の周期ドメイン反転構造を示す略線的拡大
断面図である。
FIG. 7 is a schematic enlarged cross-sectional view showing a conventional periodic domain inversion structure.

【図8】従来の周期ドメイン反転構造を有する光デバイ
ス装置の製法を示す略線的拡大断面図である。
FIG. 8 is a schematic enlarged cross-sectional view showing a method for manufacturing an optical device having a conventional periodic domain inversion structure.

【図9】周期ドメイン反転構造を有する光デバイス装置
の製法を示す略線的拡大斜視図である。
FIG. 9 is a schematic enlarged perspective view showing a method for manufacturing an optical device having a periodic domain inversion structure.

【符号の説明】[Explanation of symbols]

1  強誘電体材料 1C  主面 1D  裏面 3  分極反転構造 3A  分極反転 3B  第1の分極反転 3C  第2の分極反転 5  導電体 9  分極 1 Ferroelectric material 1C Main surface 1D back side 3 Polarization inversion structure 3A Polarization inversion 3B First polarization inversion 3C Second polarization inversion 5 Conductor 9 Polarization

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  単分域化された強誘電体材料に、荷電
粒子を上記強誘電体材料上の複数の領域に局部的に照射
して、分極反転構造を形成するようにした分極反転制御
方法において、上記強誘電体材料に対して上記荷電粒子
の照射を、互いに影響しない間隔を保持しながら複数の
領域に照射するようにしたことを特徴とする分極反転制
御方法。
1. Polarization inversion control in which a plurality of regions on the ferroelectric material are locally irradiated with charged particles to form a polarization inversion structure in a single domain ferroelectric material. A polarization inversion control method, characterized in that the ferroelectric material is irradiated with the charged particles in a plurality of regions while maintaining intervals that do not affect each other.
【請求項2】  単分域化された強誘電体材料に、荷電
粒子を上記強誘電体材料上の複数の領域に局部的に照射
して、分極反転構造を形成するようにした分極反転制御
方法において、上記強誘電体材料に対して荷電粒子を互
いに影響しない間隔を保持しながら複数の領域に照射す
る工程と、上記強誘電体材料上の電荷を除去する工程と
、上記複数の照射領域に近接する他の複数の領域に、互
いに影響しない間隔を保持しながら荷電粒子を照射する
工程とを有することを特徴とする分極反転制御方法。
2. Polarization inversion control in which charged particles are locally irradiated onto a plurality of regions on a single domain ferroelectric material to form a polarization inversion structure. The method includes the steps of irradiating charged particles onto a plurality of regions of the ferroelectric material while maintaining intervals that do not affect each other, removing charges on the ferroelectric material, and the plurality of irradiation regions. A polarization inversion control method comprising the step of irradiating charged particles onto a plurality of other regions adjacent to the region while maintaining intervals that do not affect each other.
【請求項3】  単分域化された強誘電体材料に、荷電
粒子を上記強誘電体材料上の複数の領域に局部的に照射
して、分極反転構造を形成するようにした分極反転制御
方法において、荷電粒子を一旦照射した後上記強誘電体
材料上の電荷を除去して、その後順次隣り合う近接する
領域上に荷電粒子を照射して、分極反転構造を得るよう
にしたことを特徴とする分極反転制御方法。
3. Polarization inversion control in which a plurality of regions on the ferroelectric material are locally irradiated with charged particles to form a polarization inversion structure in a single domain ferroelectric material. The method is characterized in that after once charged particles are irradiated, charges on the ferroelectric material are removed, and then charged particles are sequentially irradiated onto adjacent regions to obtain a polarization-inverted structure. A polarization reversal control method.
JP3034793A 1991-02-28 1991-02-28 Polarization inversion control method Pending JPH04273224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3034793A JPH04273224A (en) 1991-02-28 1991-02-28 Polarization inversion control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3034793A JPH04273224A (en) 1991-02-28 1991-02-28 Polarization inversion control method

Publications (1)

Publication Number Publication Date
JPH04273224A true JPH04273224A (en) 1992-09-29

Family

ID=12424145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3034793A Pending JPH04273224A (en) 1991-02-28 1991-02-28 Polarization inversion control method

Country Status (1)

Country Link
JP (1) JPH04273224A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292287A (en) * 2004-03-31 2005-10-20 Sumitomo Osaka Cement Co Ltd Method of forming polarization inversion
US8193004B2 (en) 2004-03-18 2012-06-05 Sumitomo Osaka Cement Co., Ltd. Method for forming ferroelectric spontaneous polarization reversal
CN107134524A (en) * 2017-05-27 2017-09-05 西安交通大学 A kind of method that use atomic layer deposition method prepares the three-dimensional many iron hetero-junctions of fin

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8193004B2 (en) 2004-03-18 2012-06-05 Sumitomo Osaka Cement Co., Ltd. Method for forming ferroelectric spontaneous polarization reversal
US8293543B2 (en) 2004-03-18 2012-10-23 Sumitomo Osaka Cement Co., Ltd. Method for forming polarization reversal
US8524509B2 (en) 2004-03-18 2013-09-03 Sumitomo Osaka Cement Co., Ltd. Method for forming polarization reversal
US8669121B2 (en) 2004-03-18 2014-03-11 Sumitomo Osaka Cement Co., Ltd. Method for forming polarization reversal
JP2005292287A (en) * 2004-03-31 2005-10-20 Sumitomo Osaka Cement Co Ltd Method of forming polarization inversion
JP4587366B2 (en) * 2004-03-31 2010-11-24 住友大阪セメント株式会社 Polarization inversion formation method
CN107134524A (en) * 2017-05-27 2017-09-05 西安交通大学 A kind of method that use atomic layer deposition method prepares the three-dimensional many iron hetero-junctions of fin

Similar Documents

Publication Publication Date Title
JPH04212132A (en) Optical device with periodic domain inverted structure and production thereof
EP0532969B1 (en) Process for fabricating an optical device for generating a second harmonic optical beam
JP3529144B2 (en) Method of forming domain inversion structure of ferroelectric
JPH06242478A (en) Formation of domain inversion structure of ferroelectric substance
EP0643321B1 (en) Method of local domain control on nonlinear optical materials
JPH08220578A (en) Manufacture of polarization inversion area, and light wavelength converting element utilizing that and its manufacture
JP3277515B2 (en) Polarization reversal control method
JPH04273224A (en) Polarization inversion control method
JPH06242479A (en) Optical wavelength conversion element and its formation
JP3303346B2 (en) Method for controlling polarization of lithium niobate and lithium tantalate, method for manufacturing optical waveguide device using the same, and optical waveguide device
JP3533950B2 (en) Method for producing nonlinear optical silica thin film and nonlinear optical silica element
JPH04270322A (en) Domain controlling method
JP2003295242A (en) Optical wavelength conversion element
JPH04280234A (en) Control method of polarization inversion
JP3428156B2 (en) Polarization reversing device and method for manufacturing nonlinear optical element
JP3318770B2 (en) Manufacturing method of optical waveguide type wavelength converter
JP3946092B2 (en) Method for forming periodically poled structure
JPH04270323A (en) Domain controller
JP3683517B2 (en) Method for forming domain inversion structure of ferroelectric material
JPH0348831A (en) Domain control method for nonlinear ferroelectric optical material
JPH05323407A (en) Formation of partial polarization inversion region and optical second higher harmonic generating element
JPH11258646A (en) Polarization inverted domain and optical element, and production thereof
JPH05289136A (en) Optical waveguide type wavelength conversion element and its manufacture
JPH04143707A (en) Manufacture of optical waveguide
JPH10206810A (en) Ridge type optical waveguide element and its manufacture